JP3768621B2 - How to use the protective element - Google Patents

How to use the protective element Download PDF

Info

Publication number
JP3768621B2
JP3768621B2 JP28913996A JP28913996A JP3768621B2 JP 3768621 B2 JP3768621 B2 JP 3768621B2 JP 28913996 A JP28913996 A JP 28913996A JP 28913996 A JP28913996 A JP 28913996A JP 3768621 B2 JP3768621 B2 JP 3768621B2
Authority
JP
Japan
Prior art keywords
electrode
melting point
low melting
soluble alloy
point soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28913996A
Other languages
Japanese (ja)
Other versions
JPH10116550A (en
Inventor
充明 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP28913996A priority Critical patent/JP3768621B2/en
Publication of JPH10116550A publication Critical patent/JPH10116550A/en
Application granted granted Critical
Publication of JP3768621B2 publication Critical patent/JP3768621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は過電圧から電気機器を保護するために用いる保護素子使用方法に関するものである。
【0002】
【従来の技術】
機器に過電圧が作用したときに機器を電源から遮断する場合、膜抵抗と低融点可溶合金片とを絶縁基板の片面上に並設し、絶縁基板の片面を絶縁層で被覆して成る保護素子を使用し、図4に示すように、この保護素子E’及び過電圧検知通電回路F’、例えば、トランジスタTr’のベ−ス側にツエナダイオ−ドD’を接続して成る回路F’を電源S’と被保護機器Z’との間に挿入し、機器Z’にツエナダイオ−ドD’の降伏電圧以上の逆電圧が作用すると、ベ−ス電流が流れ、このベ−ス電流に応じコレクタ電流が流れて膜抵抗R’が発熱し、低融点可溶合金片A’が溶断されることで機器Z’を電源S’から遮断することが公知である。
【0003】
しかしながら、上記の保護素子では、低融点可溶合金片A’の溶断で機器Z’が電源から遮断されても、機器Z’がキャパシティブな負荷の場合、例えば蓄電池の場合、残留電圧のためにベ−ス電流が流れ続けて膜抵抗R’の通電発熱が継続されることがあり、危険である。
【0004】
そこで、図5の(イ)に示すように、中央ヒュ−ズ電極21’とヒ−タ−片側T字形電極22’とを結合した複合電極20’、ヒ−タ−他側T字形電極23’及びヒ−ズ両側電極24’、25’とを基板1’に印刷形成し、図5の(ロ)に示すように、ヒ−タ−片側T字形電極22’とヒ−タ−他側T字形電極23’とのT字形両ア−ム間にわたってそれぞれ膜抵抗R’、R’を設け、各膜抵抗上に絶縁層i’、i’を設け、複合電極20’の中央ヒュ−ズ電極21’とヒュ−ズ両側電極24’ね25’との間にそれぞれ低融点可溶合金片A’、A’を接続し、更に図5の(ハ)に示すように、フラックス層4’及び外部絶縁層5’を被覆して成る保護素子を用いることが提案されている(特開平7−153367号)。
この保護素子を組み込んだ保護回路では、図6に示す通り膜抵抗R’−低融点可溶合金片A’の対を2組備え、各対の膜抵抗R’の通電発熱でその対の低融点可溶合金片A’を溶断している。
而して、機器Z’側にツエナダイオ−ドD’の降伏電圧以上の逆電圧が作用すると、トランジスタTr’にベ−ス電流が流れ、コレクタ電流が流れて両膜抵抗R’、R’が通電発熱され、各膜抵抗R’、R’の通電発熱で各低融点可溶合金片A’、A’が溶断されて機器Z’が電源S’から遮断されると共に膜抵抗R’、R’が電源S’から遮断される。
【0005】
【発明が解決しようとする課題】
しかしながら、上記の保護素子では膜抵抗−低融点可溶合金片の対が二組であるために2個の膜抵抗についての抵抗値調整が必要であって製造がやっかいであり、また、膜抵抗−低融点可溶合金片を平面的に2組設ける必要があるため保護素子の小サイズ化にも不利である。
更に、膜抵抗上の絶縁層、例えばガラス膜はスクリ−ン印刷により形成され、スクリ−ンのメッシユに起因しての凹凸化か避け難く、かかるもとでは、その上での低融点可溶合金片の円滑な球状化分断を保証し難い。
【0006】
本発明の目的は、機器の過電圧を検知し膜抵抗を通電発熱させて低融点可溶合金片を溶断させ、機器及び膜抵抗を電源より遮断する保護素子を対象とし、構造が簡単で製造が容易な作動性に優れた保護素子の使用方法を提供することにある。
【0007】
【課題を解決しようとする手段】
本発明に係る保護素子の使用方法は、絶縁基板の片面上に第1電極、第2電極、第3電極及び第4電極を設け、第2電極と第4電極とにわたって抵抗を設け、第1電極と第2電極との間及び第2電極と第3電極との間に低融点可溶合金片A及びBをそれぞれ接続し、低融点可溶合金片にフラックスを塗布し、上記絶縁基板の片面を覆って絶縁層を被覆して成る保護素子の低融点可溶合金片Aの融点と低融点可溶合金片Bの融点とを異にし、各低融点可溶合金片を異なる回路部分に対するヒュ−ズとして用い、異なる過電圧を検出して保護素子の抵抗を異なる温度で通電発熱させる過電圧検知通電回路を接続し、小なる過電圧で抵抗を通電発熱させて一方の低融点可溶合金片の溶断で一方の回路部分を電源から遮断し、その後の大なる過電圧で抵抗を通電発熱させて他方の低融点可溶合金片の溶断で他方の回路部分を電源から遮断することを特徴とする。
【0009】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明において使用される保護素子の一例を示している。
図1において、1は耐熱性の絶縁基板、例えばセラミックス板である。21 〜24は絶縁基板の片面上に印刷形成した膜状の第1電極〜第4電極であり、第1電極21の先端部と第3電極23の先端部との間に第2電極22を設け、更に第4電極24を第2電極22と所定の間隔を隔てて設けてある。
31、33及び34は第1電極、第3電極及び第4電極のそれぞれに接続したリ−ド線(絶縁被覆線)である。
Rは第2電極22と第4電極24とにわたって印刷により設けた膜抵抗である。
Aは第1電極21の先端部と第2電極22との間に接続した低融点可溶合金片、Bは第2電極22と第3電極23の先端部との間に接続した低融点可溶合金片であり、低融点可溶合金片A、Bが同一材質、同一形状の場合、図のように連続線にしてもよい。
4は低融点可溶合金片A及びB上に塗布したフラックスである。
5は絶縁基板1の片面を覆うようにして設けた絶縁層であり、上記低融点可溶合金片やフラックスを溶融流動させることのないように、常温で被覆できる絶縁材、例えば常温硬化エポキシ樹脂を使用してある。
【0010】
前記保護素子は、被保護機器に過電圧が作用すると、その機器を電源から遮断するために使用され、図2はその使用状態を説明するための回路図であり、Eは本発明に係る保護素子を、Fは過電圧検知通電回路をそれぞれ示している。
図2において、被保護機器Zと電源Sとの間に本発明に係る保護素子Eと過電圧検知通電回路Fとを組み込み、トランジスタTrのコレクタを保護素子Eの第4電極24に接続し、ツエナダイオ−ドDの高電圧側電極及び保護素子Eの第3電極23を被保護機器Zの高電圧側端子に接続し、保護素子Eの第1電極21を電源Sの高電圧側端子に接続し、トランジスタTrのエミッタを接地してある。
図2に示す回路において、機器Zにツエナダイオ−ドDの降伏電圧以上の過電圧が作用すると、トランジスタTrにベ−ス電流が流れ、これに伴い大なるコレクタ電流が流れて膜抵抗Rが発熱され、この発生熱が第2電極22を介し低融点可溶合金片A及びBに伝達されて両低融点可溶合金片A及びBが既溶融フラックスの活性作用を受けつつ溶断され、被保護機器Zが電源Sから遮断されると共に膜抵抗Rが電源Sから遮断される。従って、低融点可溶合金片Bが溶断されたのち、機器Zの過電圧状態が残留電荷のために維持されてトランジスタTrが導通状態にあっても、低融点可溶合金片Aの溶断による膜抵抗Rの電源Sからの遮断のために、膜抵抗Rの発熱続行を排除できる。
上記において、ツエナダイオ−ドDの高電圧側電極を第1電極21側に接続してもよい。
【0011】
上記において、溶融低融点金属の溶断には、絶縁基板が溶融金属をはじくことと、電極が溶融金属によく濡れることが有効に寄与し、絶縁基板の表面平滑性も重要な条件である(溶融金属を流れ易くする要素)。而るに、セラミックス板は、ガラスのスクリ−ン印刷膜に較べ表面平滑性に優れており有利である。
図3は本発明に係る前記保護素子の使用方法を示す回路図であり、低融点可溶合金片Bを回路部分Zbに対するヒュ−ズとして用い、低融点可溶合金片Aを回路部分Zaに対するヒュ−ズとして用い、図3において、ツエナダイオ−ドDbの降伏電圧Vbをツエナダイオ−ドDaの降伏電圧Vaよりも低くし、低融点可溶合金片Bの融点を低融点可溶合金片Aの融点よりも低くし、Vb〜Vaの過電圧でツエナダイオ−ドDbを導通させてベ−ス電流を流し、このべ−ス電流に対応するコレクタ電流で保護素子Eの抵抗Rを通電発熱させ低融点可溶合金片Bを溶断させて回路部分Zbを電源(s−s’は電源端子)から遮断し、その後、Va以上の過電圧が作用すると、ナダイオ−ドDaを導通させてベ−ス電流を流し、このべ−ス電流に対応するコレクタ電流で保護素子Eの抵抗Rを通電発熱させ低融点可溶合金片Aを溶断させて回路部分Zaを電源(s−s’は電源端子)から遮断させることできる。
【0012】
前記保護素子において、絶縁基板には厚み100〜1200μmのセラミックス板、例えば、96%アルミナセラミックス板を使用できる。その他、金属を母体とし、絶縁処理したものの使用も可能である。絶縁基板の平面寸法は、通常(3mm〜20mm)×(3mm〜20mm)の正方形乃至は長方形とされる。
前記保護素子おいて、低融点可溶合金片には液相線温度が75℃〜300℃直径100μm〜1200μmの低融点合金丸線、これと同一断面積の低融点合金角線または低融点合金箔を使用できる。
前記保護素子おいて、電極は導体ペ−スト(導体粉末と釉薬との混合物であり、導体粉末には銀−白金系、銀−パラジウム系、銅系)をスクリ−ン印刷し、これを焼き付けることにより形成できる。また、銅箔積層基板の銅箔のエッチングにより電極付き絶縁基板を得ることもできる。
前記の保護素子おいて、膜抵抗は抵抗ペ−スト、例えば、酸化ルテニウム粉末または炭素粉末と釉薬との混合物を絶縁基板上にスクリ−ン印刷し、これを焼き付けることにより形成でき、膜厚は通常1〜30μmとされる。膜抵抗にはTi−Si系の膜抵抗を使用することもできる。膜抵抗の抵抗値調整を必要とする場合、トリミングにより行うが、この際膜抵抗に亀裂が発生することのないように、膜抵抗上にガラス保護膜を形成したうえで、トリミングを行うこともできる。更に、長期安定性等のために保護が必要な場合は、膜抵抗上に保護膜、例えば、ガラス膜を形成する。膜抵抗端部と電極端部との重なり状態は、何れを下側としてもよい。これらの膜抵抗に代え、チップ抵抗の使用も可能である。
【0013】
前記の保護素子において、フラックスは低融点可溶合金片の酸化を防止し、かつ低融点可溶合金片の多少の酸化膜を溶解して溶融合金の分断を容易にするために用いられ、通常ロジンを主成分とし、必要に応じて活性剤(例えば、ジエチルアミンの塩酸塩)を添加したものを使用できる。
【0014】
前記保護素子を製造するには、絶縁基板の片面に第1電極〜第4電極を形成し、膜抵抗を印刷し、膜抵抗上にガラス保護膜を形成し、必要に応じトリミングにより抵抗値を調整し、抵抗保護が必要な場合は、膜抵抗上にガラス膜を形成し、低融点可溶合金片A及びBを接続し、電極にリ−ド線を接続し、低融点可溶合金片にフラックスを塗布し、次いで基板を常温のエポキシ樹脂液に浸漬し、その浸漬被覆層を乾燥硬化させる方法を使用できる。
【0015】
【発明の効果】
本発明に係る保護素子の使用方法によれば、異なる回路部分を異なる過電圧に対し電源から遮断することができる。また、保護素子が一個の抵抗体と二個の低融点可溶合金片を有し、被保護機器に過電圧が作用したときに抵抗体の通電発熱により両方の低融点可溶合金片を溶断させて被保護機器を電源から遮断すると共に抵抗体を電源から遮断することができ、従来例、すなわち、両低融点可溶合金片のそれぞれに対し抵抗体を設け、一方の抵抗体の通電発熱で一方の低融点可溶合金片を溶断し、他方の抵抗体の通電発熱で他方の低融点可溶合金片を溶断する構成に較べ、構造的に簡易である。
【0016】
また、膜抵抗上に絶縁ガラス膜を設け、この絶縁ガラス膜上に低融点可溶合金片を重ねて配している従来例とは異なり、膜抵抗と低融点可溶合金片とを重ねずに配し、上記絶縁ガラス膜の表面(スクリ−ン印刷上、スクリ−ンメッシュに起因する凹凸が避けられない)よりも平滑表面のセラミックス絶縁基板上に低融点可溶合金片を配しているから、溶融合金をスム−ズに流動させて迅速に分断させ得、優れた作動性を保証できる。
更に、抵抗値調整を必要とする場合、トリミングによる抵抗値調整を一個の膜抵抗について行えばよいから、製造工数を低減でき、製造上有利である。
【図面の簡単な説明】
【図1】 本発明において使用される保護素子の一例を示す説明図である。
【図2】 図1に示す保護素子の使用方法の参考例を示す説明図である。
【図3】 本発明に係る保護素子の使用方法に用いた回路の一例を示す説明図である
【図4】 従来の保護回路を示す説明図である。
【図5】 従来の保護素子を示す説明図である。
【図6】 図5の保護素子を用いた保護回路を示す説明図である。
【符号の説明】
1 絶縁基板
21 第1電極
22 第2電極
23 第3電極
24 第4電極
A 低融点可溶合金片
B 低融点可溶合金片
R 抵抗
4 フラックス
5 絶縁層
E 保護素子
F 過電圧検知通電回路
Z 被保護機器
S 電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the use of protective devices used to protect electrical equipment from overvoltages.
[0002]
[Prior art]
When the device is cut off from the power supply when an overvoltage is applied to the device, a protection consisting of a membrane resistance and a low melting point soluble alloy piece arranged on one side of the insulating substrate and covering one side of the insulating substrate with an insulating layer As shown in FIG. 4, a protective element E ′ and an overvoltage detection energizing circuit F ′, for example, a circuit F ′ formed by connecting a Zener diode D ′ to the base side of the transistor Tr ′ are used. When a reverse voltage greater than the breakdown voltage of the Zener diode D ′ is applied to the device Z ′ between the power source S ′ and the protected device Z ′, a base current flows and the base current is It is known that the collector current flows, the membrane resistance R ′ generates heat, and the low-melting-point soluble alloy piece A ′ is cut off from the power source S ′.
[0003]
However, in the above protective element, even if the device Z ′ is disconnected from the power source by the melting of the low melting point soluble alloy piece A ′, if the device Z ′ is a capacitive load, for example, a storage battery, because of the residual voltage Since the base current continues to flow and the energization heat generation of the membrane resistance R ′ may continue, it is dangerous.
[0004]
Therefore, as shown in FIG. 5 (a), a composite electrode 20 ′ in which a central fuse electrode 21 ′ and a heater one-side T-shaped electrode 22 ′ are combined, and a heater-other-side T-shaped electrode 23 are combined. 'And both side electrodes 24' and 25 'are printed on the substrate 1', and as shown in FIG. 5B, the heater one side T-shaped electrode 22 'and the other side of the heater Membrane resistances R ′ and R ′ are respectively provided between the T-shaped arms of the T-shaped electrode 23 ′, insulating layers i ′ and i ′ are provided on the respective film resistors, and a central fuse of the composite electrode 20 ′ is provided. Low melting point soluble alloy pieces A ′ and A ′ are connected between the electrode 21 ′ and the fuse side electrodes 24 ′ and 25 ′, respectively. Further, as shown in FIG. In addition, it has been proposed to use a protective element covering the outer insulating layer 5 '(Japanese Patent Laid-Open No. 7-153367).
In the protection circuit incorporating this protection element, as shown in FIG. 6, two pairs of membrane resistance R′-low melting point soluble alloy piece A ′ are provided, and each pair of membrane resistances R ′ is heated by energization and heat generation. The melting point soluble alloy piece A ′ is melted.
Thus, when a reverse voltage higher than the breakdown voltage of the Zener diode D ′ is applied to the device Z ′ side, a base current flows through the transistor Tr ′, a collector current flows, and both film resistors R ′ and R ′ The low-melting-point soluble alloy pieces A ′ and A ′ are melted by the energization heat generation of the film resistors R ′ and R ′, and the device Z ′ is disconnected from the power source S ′ and the film resistors R ′ and R 'Is disconnected from the power source S'.
[0005]
[Problems to be solved by the invention]
However, in the above protective element, since there are two pairs of membrane resistance-low melting point soluble alloy pieces, it is necessary to adjust the resistance values of the two membrane resistors, which is difficult to manufacture. -Since it is necessary to provide two sets of low-melting-point soluble alloy pieces in a plane, it is disadvantageous for reducing the size of the protective element.
In addition, an insulating layer on the film resistance, for example, a glass film, is formed by screen printing, and it is difficult to avoid unevenness due to the screen mesh. It is difficult to guarantee smooth spheroidization of the alloy pieces.
[0006]
The object of the present invention is a protection element that detects an overvoltage of a device, energizes and heats the membrane resistance to melt the low melting point soluble alloy piece, and cuts off the device and the membrane resistance from the power source. An object of the present invention is to provide a method of using a protective element that is easy to operate and excellent in operation.
[0007]
[Means to solve the problem]
The method of using the protective element according to the present invention includes providing a first electrode, a second electrode, a third electrode, and a fourth electrode on one surface of an insulating substrate, providing a resistor across the second electrode and the fourth electrode, Low melting point soluble alloy pieces A and B are connected between the electrode and the second electrode and between the second electrode and the third electrode, respectively, and a flux is applied to the low melting point soluble alloy piece. The melting point of the low-melting-point soluble alloy piece A and the melting point of the low-melting-point soluble alloy piece B of the protective element formed by covering one side and covering the insulating layer are different from each other, and each low-melting-point soluble alloy piece is applied to different circuit parts. Used as a fuse, connected to an overvoltage detection energization circuit that detects different overvoltages and energizes and heats the resistance of the protective element at different temperatures, and energizes and heats the resistance with a small overvoltage, and one of the low melting point soluble alloy pieces One circuit part is disconnected from the power supply by fusing, and then a large overvoltage is applied. Anti the by electric heating, characterized in that interrupting the other circuit portion from the power supply in the fusing of the other low-melting fusible alloy piece.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a protective element used in the present invention .
In FIG. 1, 1 is a heat-resistant insulating substrate, for example, a ceramic plate. Reference numerals 21 to 24 denote film-like first to fourth electrodes printed on one surface of the insulating substrate, and the second electrode 22 is provided between the tip of the first electrode 21 and the tip of the third electrode 23. Further, the fourth electrode 24 is provided at a predetermined interval from the second electrode 22.
Reference numerals 31, 33, and 34 denote lead wires (insulation-coated wires) connected to the first electrode, the third electrode, and the fourth electrode, respectively.
R is a film resistance provided by printing over the second electrode 22 and the fourth electrode 24.
A is a low melting point soluble alloy piece connected between the tip of the first electrode 21 and the second electrode 22, and B is a low melting point possible connected between the tip of the second electrode 22 and the third electrode 23. If it is a molten alloy piece and the low melting point soluble alloy pieces A and B are of the same material and shape, they may be continuous lines as shown in the figure.
4 is a flux applied on the low melting point soluble alloy pieces A and B.
Reference numeral 5 denotes an insulating layer provided so as to cover one surface of the insulating substrate 1, and an insulating material which can be coated at room temperature so as not to melt and flow the low melting point soluble alloy piece or flux, for example, room temperature curing epoxy resin Is used.
[0010]
When the overvoltage acts on the protected device, the protection element is used to cut off the device from the power source, FIG. 2 is a circuit diagram for explaining the use state, and E is the protection device according to the present invention. F represents an overvoltage detection energization circuit.
In FIG. 2, the protection element E and the overvoltage detection energization circuit F according to the present invention are incorporated between the protected device Z and the power source S, the collector of the transistor Tr is connected to the fourth electrode 24 of the protection element E, and the Zenadio -Connect the high-voltage side electrode of D and the third electrode 23 of the protection element E to the high-voltage side terminal of the protected device Z, and connect the first electrode 21 of the protection element E to the high-voltage side terminal of the power source S. The emitter of the transistor Tr is grounded.
In the circuit shown in FIG. 2, when an overvoltage higher than the breakdown voltage of the Zener diode D acts on the device Z, a base current flows through the transistor Tr, and accordingly, a large collector current flows and the film resistance R is heated. The generated heat is transmitted to the low melting point soluble alloy pieces A and B through the second electrode 22 so that both the low melting point soluble alloy pieces A and B are melted while receiving the active action of the already melted flux. Z is disconnected from the power source S and the membrane resistance R is disconnected from the power source S. Therefore, after the low melting point soluble alloy piece B is melted, even if the overvoltage state of the device Z is maintained due to residual charge and the transistor Tr is in a conductive state, the film due to the melting of the low melting point soluble alloy piece A Since the resistance R is cut off from the power source S, it is possible to eliminate the continued heating of the film resistance R.
In the above description, the high voltage side electrode of the Zener diode D may be connected to the first electrode 21 side.
[0011]
In the above, for the melting of the molten low melting point metal, the insulating substrate repels the molten metal and the electrode wets well with the molten metal, and the surface smoothness of the insulating substrate is also an important condition (melting) Elements that make it easier for metal to flow). Thus, the ceramic plate is advantageous in that it has superior surface smoothness compared to a glass screen printed film.
FIG. 3 is a circuit diagram showing a method of using the protective element according to the present invention. The low melting point soluble alloy piece B is used as a fuse for the circuit part Zb, and the low melting point soluble alloy piece A is used for the circuit part Za. In FIG. 3, the breakdown voltage Vb of the Zener diode Db is made lower than the breakdown voltage Va of the Zener diode Da, and the melting point of the low melting point soluble alloy piece B is changed to that of the low melting point soluble alloy piece A in FIG. The melting point is made lower, the Zener diode Db is made to conduct at an overvoltage of Vb to Va, a base current is passed, and the resistance R of the protective element E is energized and heated by a collector current corresponding to the base current. The fusible alloy piece B is melted to cut off the circuit portion Zb from the power source (ss' is a power supply terminal). After that, when an overvoltage of Va or higher acts, the diode Da is turned on to generate a base current. Compatible with this base current Is energized heating resistor R of the protective element E in the collector current is blow the low-melting fusible alloy piece A by power supply circuit section Za (s-s' power supply terminal) can be cut off from.
[0012]
In the protective element, a ceramic plate having a thickness of 100 to 1200 μm, for example, a 96% alumina ceramic plate can be used for the insulating substrate. In addition, it is possible to use a metal base material that has been insulated. The planar dimensions of the insulating substrate are usually (3 mm to 20 mm) × (3 mm to 20 mm) square or rectangular.
In the protective element, the low melting point soluble alloy piece includes a low melting point alloy round wire having a liquidus temperature of 75 ° C. to 300 ° C. and a diameter of 100 μm to 1200 μm, and a low melting point alloy square wire or a low melting point alloy having the same cross-sectional area. Foil can be used.
In the protective element, the electrode is a conductor paste (a mixture of conductor powder and glaze, and the conductor powder is screen-printed with silver-platinum, silver-palladium, or copper) and baked. Can be formed. Moreover, an insulating substrate with electrodes can also be obtained by etching the copper foil of the copper foil laminated substrate.
In the protective element, the film resistance can be formed by screen-printing a resistance paste such as ruthenium oxide powder or a mixture of carbon powder and glaze on an insulating substrate and baking it. Usually 1 to 30 μm. A Ti—Si based film resistance can also be used as the film resistance. When it is necessary to adjust the resistance value of the film resistance, trimming is performed. At this time, a glass protective film is formed on the film resistance so that the film resistance is not cracked. it can. Furthermore, when protection is required for long-term stability, a protective film such as a glass film is formed on the film resistance. Any of the overlapping states of the film resistance end portion and the electrode end portion may be the lower side. Instead of these film resistors, chip resistors can be used.
[0013]
In the protective element, the flux is used to prevent oxidation of the low-melting-point soluble alloy piece and to dissolve some oxide film of the low-melting-point soluble alloy piece to facilitate the division of the molten alloy. A material containing rosin as a main component and an activator (for example, diethylamine hydrochloride) added as necessary can be used.
[0014]
In order to manufacture the protective element, the first electrode to the fourth electrode are formed on one surface of the insulating substrate, the film resistance is printed, the glass protective film is formed on the film resistance, and the resistance value is adjusted by trimming as necessary. If adjustment and resistance protection are required, a glass film is formed on the film resistance, the low melting point soluble alloy pieces A and B are connected, the lead wire is connected to the electrode, and the low melting point soluble alloy piece A method can be used in which a flux is applied to the substrate, the substrate is then immersed in an epoxy resin solution at room temperature, and the immersion coating layer is dried and cured.
[0015]
【The invention's effect】
According to the method of using the protection element according to the present invention , different circuit portions can be cut off from the power supply against different overvoltages . In addition, the protective element has one resistor and two low melting point soluble alloy pieces, and when an overvoltage is applied to the protected device, both the low melting point soluble alloy pieces are blown off by energization heat generation of the resistor. The protected device can be cut off from the power source and the resistor can be cut off from the power source, and a resistor is provided for each of the low melting point soluble alloy pieces in the conventional example. Compared to a configuration in which one low melting point soluble alloy piece is melted and the other resistor melts the other low melting point soluble alloy piece, the structure is simpler.
[0016]
Also, unlike the conventional example in which an insulating glass film is provided on the film resistance, and the low melting point soluble alloy piece is arranged on the insulating glass film, the film resistance and the low melting point soluble alloy piece are not overlapped. A low melting point soluble alloy piece is placed on a ceramic insulating substrate having a smoother surface than the surface of the insulating glass film (on the screen printing, unevenness due to the screen mesh is unavoidable). Therefore, the molten alloy can flow smoothly and can be quickly divided, and excellent operability can be guaranteed.
Further, when in need of adjusting the resistance value, since the resistance value adjustment by trimming may be performed for one of the film resistors can reduce the number of manufacturing steps, Ru manufacturing advantage der.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of a protection element used in the present invention.
FIG. 2 is an explanatory diagram showing a reference example of how to use the protection element shown in FIG.
FIG. 3 is an explanatory diagram showing an example of a circuit used in a method of using a protection element according to the present invention .
FIG. 4 is an explanatory diagram showing a conventional protection circuit.
FIG. 5 is an explanatory view showing a conventional protection element.
6 is an explanatory diagram showing a protection circuit using the protection element of FIG. 5; FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insulation board | substrate 21 1st electrode 22 2nd electrode 23 3rd electrode 24 4th electrode A Low melting point soluble alloy piece B Low melting point soluble alloy piece R Resistance 4 Flux 5 Insulating layer E Protection element F Overvoltage detection energization circuit Z Covered Protective equipment S Power supply

Claims (1)

絶縁基板の片面上に第1電極、第2電極、第3電極及び第4電極を設け、第2電極と第4電極とにわたって抵抗を設け、第1電極と第2電極との間及び第2電極と第3電極との間に低融点可溶合金片A及びBをそれぞれ接続し、低融点可溶合金片にフラックスを塗布し、上記絶縁基板の片面を覆って絶縁層を被覆して成る保護素子の低融点可溶合金片Aの融点と低融点可溶合金片Bの融点とを異にし、各低融点可溶合金片を異なる回路部分に対するヒュ−ズとして用い、異なる過電圧を検出して保護素子の抵抗を異なる温度で通電発熱させる過電圧検知通電回路を接続し、小なる過電圧で抵抗を通電発熱させて一方の低融点可溶合金片の溶断で一方の回路部分を電源から遮断し、その後の大なる過電圧で抵抗を通電発熱させて他方の低融点可溶合金片の溶断で他方の回路部分を電源から遮断することを特徴とする保護素子の使用方法。 A first electrode, a second electrode, a third electrode, and a fourth electrode are provided on one surface of the insulating substrate, a resistor is provided between the second electrode and the fourth electrode, and the second electrode is provided between the first electrode and the second electrode. The low melting point soluble alloy pieces A and B are respectively connected between the electrode and the third electrode, the flux is applied to the low melting point soluble alloy piece, and one side of the insulating substrate is covered to cover the insulating layer. The melting point of the low melting point soluble alloy piece A of the protective element is different from the melting point of the low melting point soluble alloy piece B, and each low melting point soluble alloy piece is used as a fuse for different circuit parts to detect different overvoltages. Connect an overvoltage detection energization circuit that energizes and heats the resistance of the protection element at different temperatures, energizes and heats the resistor with a small overvoltage, and cuts one circuit part from the power supply by fusing one low melting point soluble alloy piece. After that, a large overvoltage causes the resistor to generate heat and allow the other low melting point. Using the protection device characterized by blocking the other circuit portion from the power supply in fusing of the alloy strip.
JP28913996A 1996-10-12 1996-10-12 How to use the protective element Expired - Fee Related JP3768621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28913996A JP3768621B2 (en) 1996-10-12 1996-10-12 How to use the protective element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28913996A JP3768621B2 (en) 1996-10-12 1996-10-12 How to use the protective element

Publications (2)

Publication Number Publication Date
JPH10116550A JPH10116550A (en) 1998-05-06
JP3768621B2 true JP3768621B2 (en) 2006-04-19

Family

ID=17739265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28913996A Expired - Fee Related JP3768621B2 (en) 1996-10-12 1996-10-12 How to use the protective element

Country Status (1)

Country Link
JP (1) JP3768621B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3552539B2 (en) * 1998-06-19 2004-08-11 エヌイーシー ショット コンポーネンツ株式会社 Thermal fuse with resistance
JP3640146B2 (en) 1999-03-31 2005-04-20 ソニーケミカル株式会社 Protective element
JP2000306477A (en) 1999-04-16 2000-11-02 Sony Chem Corp Protective element
JP2001006518A (en) 1999-04-23 2001-01-12 Sony Chem Corp Overcurrent protective device
JP2001325869A (en) * 2000-05-17 2001-11-22 Sony Chem Corp Protective element
JP2001325868A (en) 2000-05-17 2001-11-22 Sony Chem Corp Protective element
JP2004214033A (en) 2002-12-27 2004-07-29 Sony Chem Corp Protection element
JP2004265618A (en) 2003-02-05 2004-09-24 Sony Chem Corp Protection element
JP4663760B2 (en) * 2007-08-20 2011-04-06 内橋エステック株式会社 Secondary battery protection circuit
KR101388354B1 (en) * 2012-11-26 2014-04-24 스마트전자 주식회사 The complex protection device of blocking the abnormal state of current and voltage
CN106653513B (en) * 2016-12-30 2023-08-25 上海维安电子股份有限公司 Self-control protector meeting high-voltage low-voltage dual-function protection and manufacturing method thereof
CN108449814A (en) * 2018-05-17 2018-08-24 佛山市海德精工电子科技有限公司 A kind of heater
JP7089758B2 (en) 2018-09-12 2022-06-23 内橋エステック株式会社 Protective element

Also Published As

Publication number Publication date
JPH10116550A (en) 1998-05-06

Similar Documents

Publication Publication Date Title
TWI390568B (en) Protection element
US6462318B2 (en) Protective element
KR100770192B1 (en) Protective device
JP3768621B2 (en) How to use the protective element
JP2001325869A (en) Protective element
EP0715328B1 (en) Protective device
JP3470694B2 (en) Protection element
US5659284A (en) Electric fuse and protective circuit
JP6017603B2 (en) Composite protective element
JP3782176B2 (en) Method of using protective element and protective device
JPS6174233A (en) Overload protector for telephone
JP3618635B2 (en) Battery protector
CN106653513A (en) Automatic control protector conforming to high-voltage and low-voltage dual-function protection and fabrication method of automatic control protector
JP2003229303A (en) Voltage nonlinear resistor and manufacturing method thereof
JPH1050184A (en) Chip fuse element
JPS63185002A (en) Synthesized unit of substrate type resistor and temperature fuse
JP4112078B2 (en) Substrate type resistance / temperature fuse
JP4219502B2 (en) Resistive fuse
JP2014096272A (en) Circuit protection element
JPH10261353A (en) Resistance/temperature fuse
JPH0243321B2 (en)
JP3770408B2 (en) Substrate type resistance / temperature fuse and protection method for equipment
JP2008130404A (en) Battery protector and protection method of battery
RU2192087C1 (en) Overcurrent protective device
JPH10125514A (en) Formation of film resistance and protection element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees