JP3768394B2 - Laser / plasma composite processing equipment - Google Patents

Laser / plasma composite processing equipment Download PDF

Info

Publication number
JP3768394B2
JP3768394B2 JP2000305219A JP2000305219A JP3768394B2 JP 3768394 B2 JP3768394 B2 JP 3768394B2 JP 2000305219 A JP2000305219 A JP 2000305219A JP 2000305219 A JP2000305219 A JP 2000305219A JP 3768394 B2 JP3768394 B2 JP 3768394B2
Authority
JP
Japan
Prior art keywords
plasma
nozzle
laser
electrode
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000305219A
Other languages
Japanese (ja)
Other versions
JP2002113588A (en
Inventor
田 弘 文 園
山 健 二 奥
袋 順 一 衣
Original Assignee
日鐵溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵溶接工業株式会社 filed Critical 日鐵溶接工業株式会社
Priority to JP2000305219A priority Critical patent/JP3768394B2/en
Publication of JP2002113588A publication Critical patent/JP2002113588A/en
Application granted granted Critical
Publication of JP3768394B2 publication Critical patent/JP3768394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Laser Beam Processing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶接,切断,穴開け,加熱,溶融等の加工を行なうレ−ザ加工装置に関し、特に、レーザとプラズマを複合した加工装置に関する。
【0002】
【従来の技術】
例えばレーザ溶接は、低歪,高速溶接が可能であるが、レーザ光はスポット径が小さいことから突合わせ溶接においてギャップ裕度が少なく、溶接材の高い突合わせ精度が要求される。特開平2−52183号公報には、突合わせ精度が粗くてもCO2レーザによる突合わせ溶接を実現するために、CO2レーザの照射に先行して付き合わせ部をプラズマ溶接するプラズマアーク併用のレーザ溶接方法が開示されている。
【0003】
この方法によれば、ギャップ裕度が大きくなりレーザ突合わせ溶接の品質が向上する。しかし、レーザ溶接の能率は、あまり向上しない。ここで能率とは、レーザパワーに対する、溶接対象材の厚み×溶接速度、である。
【0004】
特開平10−180479号公報には、レーザトーチの先端部に、プラズマ発生用のリング状又は円錐筒状のプラズマ電極とノズル部材を備えて、レーザ光を該プラズマ電極の中央の開口に通して、溶接対象材の同一点に同時にプラズマジェットとレーザ光を照射する溶接トーチが開示されている。プラズマジェットの中心を通って収束するレーザ光が、プラズマジェットにそれを絞るように作用して、溶接対象材に作用するプラズマジェット密度(エネルギ密度)が高くなって溶接能率が向上する、と説明されている。
【0005】
しかしながら、リング状又は筒状のプラズマ電極は、一周の全点でアークを発生することができるが、アークが一点に留まってそこが消耗して電極形状が乱れて放電特性が不安定になりやすいと考えられる。つまり、プラズマ電極の安定動作時間が短いと推察される。
【0006】
特開平10−216979号公報には、レーザトーチの先端部に、下端のノズルに連なる円錐状の空間を形成し、そこにリング状又は円錐筒状の陰極電極と陽極電極を上下に設けて、それらの間にプラズマアーク電流を流す、非移行式プラズマ併用のレーザ加工ヘッドが開示されている。しかしながらこれにおいても、アークが一点に留まってそこが消耗して電極形状が乱れて放電特性が不安定になりやすいと考えられる。つまり、プラズマ電極の安定動作時間が短いと推察される。また、非移行式プラズマ発生であるので、ヘッドと溶接対象材との距離裕度が非常に小さいと考えられる。
【0007】
特開平5−69165号公報には、レーザトーチの先端部に、TIG溶接用の筒状電極を備えて、レーザ光を該電極の中央の開口に通して、溶接対象材に照射するレーザ併用のTIG溶接トーチが開示されている。これにおいても、アークが一点に留まってそこが消耗して電極形状が乱れて放電特性が不安定になりやすいと考えられる。
【0008】
特開平9−122950号公報には、レーザ光の集光用レンズ群の光軸位置にTIG溶接電極を配置した複合溶接ヘッドが開示されている。このTIG溶接電極は丸鉛筆の中実棒状の電極であり、その下端の尖端にTIGアークが集中し、アークが安定であると推察される。しかしTIG下端部がトーチ外に露出し、電極の尖端直下にレーザ光が収束するので、溶接ヒュームによってレーザがさえぎられ、溶接能率の改善は低いと推察される。
【0009】
ところで、アルミへのYAGレーザ溶接は、ブローホールの発生,表面でのレーザ光の反射等の問題がある。すなわち、反射光の戻り光によりレーザ加工ヘッドのレンズ系,光ファイバの破損が起こる場合がある。極端な例ではあるが、YAGレーザロッドまで破損する場合がある。これを避けるため、加工ヘッドを傾けて直接反射光が加工ヘッド内に戻るのを防いでいる。しかし、加工ヘッドを傾けることによって、アルミ表面でのレーザ光の反射量が増え、有効にレーザ光エネルギを与えられない。また、アルミ表面の酸化皮膜は融点が高いので、高速溶接が困難である。
【0010】
【発明が解決しようとする課題】
本発明は、加工能率が高く、しかもプラズマ発生が安定するレ−ザ/プラズマ複合の加工装置を提供することを第の目的とし、小出力のYAGレーザで高出力のYAGレーザと同等の加工性能を得ることを第の目的とする。
【0011】
【課題を解決するための手段】
(1)円周面に冷却水流路 (4) がある小径円柱が下端の外フランジから上方に突出し、前記外フランジの下端面に開きレ−ザ光束(21)の光軸(22)が貫通するノズル(2)があって、該ノズル (2) と連続しそれより大きい開口で前記小径円柱の上端面に開いた空間 (3) がある、ノズル部材(1);
丸穴を有しそこに前記小径円柱を受け入れて前記ノズル部材(1)を支持する絶縁部材(6)
尖端を有する中実棒状のプラズマ電極(18);
前記ノズル (2) に向かうレ−ザ光束 (21) が通る開口 (13) を有し、前記プラズマ電極(18)を、それが前記光軸(22)に対して傾斜しかつ該光軸(22)より退避した位置から尖端が前記空間 (3) を通して前記ノズル(2)に指向する姿勢および位置に保持する、前記絶縁部材(6)に結合された電極支持部材(12,14);
前記絶縁部材 (6) と電極支持部材 (12,14) との間にあってプラズマガスを前記ノズル部材 (1) の前記空間 (3) に供給する手段 (8 11) および、
前記レーザ光束(21)を放射するレーザヘッド(17)に前記電極支持部材(12,14)を結合する手段(16);
を備えるレ−ザ/プラズマ複合の加工装置。
【0012】
なお、理解を容易にするためにカッコ内には、図面に示し後述する実施例の対応要素又は対応事項の符号を、参考までに付記した。以下も同様である。
【0013】
これによれば、ノズル(2)を通って収束するレーザ光が、プラズマ電極下部に発生するプラズマジェットを通過してそれに作用し、溶接対象材に作用するプラズマジェット密度(エネルギ密度)が高くなって溶接能率が向上する。プラズマ電極(18)が尖った先端を有する中実棒状であるので、プラズマアークが該尖った先端に集中してそこに留まり、安定する。従って、プラズマ照射の安定動作時間が長い。プラズマジェットがヒュームを排斥するので、それらによるエネルギの遮断が少なく、この点からも、溶接能率が向上する。
【0014】
【発明の実施の形態】
(2)前記冷却水流路 (4) は前記小径円柱の首部にある;上記(1)に記載のレ−ザ/プラズマ複合の加工装置。
【0015】
(3)前記プラズマガスを前記ノズル部材 (1) の前記空間 (3) に供給する手段 (8 11) は、前記レ−ザ光束 (21) が通る開口を有し該開口の内周面に、周に沿う方向に開いたプラズマガス流路(9)を有するプラズマガス口 (8) 、を含む;上記(1)又は(2)に記載のレ−ザ/プラズマ複合の加工装置。これによれば、プラズマガス流路(9)から吹込まれたプラズマガスが旋回しながら前記ノズル部材 (1) の前記空間 (3) に入って電極(18)のアークで電離されてノズル(2)から小径の旋回流のプラズマジェットになって出る。光軸を中心にしたサイクロン状に旋回するので、プラズマジェット噴射の方向安定性が高い。
【0016】
(4)前記ノズル部材 (1) の前記空間 (3) は、前記小径円柱の上端面に開いた大きい開口から前記ノズル (2) に連なる小さい開口との間の円錐面 (3) で囲まれた;上記(3)に記載の、レ−ザ/プラズマ複合の加工装置。これによれば、プラズマガスが円錐面(3)に沿って小径の旋回に収束し電極(18)のアークで電離されてノズル2からプラズマジェットになって出る。光軸を中心にしたサイクロン状に旋回して中心に収束するので、プラズマジェット噴射の方向安定性がより高い。
【0017】
(5)前記電極支持部材(12,14)の、前記レーザ光束(21)を通すための前記開口(13)は、前記プラズマガス口 (8) の前記開口よりも小径である;上記(3)又は(4)に記載のレ−ザ/プラズマ複合の加工装置。これにより、電極支持部材(12,14)が、プラズマガスの旋回流の、レーザ光源に戻る方向の移動さえぎるので、旋回収束の力が強い。
【0018】
)レーザはYAGレーザである。YAGレーザは金属材料の光吸収率がCO2レーザの数倍であるので、効率の良い溶接が可能である。また、波長がCO2レーザの1/10であるので、溶接時に発生するプラズマの影響を受けにくい。YAGレーザはフレキシブルな光フアイバで伝送できるので、ハンドリングが容易で多関節ロボットの利用も可能である。また、100m程度までの離れた場所への伝送が可能である。一方、YAGレーザは、イニシャルコストが高いので、自動車生産ラインのように複数台の設備を導入する場合には、設備費が膨大なものとなるが、レーザ光を時間分割(タイムシェアリング)、空間分割(パワーシェアリング)で、複数の加工ステーションに分配伝送して加工に用いることができ、高い利用効率を得られる。
【0019】
本発明の他の目的および特徴は、図面を参照した以下の実施例の説明より明らかになろう。
【0020】
【実施例】
図1に本発明の1実施例の主要部を示す。YAGレーザヘッド17のYAGレーザ光束21の光軸22を中心としたノズル2を有するノズル部材1の外フランジが、図示しない複数のねじ(光軸22を中心に90度ピッチで分布する4本)によってノズル受け6に固着されている。ノズル部材1の小径円柱は、ノズル受け6の丸穴に挿入されて円柱外周面がOリング7を圧縮している。また、前記図示しない複数のねじ止めにより、ノズル部材1の外フランジがOリング5を圧縮している。ノズル部材1の小径円柱の首部にはリング状の冷却水流路4があり、この流路4が、Oリング5と7で気密にシールされている。なお、ノズル受け6には、この流路4に冷却水を供給するための注入ポートおよび流路4から冷却水を排水するための排出ポートがあるが、それらの図示は省略した。
【0021】
ノズル部材1の小径円柱の内端面には、ノズル2を底としそれに連続する円錐面3があり、これが円錐空間を規定している。
【0022】
ノズル受け6の内側の端面にはリング状の溝が刻まれており、そこに略小径リング状のプラズマガス口8が嵌め込まれ、その半径方向外方に略大径リング状のガスケット10があって、ガス口8の外周面との間にリング状のプラズマガス通流空間23を区画している。ガス口8には、その外周面と内周面に開き内周面の接線方向にガス口8を貫通する複数のプラズマガス注入ノズル9が開けられている。ガスケット10には、プラズマガス通流空間23に連通するプラズマガス注入ポート11がある。
【0023】
プラズマガス口8およびガスケット10の上に、電極ホルダ12があり、その中心穴13の直径はガス口8の内周面の直径より小さく、したがって電極ホルダ12は、ガス口8の内空間の庇となり、プラズマガス注入ノズル9からガス口8の内空間に入って旋回するプラズマガスの上方への放散を抑え旋回力を強くする。
【0024】
電極ホルダ12には図に示すように、尖った先端を有する中実棒状(丸鉛筆状)のプラズマ電極18を、それが光軸(トーチ軸)22に対して傾斜しかつ光軸22より退避した位置からノズル2に指向する姿勢に受け入れる通し穴があり、その穴をプラズマ電極18が貫通している。電極ホルダ12にはその外周面から通し穴に至るねじ穴があり、このねじ穴にねじ込まれた留めねじ19の締めつけによって、プラズマ電極18が電極ホルダ12に固定されている。20はロックナットである。
【0025】
電極ホルダ12には絶縁台14が載せられている。絶縁台14,電極ホルダ12,ブラケット10およびノズル受け6は、それらを貫通しノズル受け6にねじ込まれた複数個のボルト15(光軸22を中心に120度ピッチで分布する3本)で一体に固着されている。
【0026】
YAGレーザヘッド17の下端外周の雄ねじに、フランジ付き雌ねじ筒16がねじ結合しており、この雌ねじ筒16に、そのフランジのねじ通し穴を貫通し絶縁台14にねじ込まれた複数のねじ(光軸22を中心に120度ピッチで分布する3本)で、絶縁台14が固着されている。
【0027】
この実施例では、プラズマ電極18の尖つた先端にアーク放電の電界を集中させ、電極の先端部以外への電解集中を避けるように、電極ホルダ12を導電体(銅製)とし、これに伴って、電極ホルダ12の絶縁のために、ノズル受け6,プラズマガス口8,ガスケット10および台14を絶縁体(セラミック)とした。ノズル部材1は導電体(銅製)である。
【0028】
プラズマ電極18とノズル部材1には、パイロット電源PSp,高周波高電圧のトリガ回路HFおよびパイロットスイッチSWpを含むパイロット電源回路が接続されており、プラズマ電極18と突合わせ溶接対象材OB1には、移行式交流プラズマ電源PSmおよびメインスイッチSWmを含むメインプラズマ電源回路が接続されている。
【0029】
冷却水およびプラズマガスの供給を開始し、必要に応じてレーザヘッド17においてもレーザ集束のためのレンズをパージするガスの供給を開始し、パイロットスイッチSWpをオンにしそしてトリガ回路HFを駆動してノズル部材1/プラズマ電極18間に電気放電をトリガする。これによりパイロットプラズマが着火すると、トリガ回路HFはオフにしてメインスイッチSWmをオンにする。これにより溶接対象材OB1/プラズマ電極18間に移行式交流プラズマアークが発生し、プラズマ溶接動作状態になる。ここでYAGレーザ光束21の射出を開始すると、レ−ザ/プラズマ複合の、高能率の突合わせ溶接動作状態になる。
【0030】
交流プラズマアークは、正極,逆極性アークが交互に短い周期で切換りそれぞれ加工対象材すなわち母材に移行するものであり、逆極性アークが母材表面に陰極点を形成し、母材例えばアルミの表面の酸化皮膜(アルミナ)を溶融除去する。この結果、アルミ表面は梨地状に荒れてレーザ光は乱反射し、直接反射光がヘッド内に戻ることが無くなる。梨地状になったアルミ表面は、レーザ光の吸収率が向上する。アルミのレーザ溶接の場合、エネルギ集中度が高く、高速深溶け込み溶接が可能であるが、熱伝導度が高いため溶融池の凝固が早く、シールドガスがトラップされやすくブローホールが発生しやすい。上記実施例の交流プラズマを付加したYAGレーザ溶接では、プラズマによって形成された溶融池は、レーザによる溶融池より大きく、プラズマの溶融池攪拌によってガスが抜けやすく、ブローホールが起きにくい。レーザ光はスポット径が小さいことから突合わせ溶接においてギャップ裕度が少なく、アルミ溶接においては特に、溶融池の凝固が早く、密着した突合わせが必要であって被溶接材の切断および溶接部拘束方法がシビアに要求されるが、プラズマ溶接との複合にする事によりギャップ裕度が緩和される。
【図面の簡単な説明】
【図1】 本発明の1実施例の主要部を示す縦断面図である。
【符号の説明】
1:ノズル部材 2:ノズル
3:円錐面 4:冷却水流路
5:Oリング 6:ノズル受け
7:Oリング 8:プラズマガス口
9:ガス注入ノズル 10:ガスケット
11:ガス注入ポート 13:中心穴
14:絶縁台 15:ボルト
16:雌ねじ筒 17:YAGレーザヘッド
18:プラズマ電極 19:留めねじ
20:ロックナット 21:YAGレーザ光束
22:光軸 23:ガス通流空間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laser processing apparatus that performs processing such as welding, cutting, drilling, heating, and melting, and more particularly, to a processing apparatus that combines laser and plasma.
[0002]
[Prior art]
For example, laser welding is capable of low distortion and high-speed welding, but since laser light has a small spot diameter, gap tolerance is small in butt welding, and high butting accuracy of the welding material is required. In Japanese Patent Laid-Open No. 2-52183, laser welding using plasma arc combined with plasma welding of an abutting portion prior to CO2 laser irradiation in order to realize butt welding with a CO2 laser even if the butt accuracy is rough. A method is disclosed.
[0003]
According to this method, the gap tolerance is increased and the quality of laser butt welding is improved. However, the efficiency of laser welding does not improve much. Here, the efficiency is the thickness of the material to be welded x the welding speed with respect to the laser power.
[0004]
JP-A-10-180479 discloses a plasma generating ring-shaped or conical cylindrical plasma electrode and a nozzle member at the tip of a laser torch, and allows laser light to pass through the central opening of the plasma electrode. A welding torch for irradiating a plasma jet and a laser beam simultaneously on the same point of a material to be welded is disclosed. The explanation is that the laser beam focused through the center of the plasma jet acts to constrict it to the plasma jet, increasing the plasma jet density (energy density) acting on the material to be welded and improving the welding efficiency. Has been.
[0005]
However, the ring-shaped or cylindrical plasma electrode can generate an arc at all points in one round, but the arc stays at one point and is consumed, and the shape of the electrode is disturbed and the discharge characteristics are likely to be unstable. it is conceivable that. That is, it is assumed that the stable operation time of the plasma electrode is short.
[0006]
In Japanese Patent Application Laid-Open No. 10-216979, a conical space connected to a nozzle at the lower end is formed at the tip of a laser torch, and a ring-shaped or conical cylindrical cathode electrode and an anode electrode are provided on the upper and lower sides. A laser machining head using a non-transfer type plasma is disclosed in which a plasma arc current is passed between the two. However, even in this case, it is considered that the arc remains at one point and is consumed, the electrode shape is disturbed, and the discharge characteristics are likely to be unstable. That is, it is assumed that the stable operation time of the plasma electrode is short. Further, since non-transfer type plasma generation, it is considered that the distance tolerance between the head and the material to be welded is very small.
[0007]
Japanese Patent Application Laid-Open No. 5-69165 discloses a TIG used in combination with a laser that includes a cylindrical electrode for TIG welding at the tip of a laser torch, and irradiates a welding target material with laser light through an opening in the center of the electrode. A welding torch is disclosed. Even in this case, it is considered that the arc remains at one point and is consumed, the electrode shape is disturbed, and the discharge characteristics are likely to be unstable.
[0008]
Japanese Laid-Open Patent Publication No. 9-122950 discloses a composite welding head in which a TIG welding electrode is disposed at the optical axis position of a laser light condensing lens group. This TIG welding electrode is a solid rod-like electrode of a round pencil, and it is assumed that the TIG arc is concentrated at the tip of the lower end thereof and the arc is stable. However, the lower end of the TIG is exposed to the outside of the torch, and the laser beam is focused just below the tip of the electrode. Therefore, it is assumed that the laser is blocked by the welding fume and the improvement in welding efficiency is low.
[0009]
By the way, YAG laser welding to aluminum has problems such as generation of blowholes and reflection of laser light on the surface. That is, the return light of the reflected light may damage the lens system of the laser processing head and the optical fiber. Although it is an extreme example, the YAG laser rod may be damaged. In order to avoid this, the machining head is tilted to prevent direct reflected light from returning into the machining head. However, by tilting the machining head, the amount of reflection of the laser beam on the aluminum surface increases, and the laser beam energy cannot be effectively applied. In addition, since the oxide film on the aluminum surface has a high melting point, high-speed welding is difficult.
[0010]
[Problems to be solved by the invention]
The present invention, machining efficiency is high and plasma generation les stable - to provide a processing apparatus for The / plasma complexed with the first object, equivalent to YAG laser of a high output YAG laser of low output A second object is to obtain machining performance.
[0011]
[Means for Solving the Problems]
(1) A small-diameter cylinder with a cooling water channel (4 ) on the circumferential surface protrudes upward from the outer flange at the lower end, and the optical axis (22) of the laser beam (21) opens through the lower end surface of the outer flange. A nozzle member (1) having a space (3) which is continuous with the nozzle (2) and has an opening larger than the nozzle (2) and which is open on an upper end surface of the small-diameter cylinder ;
An insulating member (6) having a round hole and receiving the small-diameter cylinder therein to support the nozzle member (1 ) ;
A solid rod-shaped plasma electrode (18) having a point ;
An opening (13) through which a laser beam (21) toward the nozzle (2) passes , and the plasma electrode (18) is inclined with respect to the optical axis (22) and the optical axis ( 22) an electrode support member (12, 14) coupled to the insulating member (6) , which is held in a posture and position in which the tip is directed to the nozzle (2 ) through the space (3) from a position retracted from the position;
Said insulating member (6) and the electrode support member (12, 14) means for supplying a plasma gas be in the space (3) of the nozzle member (1) between the (8-11); and,
Means (16) for coupling the electrode support members (12, 14) to a laser head (17) that emits the laser beam (21);
A laser / plasma composite processing apparatus.
[0012]
In addition, in order to make an understanding easy, the code | symbol of the corresponding element or the corresponding matter of the Example shown in drawing and mentioned later is added in the parenthesis for reference. The same applies to the following.
[0013]
According to this, the laser beam converged through the nozzle (2) passes through and acts on the plasma jet generated at the lower part of the plasma electrode, and the plasma jet density (energy density) acting on the material to be welded is increased. This improves welding efficiency. Since the plasma electrode (18) has a solid rod shape having a sharp tip, the plasma arc concentrates on the sharp tip and stays there and is stabilized. Therefore, the stable operation time of plasma irradiation is long. Since the plasma jet eliminates the fumes, there is little interruption of energy by them, and this also improves the welding efficiency .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
(2) The cooling water flow path (4) is at the neck of the small-diameter cylinder; the laser / plasma composite processing apparatus according to (1) above .
[0015]
(3) wherein the means for supplying to the space (3) (8-11) of the plasma gas the nozzle member (1), the Le - inner circumferential surface of the laser light beam (21) has an opening through which opening A laser gas port (8) having a plasma gas flow path (9) opened in a direction along the circumference ; the laser / plasma composite processing apparatus according to (1) or (2) above . According to this, the plasma gas blown from the plasma gas flow path (9) enters the space (3) of the nozzle member (1) while swirling and is ionized by the arc of the electrode (18), and the nozzle (2 ) from Dell become a plasma jet of the small diameter of the swirling flow. Since it turns in a cyclone around the optical axis, the direction stability of plasma jet injection is high.
[0016]
(4) The space (3 ) of the nozzle member (1 ) is surrounded by a conical surface (3) between a large opening opened at the upper end surface of the small-diameter cylinder and a small opening connected to the nozzle (2). The laser / plasma composite processing apparatus according to (3) above . According to this, the plasma gas converges on a small-diameter turn along the conical surface (3), is ionized by the arc of the electrode (18), and exits from the nozzle 2 as a plasma jet. Since converges centrally pivoted to the cyclone-shaped around the optical axis, higher directional stability of the plasma jet.
[0017]
(5) the electrode supporting member (12, 14), said opening for passing the laser beam (21) (13), the smaller in diameter than the opening of the plasma gas inlet (8); the (3 Or the laser / plasma composite processing apparatus according to (4) . Accordingly, the electrode support member (12, 14) is, the swirling flow of the plasma gas, Runode shielding the moving direction of returning to the laser light source, the force of the orbiting convergence is strong.
[0018]
( 6 ) The laser is a YAG laser. Since the YAG laser has a light absorption rate of the metal material several times that of the CO2 laser, efficient welding is possible. Moreover, since the wavelength is 1/10 of the CO2 laser, it is not easily affected by plasma generated during welding. Since the YAG laser can be transmitted by a flexible optical fiber, it can be handled easily and an articulated robot can be used. Moreover, transmission to a distant place up to about 100 m is possible. On the other hand, the YAG laser has a high initial cost, so when introducing multiple facilities as in the automobile production line, the equipment cost becomes enormous. However, the laser light is time-divided (time sharing), With space division (power sharing), it can be distributed and transmitted to a plurality of processing stations and used for processing, and high utilization efficiency can be obtained.
[0019]
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.
[0020]
【Example】
FIG. 1 shows the main part of one embodiment of the present invention. The outer flange of the nozzle member 1 having the nozzle 2 centered on the optical axis 22 of the YAG laser beam 21 of the YAG laser head 17 has a plurality of screws (not shown) (four distributed at a 90-degree pitch around the optical axis 22). Is fixed to the nozzle receiver 6. The small diameter cylinder of the nozzle member 1 is inserted into the round hole of the nozzle receiver 6, and the outer peripheral surface of the cylinder compresses the O-ring 7. The outer flange of the nozzle member 1 compresses the O-ring 5 by a plurality of screws (not shown). A ring-shaped cooling water flow path 4 is provided at the neck of the small-diameter cylinder of the nozzle member 1, and the flow path 4 is hermetically sealed with O-rings 5 and 7. The nozzle receiver 6 has an injection port for supplying cooling water to the flow path 4 and a discharge port for draining cooling water from the flow path 4, but these are not shown.
[0021]
On the inner end surface of the small-diameter cylinder of the nozzle member 1, there is a conical surface 3 with the nozzle 2 as a bottom and continuous therewith, which defines a conical space.
[0022]
A ring-shaped groove is formed on the inner end face of the nozzle receiver 6, and a substantially small-diameter ring-shaped plasma gas port 8 is fitted into the groove, and a substantially large-diameter ring-shaped gasket 10 is provided radially outward. Thus, a ring-shaped plasma gas flow space 23 is defined between the outer peripheral surface of the gas port 8. A plurality of plasma gas injection nozzles 9 that open to the outer peripheral surface and the inner peripheral surface and penetrate the gas port 8 in the tangential direction of the inner peripheral surface are opened in the gas port 8. The gasket 10 has a plasma gas injection port 11 communicating with the plasma gas flow space 23.
[0023]
Above the plasma gas port 8 and the gasket 10, there is an electrode holder 12, and the diameter of the center hole 13 is smaller than the diameter of the inner peripheral surface of the gas port 8. Thus, the upward diffusion of the plasma gas entering the inner space of the gas port 8 from the plasma gas injection nozzle 9 and turning is suppressed, and the turning force is increased.
[0024]
As shown in the figure, the electrode holder 12 has a solid rod-shaped (round pencil-shaped) plasma electrode 18 having a pointed tip, which is inclined with respect to the optical axis (torch axis) 22 and retracted from the optical axis 22. There is a through hole that accepts the position directed to the nozzle 2 from the position, and the plasma electrode 18 passes through the hole. The electrode holder 12 has a screw hole extending from the outer peripheral surface thereof to a through hole, and the plasma electrode 18 is fixed to the electrode holder 12 by tightening a set screw 19 screwed into the screw hole. Reference numeral 20 denotes a lock nut.
[0025]
An insulating table 14 is placed on the electrode holder 12. The insulating base 14, the electrode holder 12, the bracket 10 and the nozzle receiver 6 are integrated with a plurality of bolts 15 (three distributed at a 120-degree pitch around the optical axis 22) that pass through them and are screwed into the nozzle receiver 6. It is fixed to.
[0026]
A female screw cylinder 16 with a flange is screwed to a male screw on the outer periphery of the lower end of the YAG laser head 17, and a plurality of screws (lights) that pass through the threaded hole of the flange and are screwed into the insulating base 14. The insulating table 14 is fixedly attached to the shaft 22 at three intervals distributed at a 120-degree pitch.
[0027]
In this embodiment, the electrode holder 12 is made of a conductor (copper) so that the electric field of the arc discharge is concentrated on the pointed tip of the plasma electrode 18 and the electrolytic concentration to other than the tip of the electrode is avoided. In order to insulate the electrode holder 12, the nozzle receiver 6, the plasma gas port 8, the gasket 10, and the base 14 are used as insulators (ceramics). The nozzle member 1 is a conductor (made of copper).
[0028]
The plasma electrode 18 and the nozzle member 1 are connected to a pilot power source circuit including a pilot power source PSp, a high-frequency high-voltage trigger circuit HF, and a pilot switch SWp, and the plasma electrode 18 and the butt welding target material OB1 are transferred to each other. A main plasma power supply circuit including an AC power supply PSm and a main switch SWm is connected.
[0029]
Supply of cooling water and plasma gas is started, and if necessary, supply of gas for purging the lens for laser focusing is also started in the laser head 17, the pilot switch SWp is turned on, and the trigger circuit HF is driven. An electric discharge is triggered between the nozzle member 1 and the plasma electrode 18. Thus, when the pilot plasma is ignited, the trigger circuit HF is turned off and the main switch SWm is turned on. As a result, a transitional AC plasma arc is generated between the welding object OB1 / the plasma electrode 18, and a plasma welding operation state is set. When the emission of the YAG laser beam 21 is started, a laser / plasma composite high-efficiency butt welding operation state is set .
[0030]
In the AC plasma arc, the positive electrode and the reverse polarity arc are alternately switched in a short cycle and each shifts to the workpiece material, that is, the base material. The reverse polarity arc forms a cathode spot on the surface of the base material, and the base material, for example, aluminum The oxide film (alumina) on the surface is melted and removed. As a result, the aluminum surface is roughened in a satin state, the laser light is irregularly reflected, and the directly reflected light does not return into the head. The surface of the aluminum that has been satin-finished improves the absorption rate of laser light. In the case of laser welding of aluminum, energy concentration is high and high-speed deep penetration welding is possible. However, since the thermal conductivity is high, the molten pool is quickly solidified, and the shield gas is easily trapped and blowholes are easily generated. In the YAG laser welding to which the AC plasma is added in the above embodiment, the molten pool formed by the plasma is larger than the molten pool by the laser, and gas is easily released by stirring the plasma molten pool, so that blowholes are not easily generated. The laser beam has a small spot diameter, so there is little gap tolerance in butt welding. Especially in aluminum welding, solidification of the molten pool is fast, and close butt is required, cutting the work piece and restraining the welded part. The method is severely required, but the gap tolerance is reduced by combining with plasma welding.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a main part of one embodiment of the present invention.
[Explanation of symbols]
1: Nozzle member 2: Nozzle 3: Conical surface 4: Cooling water flow path 5: O-ring 6: Nozzle receiver 7: O-ring 8: Plasma gas port 9: Gas injection nozzle 10: Gasket 11: Gas injection port 13: Center hole 14: Insulation base 15: Bolt 16: Female screw cylinder 17: YAG laser head 18: Plasma electrode 19: Set screw 20: Lock nut 21: YAG laser beam 22: Optical axis 23: Gas flow space

Claims (6)

円周面に冷却水流路がある小径円柱が下端の外フランジから上方に突出し、前記外フランジの下端面に開きレ−ザ光束の光軸が貫通するノズルがあって、該ノズルと連続しそれより大きい開口で前記小径円柱の上端面に開いた空間がある、ノズル部材;
丸穴を有しそこに前記小径円柱を受け入れて前記ノズル部材を支持する絶縁部材;
尖端を有する中実棒状のプラズマ電極;
前記ノズルに向かうレ−ザ光束が通る開口を有し、前記プラズマ電極を、それが前記光軸に対して傾斜しかつ該光軸より退避した位置から尖端が前記空間を通して前記ノズルに指向する姿勢および位置に保持する、前記絶縁部材に結合された電極支持部材;
前記絶縁部材と電極支持部材との間にあってプラズマガスを前記ノズル部材の前記空間に供給する手段; および、
前記レーザ光束を放射するレーザヘッドに前記電極支持部材を結合する手段;
を備えるレ−ザ/プラズマ複合の加工装置。
A small-diameter cylinder having a cooling water passage on its circumferential surface protrudes upward from the outer flange at the lower end , and there is a nozzle at the lower end surface of the outer flange through which the optical axis of the laser beam passes. A nozzle member having a larger opening and an open space on an upper end surface of the small-diameter cylinder ;
An insulating member having a round hole and receiving the small diameter cylinder to support the nozzle member;
A solid rod-shaped plasma electrode having a point ;
An opening through which the laser beam toward the nozzle passes, and the plasma electrode is inclined with respect to the optical axis and the tip is directed to the nozzle through the space from a position retracted from the optical axis And an electrode support member coupled to the insulating member for holding in position;
Means for supplying a plasma gas to the space of the nozzle member between the insulating member and the electrode support member; and
Means for coupling the electrode support member to a laser head that emits the laser beam;
A laser / plasma composite processing apparatus.
前記冷却水流路は前記小径円柱の首部にある;請求項1に記載のレ−ザ/プラズマ複合の加工装置。The cooling water flow path is in the neck portion of the small-diameter cylinder; according to claim 1 Le - The / flop plasma processing apparatus of the composite. 前記プラズマガスを前記ノズル部材の前記空間に供給する手段は、前記レ−ザ光束が通る開口を有し該開口の内周面に、周に沿う方向に開いたプラズマガス流路を有するプラズマガス口、を含む;請求項1又は2に記載のレ−ザ/プラズマ複合の加工装置。 Means for supplying to the space of the nozzle member the plasma gas, the Le - the inner peripheral surface of the opening has an opening through which the laser light beam, a plasma gas having a plasma gas flow path open in the direction along the circumference mouth, the comprises; according to claim 1 or 2 Les - the / flop plasma processing apparatus of the composite. 前記ノズル部材の前記空間は、前記小径円柱の上端面に開いた大きい開口から前記ノズルに連なる小さい開口との間の円錐面で囲まれた;請求項に記載の、レ−ザ/プラズマ複合の加工装置。 Wherein the space of the nozzle member is surrounded by the conical surface between a large opening open to the upper end surface of the small diameter cylinder with a small opening communicating with the nozzle; according to claim 3, Le - The / flop plasma Compound processing equipment. 前記電極支持部材の、前記レーザ光束を通すための前記開口は、前記プラズマガス口の前記開口よりも小径である;請求項3又は4に記載のレ−ザ/プラズマ複合の加工装置。Said electrode support member, said apertures for transmitting the laser beam, the than the opening of the plasma gas inlet is a small diameter; according to claim 3 or 4 Les - The / flop plasma processing apparatus of the composite. レーザはYAGレーザである、請求項1乃至5のいずれか1つに記載のレ−ザ/プラズマ複合の加工装置。Lasers are YAG lasers, claims 1 to according to any one of 5 Les - The / flop plasma processing apparatus of the composite.
JP2000305219A 2000-10-04 2000-10-04 Laser / plasma composite processing equipment Expired - Fee Related JP3768394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000305219A JP3768394B2 (en) 2000-10-04 2000-10-04 Laser / plasma composite processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000305219A JP3768394B2 (en) 2000-10-04 2000-10-04 Laser / plasma composite processing equipment

Publications (2)

Publication Number Publication Date
JP2002113588A JP2002113588A (en) 2002-04-16
JP3768394B2 true JP3768394B2 (en) 2006-04-19

Family

ID=18786119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000305219A Expired - Fee Related JP3768394B2 (en) 2000-10-04 2000-10-04 Laser / plasma composite processing equipment

Country Status (1)

Country Link
JP (1) JP3768394B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT501124B1 (en) 2004-12-15 2007-02-15 Fronius Int Gmbh METHOD AND DEVICE FOR COMBINED LASER ARC WELDING
JP6239481B2 (en) 2014-10-08 2017-11-29 株式会社東芝 Welding device and nozzle device
CN105618933B (en) * 2016-02-19 2018-03-16 广东省焊接技术研究所(广东省中乌研究院) A kind of efficiently high-quality laser micro arc plasma complex welding method
US11731216B2 (en) 2016-04-14 2023-08-22 Plasmatreat Gmbh Device for working a surface of a workpiece by means of a laser beam and method for operating the device
CN111375896A (en) * 2019-07-15 2020-07-07 成都智见复合科技有限公司 Welding torch for laser and photoelectric arc composite welding
CN113732507B (en) * 2021-09-14 2023-05-02 哈尔滨工业大学(威海) Laser-arc composite welding protective gas blowing device for expelling laser plasma

Also Published As

Publication number Publication date
JP2002113588A (en) 2002-04-16

Similar Documents

Publication Publication Date Title
US6388227B1 (en) Combined laser and plasma-arc processing torch and method
CA2215563C (en) Combined laser and plasma arc welding torch
US10086461B2 (en) Method and system to start and use combination filler wire feed and high intensity energy source for welding
US6469277B1 (en) Method and apparatus for hybrid welding under shielding gas
US6172323B1 (en) Combined laser and plasma arc welding machine
US20130092667A1 (en) Method and System to Start and Use Combination Filler Wire Feed and High Intensity Energy Source for Welding
US4689466A (en) Laser-beam operated machining apparatus
CN104985327A (en) Bifocus laser and InFocus arc hybrid welding method
CN109070276B (en) Device for machining a workpiece surface by means of a laser beam and method for operating a device
WO2018145544A1 (en) Welding torch used for laser beam-plasma arc hybrid welding
CN105215552A (en) A kind of stainless steel welding
JP3768394B2 (en) Laser / plasma composite processing equipment
JP2017127893A (en) Laser and arc hybrid welding head and laser and arc hybrid welding method
WO2021008487A1 (en) Laser and photoelectric arc hybrid welding torch
CN105618933B (en) A kind of efficiently high-quality laser micro arc plasma complex welding method
JP3768393B2 (en) Laser / plasma composite processing equipment
JP2002144064A (en) Method and equipment for welding metallic member
JP2003311456A (en) Laser beam irradiating arc welding head
JP3061268B1 (en) Melt processing equipment using laser light and arc
JP3631936B2 (en) Welding method and welding apparatus
CN210848805U (en) Welding torch for laser and photoelectric arc composite welding
JP2002273588A (en) Laser cutting processing method
JP4254564B2 (en) Composite welding apparatus and welding method thereof
JP2001096365A (en) Composite welding process by laser and arc
KR100561074B1 (en) Device and method of arc welding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees