JP3768600B2 - Multi-row integrated corrugated sheet for metal catalyst carrier molding - Google Patents

Multi-row integrated corrugated sheet for metal catalyst carrier molding Download PDF

Info

Publication number
JP3768600B2
JP3768600B2 JP16173396A JP16173396A JP3768600B2 JP 3768600 B2 JP3768600 B2 JP 3768600B2 JP 16173396 A JP16173396 A JP 16173396A JP 16173396 A JP16173396 A JP 16173396A JP 3768600 B2 JP3768600 B2 JP 3768600B2
Authority
JP
Japan
Prior art keywords
row
catalyst carrier
metal catalyst
corrugated
corrugated sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16173396A
Other languages
Japanese (ja)
Other versions
JPH105601A (en
Inventor
規 永井
正和 野田
正光 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calsonic Kansei Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP16173396A priority Critical patent/JP3768600B2/en
Publication of JPH105601A publication Critical patent/JPH105601A/en
Application granted granted Critical
Publication of JP3768600B2 publication Critical patent/JP3768600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、触媒コンバータの金属触媒担体を成形する複数列一体型波板の改良に関する。
【0002】
【従来の技術】
従来、車両排気系には、エンジンから排出された排ガスを浄化する触媒コンバータが装着されているが、触媒担体として、図に示すように帯状に裁断した金属製薄板(例えば、Fe−Cr−Al合金)の波板1と平板3を重ねて、これらを多重に巻回したハニカム構造の金属触媒担体5が広く使用されている。
【0003】
そして、金属触媒担体5の製造に当たり、波板1と平板3の相対移動をなくしてフィルムアウト現象を防止するため、波板1と平板3の当接部分を溶接又はロー材で接合したり、金属触媒担体5をダイス等の加圧治具で緊締加圧し、これを真空状態で加熱して波板1と平板3を一体に拡散接合させる等の方法が採られている。
【0004】
然し、上記金属触媒担体5にあっては、平板3を使用する分だけ重量が重く、又、波板1は高温の排ガスによる熱応力を吸収できるが、平板3は熱応力を吸収し難いため、波板1と平板3の接合箇所に応力歪みが発生して破断や脱落を引き起こす虞があった。
そこで、特開平5−138040号公報には、図に示すように金属製薄板7を巻回方向へ複数の列9a,9b,9c,9dに区画して、各列9a,9b,9c,9dに波形11を所定のピッチで連続的に形成すると共に、各列9a,9b,9c,9dの位相を隣接する相互間でずらしてこれを多重に巻回していく金属触媒担体成形用の複数列一体型の波板13が開示されている。
【0005】
而して、斯かる波板13を用いた金属触媒担体にあっては、平板が不要となるため金属触媒担体全体の軽量化が可能となり、その結果、低熱容量となって昇温時間が短縮できると共に、熱応力の吸収に優れ破断や脱落を引き起こす虞もないし、重合する波板13の波形11の端部が相互に噛み合って波板13の相対移動が防止されるため、フィルムアウト現象が生ずることもない。
【0006】
【発明が解決しようとする課題】
然し乍ら、上記波板13にあっては、図の正面図に示すように各列9a,9b,9c,9d相互が波形11の山部11aと谷部11bとの間の交点Pでのみ連結した構造であるため、排ガスの流入による各列9a,9b,9c,9d毎の温度変化で熱膨張率に差が生じた場合、上記交点Pに於ける各列9a,9b,9c,9d相互の連結部が欠損してしまう虞があった。
【0007】
本発明は斯かる実情に鑑み案出されたもので、上述の如き複数列一体型波板に改良を加え、各列間の連結強度の向上を図った金属触媒担体成形用の複数列一体型波板を提供することを目的とする。
【0008】
【課題を解決するための手段】
斯かる目的を達成するため、請求項1に係る複数列一体型波板は、帯状の金属製薄板を、隣接する各列と120°位相をずらせて波形が連続して成形された複数列に区画し、区画された各列の波形を、山部の次に2つの谷部が連続する規則性を以って成形すると共に、各列と直交する平坦部を全列に亘って設け、当該各平坦部で、隣接する各列相互間を連結したものである。
【0009】
(作用)
請求項1に係る複数列一体型波板を所定寸法に裁断してこれを順次積層し、或いはこれを多重に巻回することで、触媒コンバータに用いる金属触媒担体が製造される。
そして、複数列一体型波板は、各列と直交する平坦部を全列に亘って設けることで、隣接する各列相互間の連結強度の向上を図ったため、金属触媒担体に排ガスが流入して、温度変化で各列毎に熱膨張率に差が生じても、各平坦部が各列相互間の連結を図ってその欠損を防止する。
また、複数列一体型波列は、山部の次に谷部が連続するように各列の波形を形成したので、これを巻回又は積層して金属触媒担体を成形した場合、山部と谷部が上下関係に於て重合することが殆どなくなる。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づき詳細に説明する。
図1は請求項1に係る複数列一体型波板(以下、「波板」という)の一実施形態の平面図を示し、本実施形態に係る波板25は、帯状に裁断した金属(例えば、Fe−Cr−Al合金)製の薄板を、成形する金属触媒担体の軸方向へ複数の列27に区画し、そして、各列27に、夫々、隣接する各列27と120°位相をずらして波形29を連続して成形したもので、図2に示すように波形29は、山部29a→谷部29b→谷部29bというように山部29aの次に谷部29bが連続する規則性を以って、山部29aと谷部29bが配置された形状となっている。
【0011】
そして、これらの中間(山部29aと谷部29bの中間及び谷部29bと谷部29bの中間)には、夫々、所定の幅を持った平坦部31が各列27と直交(金属触媒担体の軸方向)して全列27に亘って設けられており、隣接する各列27相互間は各平坦部31で夫々連結した構造となっている。
尚、図示しないが上記波板25は、回転する一対のコルゲート加工ギヤに金属製薄板を連続的に供給して各列27の波形29と平坦部31の成形が行われ、コルゲート加工ギヤは複数枚のギヤが積層して対となるギヤが互いに噛合した構造となっており、斯かるコルゲート加工ギヤによって金属製薄板を加工することで、上述の如き構造の波板25が成形される。
【0012】
本実施形態に係る波板25はこのように構成されているから、当該波板25を所定寸法に裁断してこれを順次積層し、或いはこれを多重に巻回して金属触媒担体が製造される。
そして、斯かる金属触媒担体によれば、重合する各波板25の波形29の山部29aと谷部29bの端部が相互に噛み合って、波板25相互の相対移動を防止する。
【0013】
又、既述したように図4に示す波板13にあっては、各列9a,9b,9c,9d相互が波形11の山部11aと谷部11bの間の交点Pでのみ連結した構造であるため、排ガスの流入による各列9a,9b,9c,9d毎の温度変化で熱膨張率に差が生じた場合、各列9a,9b,9c,9d相互の連結部が欠損してしまう虞があったが、本実施形態に係る波板25は、山部29aと谷部29bとの中間及び谷部29bと谷部29bの中間に 所定の幅を持った平坦部31を全列27に亘って設けることで、隣接する各列27相互間の連結強度の向上を図ったものであるから、排ガスの流入による温度変化で各列27毎に熱膨張率に差が生じても、各平坦部31が各列27相互間の連結を図ってその欠損を防止することとなる。
従って、本実施形態を用いた金属触媒担体によれば、図4の従来例を用いた金属触媒担体に比し各列27相互の連結強度が向上して、熱膨張率の差による欠損を確実に防止することができる。
【0014】
而も、本実施形態に係る波板25を用いた金属触媒担体にあっては、平板が不要となるため、金属触媒担体全体の軽量化が可能となり、その結果、低熱容量となって昇温時間が短縮できると共に、熱応力の吸収に優れ破断や脱落を引き起こす虞もないし、重合した各波板25の波形29の端部が相互に噛み合って波板25の相対移動が防止されるため、フィルムアウト現象が生ずることもない。
そのため、製造工程で従来の如きロー付けや拡散接合等の接合が不要となってコストの低廉化が可能となる。
【0015】
更に又、本実施形態に係る波列25は、山部29aの次に谷部29bが連続するように各列27の波形29を形成したので、これを巻回又は積層して金属触媒担体を成形した場合、山部29aと谷部29bが上下関係に於て重合することが殆どなくなって、触媒効率が向上する利点を有する。
【0016】
【発明の効果】
以上述べたように、請求項1に係る波板によれば、従来に比し各列相互間の連結強度が向上し、因って、これらの波板を用いて金属触媒担体を成形すれば、各列の熱膨張率の差による連結部の欠損を確実に防止できることとなった。
【0017】
而も、波形に平坦部を設けたことで、山部の次に谷部が連続する規則性をもった波形のパターン設計が自在となり、この結果、金属触媒担体の成形に於て、波板のみの巻回又は積層で互いに山部と谷部が上下関係で重合することが殆どなくなって、触媒効率が向上する利点を有する。
【図面の簡単な説明】
【図1】 請求項1に係る波板の一実施形態の平面図である。
【図2】 図1のII−II線断面図である。
【図3】 従来の金属触媒担体の製造方法を示す概略図である。
【図4】 従来の複数列一体型の波板の斜視図である。
【図5】 図4に示す波板の正面図である。
【符号の説明】
25 波板
27 列
29 波形
29a 山部
29b 谷部
31 平坦部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a multi-row integrated corrugated sheet for forming a metal catalyst carrier of a catalytic converter.
[0002]
[Prior art]
Conventionally, a vehicle exhaust system, the catalyst converter for purifying exhaust gas discharged from the engine is mounted, as a catalyst carrier, the thin metal plate was cut in a strip shape as shown in FIG. 3 (e.g., Fe-Cr- A metal catalyst carrier 5 having a honeycomb structure in which a corrugated plate 1 and a flat plate 3 made of an Al alloy are overlapped and these are wound in multiple layers is widely used.
[0003]
And, in manufacturing the metal catalyst carrier 5, in order to eliminate the relative movement between the corrugated plate 1 and the flat plate 3 and prevent the film-out phenomenon, the contact portion of the corrugated plate 1 and the flat plate 3 is joined by welding or brazing, A method is adopted in which the metal catalyst carrier 5 is tightly pressed with a pressurizing jig such as a die, and this is heated in a vacuum state so that the corrugated plate 1 and the flat plate 3 are integrally diffused and joined.
[0004]
However, the metal catalyst carrier 5 is heavier than the flat plate 3 used, and the corrugated plate 1 can absorb thermal stress due to high-temperature exhaust gas, but the flat plate 3 is difficult to absorb thermal stress. Further, there is a possibility that stress distortion occurs at the joint portion between the corrugated plate 1 and the flat plate 3 to cause breakage or dropout.
Therefore, in Japanese Patent Laid-Open No. 5-138040, as shown in FIG. 4 , the thin metal plate 7 is partitioned into a plurality of rows 9a, 9b, 9c, 9d in the winding direction, and each row 9a, 9b, 9c, Waveforms 11 are continuously formed at a predetermined pitch in 9d, and a plurality of metal catalyst carrier moldings in which the phases of the rows 9a, 9b, 9c, 9d are shifted between adjacent ones and wound in multiple layers are formed. A row-integrated corrugated sheet 13 is disclosed.
[0005]
Thus, in the metal catalyst carrier using the corrugated plate 13, a flat plate is not required, so that the weight of the entire metal catalyst carrier can be reduced. As a result, the heat capacity is reduced and the heating time is shortened. In addition, it has excellent thermal stress absorption and does not cause breakage or dropout, and the end portions of the corrugated sheet 11 of the corrugated sheet 13 are meshed with each other to prevent relative movement of the corrugated sheet 13, so that the film-out phenomenon occurs. It does not occur.
[0006]
[Problems to be solved by the invention]
However, in the above wave plate 13, connected only at the intersection point P between each column 9a, 9b, 9c, 9d crest portions 11a and valley portions 11b of mutual waveform 11 as shown in the front view of FIG. 5 Because of this structure, when there is a difference in the coefficient of thermal expansion due to the temperature change for each row 9a, 9b, 9c, 9d due to the inflow of exhaust gas, each row 9a, 9b, 9c, 9d at the intersection P is mutually There is a possibility that the connecting part of the slab may be lost.
[0007]
The present invention has been devised in view of such a situation, and is an improvement on the multi-row integrated corrugated plate as described above, and an improved multi-row integrated type for forming a metal catalyst carrier in which the connection strength between the rows is improved. The object is to provide a corrugated sheet.
[0008]
[Means for Solving the Problems]
In order to achieve such an object, the multi-row integrated corrugated plate according to claim 1 is a strip-shaped metal thin plate that is formed into a plurality of rows in which waveforms are continuously formed with a 120 ° phase shift from each adjacent row. Partitioning, and forming the waveform of each partitioned row with regularity that two valleys are continuous after the peak, and providing a flat portion orthogonal to each row over the entire row, Each flat portion connects adjacent columns.
[0009]
(Function)
The metal catalyst carrier used for the catalytic converter is manufactured by cutting the multi-row integrated corrugated plates according to claim 1 into predetermined dimensions and sequentially stacking them or winding them in multiple layers.
In the multi-row integrated corrugated plate, the flat portion orthogonal to each row is provided over the entire row to improve the connection strength between the adjacent rows, so that the exhaust gas flows into the metal catalyst carrier. Thus, even if there is a difference in the thermal expansion coefficient for each row due to temperature change, each flat portion connects each row to prevent its loss.
In addition, since the multi-row integrated wave train formed the waveform of each row so that the valley portion is continuous next to the peak portion, when the metal catalyst carrier is formed by winding or laminating this, the peak portion and The valley is hardly polymerized in the vertical relationship.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a plan view of one embodiment of a multi-row integrated corrugated sheet according to claim 1 (hereinafter referred to as “corrugated sheet”). The corrugated sheet 25 according to the present embodiment is made of a metal cut into a strip (for example, , Fe-Cr-Al alloy) is divided into a plurality of rows 27 in the axial direction of the metal catalyst carrier to be molded, and each row 27 is shifted in phase by 120 ° from each adjacent row 27. The waveform 29 is continuously formed, and as shown in FIG. 2, the waveform 29 has a regularity in which the valley 29b continues after the peak 29a, such as peak 29a → valley 29b → valley 29b. Thus, the mountain portion 29a and the valley portion 29b are arranged.
[0011]
Further, in the middle of these (the middle of the peak portion 29a and the valley portion 29b and the middle of the valley portion 29b and the valley portion 29b), a flat portion 31 having a predetermined width is orthogonal to each row 27 (metal catalyst carrier). In the axial direction), and is provided across all the rows 27, and the adjacent rows 27 are connected to each other by the flat portions 31.
Although not shown, the corrugated plate 25 continuously supplies metal thin plates to a pair of rotating corrugated gears to form the corrugated 29 and flat portions 31 of each row 27, and there are a plurality of corrugated gears. A pair of gears are stacked and a pair of gears mesh with each other, and the corrugated gear is used to process a metal thin plate, thereby forming the corrugated plate 25 having the above-described structure.
[0012]
Since the corrugated plate 25 according to the present embodiment is configured as described above, the corrugated plate 25 is cut into a predetermined size, and the corrugated plate 25 is sequentially laminated, or is wound in multiple layers to produce a metal catalyst carrier. .
According to such a metal catalyst carrier, the crests 29a and the end portions of the troughs 29b of the corrugated 29 of each corrugated plate 25 to be polymerized engage with each other to prevent relative movement between the corrugated plates 25.
[0013]
Further, as described above, in the corrugated plate 13 shown in FIG. 4, each row 9a, 9b, 9c, 9d is connected only at the intersection P between the peak 11a and valley 11b of the waveform 11. Therefore, when a difference occurs in the thermal expansion coefficient due to the temperature change for each row 9a, 9b, 9c, 9d due to the inflow of exhaust gas, the connecting portion between each row 9a, 9b, 9c, 9d is lost. The corrugated sheet 25 according to the present embodiment has the possibility that the flat portions 31 having a predetermined width are arranged in the middle of the peak portions 29a and the valley portions 29b and in the middle of the valley portions 29b and the valley portions 29b. Since the connection strength between the adjacent rows 27 is improved by providing them across the rows 27, even if a difference in the thermal expansion coefficient occurs for each row 27 due to a temperature change due to the inflow of exhaust gas, The flat part 31 will connect each row | line | column 27 and will prevent the defect | deletion.
Therefore, according to the metal catalyst carrier using this embodiment, the connection strength between the rows 27 is improved as compared with the metal catalyst carrier using the conventional example of FIG. Can be prevented.
[0014]
However, in the metal catalyst carrier using the corrugated plate 25 according to the present embodiment, the flat plate is not necessary, and thus the weight of the entire metal catalyst carrier can be reduced. The time can be shortened, the thermal stress is excellently absorbed and there is no possibility of causing breakage or dropout, and the end portions of the corrugated portions 29 of the superposed corrugated plates 25 mesh with each other to prevent relative movement of the corrugated plates 25. No film-out phenomenon occurs.
This eliminates the need for conventional brazing, diffusion bonding, or the like in the manufacturing process, thereby reducing the cost.
[0015]
Furthermore, since the wave train 25 according to the present embodiment forms the waveform 29 of each row 27 so that the trough portion 29b continues after the peak portion 29a, this is wound or laminated to form the metal catalyst carrier. When molded, the peaks 29a and valleys 29b are hardly polymerized in the vertical relationship, and there is an advantage that the catalyst efficiency is improved.
[0016]
【The invention's effect】
As described above, according to the corrugated plate according to the first aspect, the connection strength between the rows is improved as compared with the prior art, and therefore if the metal catalyst carrier is formed using these corrugated plates. Thus, it is possible to reliably prevent the connection portion from being lost due to the difference in the coefficient of thermal expansion between the rows.
[0017]
However, by providing a flat portion on the corrugation, it is possible to freely design a corrugated pattern having regularity in which the trough continues after the crest. As a result, in forming the metal catalyst carrier, By only winding or laminating, the crests and troughs are hardly polymerized in a vertical relationship with each other, and the catalyst efficiency is improved.
[Brief description of the drawings]
1 is a plan view of an embodiment of a corrugated sheet according to claim 1 ;
FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
FIG. 3 is a schematic view showing a conventional method for producing a metal catalyst carrier .
FIG. 4 is a perspective view of a conventional multi-row corrugated plate .
FIG. 5 is a front view of the corrugated sheet shown in FIG.
[Explanation of symbols]
25 Corrugated sheet
27 columns
29 Waveform
29a Yamabe
29b Tanibe
31 Flat part

Claims (1)

帯状の金属製薄板を、隣接する各列(27)と120°位相をずらせて波形(29)が連続して成形された複数列に区画し、区画された各列(27)の波形(29)を、山部(29a)の次に2つの谷部(29b)が連続する規則性を以って成形すると共に、各列(27)と直交する平坦部(31)を全列に亘って設け、当該各平坦部(31)で、隣接する各列(27)相互間を連結したことを特徴とする金属触媒担体成形用の複数列一体型波板。The strip-shaped metal thin plate is divided into a plurality of rows in which the waveform (29) is continuously formed by shifting the phase with the adjacent rows (27) by 120 ° , and the waveform (29 of each row (27) partitioned. ) With the regularity in which the two valleys (29b) are continuous next to the peaks (29a), and the flat part (31) orthogonal to each row (27) is formed over all rows. A multi-row integrated corrugated sheet for forming a metal catalyst carrier, wherein the flat portions (31) are connected to each other and adjacent rows (27) are connected to each other.
JP16173396A 1996-06-21 1996-06-21 Multi-row integrated corrugated sheet for metal catalyst carrier molding Expired - Fee Related JP3768600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16173396A JP3768600B2 (en) 1996-06-21 1996-06-21 Multi-row integrated corrugated sheet for metal catalyst carrier molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16173396A JP3768600B2 (en) 1996-06-21 1996-06-21 Multi-row integrated corrugated sheet for metal catalyst carrier molding

Publications (2)

Publication Number Publication Date
JPH105601A JPH105601A (en) 1998-01-13
JP3768600B2 true JP3768600B2 (en) 2006-04-19

Family

ID=15740857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16173396A Expired - Fee Related JP3768600B2 (en) 1996-06-21 1996-06-21 Multi-row integrated corrugated sheet for metal catalyst carrier molding

Country Status (1)

Country Link
JP (1) JP3768600B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719180B2 (en) * 2007-04-16 2011-07-06 昭和飛行機工業株式会社 Catalyst carrier for exhaust gas purification

Also Published As

Publication number Publication date
JPH105601A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
JP2553733B2 (en) Heat resistant structure
JP2509478B2 (en) Honeycomb structure and manufacturing method thereof
KR100581469B1 (en) Monolithic honeycomb bodies and method for manufacturing the same
JP3224609B2 (en) Metal carrier for exhaust gas purification catalyst
JP2634669B2 (en) Metal honeycomb catalyst device
JP3961609B2 (en) Metal catalyst carrier for catalytic converter for internal combustion engine
KR940005265B1 (en) Purifier of exhaust gas
KR100296736B1 (en) Metal sheet for metal catalyst carrier and metal catalyst converter using it
JP3768600B2 (en) Multi-row integrated corrugated sheet for metal catalyst carrier molding
JPH02160051A (en) Metal carrier of catalyst for purification of exhaust gas
JPH04271846A (en) Catalyst carrier for exhaust gas purifying device and its manufacture
JP3454018B2 (en) Structure of metal catalyst support
JPH09201537A (en) Metal catalyst carrier in catalytic converter and its preparation
JPH0630268Y2 (en) Metal honeycomb catalytic converter
JPH0312235A (en) Metal carrier for automobile gas purifying catalyst
JP2762144B2 (en) Method for manufacturing heat-resistant structure and heat-resistant structure
JP3742147B2 (en) Metal catalyst carrier for internal combustion engine and catalytic converter using the same
JPS63104653A (en) Metal honeycomb carrier
JPH09201536A (en) Metal catalyst carrier in catalytic converter and its preparation
JP3645660B2 (en) Metal catalyst carrier for internal combustion engine and catalytic converter using the same
JPH1033992A (en) Metal catalyst carrier of catalyst converter for internal combustion engine
JPH046419B2 (en)
JPH03178338A (en) Preparation of honeycomb body for catalytic converter
JPH06198197A (en) Catalyst carrier for purification of exhaust gas
JP3065641B2 (en) Heat-resistant structure and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees