JP3768242B2 - Method and apparatus for purifying gaseous effluent streams with contaminants - Google Patents

Method and apparatus for purifying gaseous effluent streams with contaminants Download PDF

Info

Publication number
JP3768242B2
JP3768242B2 JP51091397A JP51091397A JP3768242B2 JP 3768242 B2 JP3768242 B2 JP 3768242B2 JP 51091397 A JP51091397 A JP 51091397A JP 51091397 A JP51091397 A JP 51091397A JP 3768242 B2 JP3768242 B2 JP 3768242B2
Authority
JP
Japan
Prior art keywords
desorption
effluent
purifier
adsorbent
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP51091397A
Other languages
Japanese (ja)
Other versions
JPH10508797A (en
Inventor
ジャン モーレック、
ジャック ブルシェール、
Original Assignee
アンスティテュ フランセ デュ ペトロル
ジャック ブルシェール、
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アンスティテュ フランセ デュ ペトロル, ジャック ブルシェール、 filed Critical アンスティテュ フランセ デュ ペトロル
Publication of JPH10508797A publication Critical patent/JPH10508797A/en
Application granted granted Critical
Publication of JP3768242B2 publication Critical patent/JP3768242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/40096Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating by using electrical resistance heating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

技術分野
本発明はガス状の流出物の流れを浄化する方法と装置に関する。
本発明による方法と装置は、特に以後VOC類と称される、揮発性有機化合物あるいは悪臭のある物質の除去に用いられる。このVOCという用語は炭化水素、塩素化合物、弗素化合物およびクロロフルオロ化合物、NOx、SOx、H2Sおよびメルカプタン、NH3およびアミン、およびH2O、より一般的にはいくつかの理由で都合の悪い濃度で空気中に存在する可能性のある有機および無機化合物のすべてを含む。
背景技術
環境に対して益々注意を払うことは、大気への汚染排出物に関するより厳重な規制に直面しなければならない多くの企業家にとって大きな関心事の一つとなっている。
主として吸着材に汚染物を吸着させることによって、またはフィルターを通す末端分離によって作動する、ガス状流出物を浄化するための工業的な装置は多い。吸着材と接触させて浄化した後、浄化された流出物を大気中に排出するかまたは少なくとも冬期には加熱費を節約するために設備内で循環させることができる。
例えば、凝集力および化学吸着による保持によって機能する活性炭フィルタを用いたある種の装置では、吸着材は再生可能ではなく、その飽和限界に達したら直ちに交換しなければならない。他のフィルターで用いられる粒状活性炭は製造業者に変換されれば工場で再生できる。初めの汚染物質濃度が高い場合は、汚染工場を数日動かすと、時には充分この飽和限界に達する。吸着材の費用やその再生費は急速に法外なものになる。再生不能の消耗品を用いるフィルターのこの解決法はエコバランス上いかなる場合も容認できない。何故ならばこの場合汚染は消滅させられるのではなく単に一つのキャリヤーから他のキャリヤーに移動するに過ぎないからである。交換の費用のため、情報が不足しているため、また時には装置の状態を点検することが困難であるため、必要な頻度でフィルターが交換されないことがしばしば起こる。
吸着による吸着材の再生と汚染物質の回収または分解を行う浄化装置もある。しかしこのような装置はより高価であることが多い。これらはどちらかといえば大量の汚染物質を発生する施設に適している。多くの場合、このような装置は経済的に許容できる解決法にならないことが非常に多い。したがって多くの施設は適切に設備を備えていない。
例えば米国特許3,608,273号またはフランス特許公開公報2,659,869号、2,709,431号には、除去すべき物質を含む流体を処理する方法が記載されており、これらの方法は例えば活性炭のような吸着材を保有する一連の間隔をおいて配置されたフィルター層を経由して上記流体をタンクの中に入れることに特徴がある。導電性があるか、あるいは導電性粒子または電熱線の添加によって導電性を付与された吸着材が用いられる。吸着質の脱離はその中を流れる電流、または巻線によって生じた電磁場により加熱することによって行われる。二連のフィルター層を用いることができ、内一連は他の一連が再生されている間吸着に供せられる。
本出願人によるフランス特許出願94/06,281号には、汚染された流出物の連続浄化装置が記載されている。この装置は、保持器(ケージ)内で連続的に回転する垂直軸をもつ内部に閉じ込められたリングを有しており、このリングは汚染物質を吸着する粒状の固体材料、すなわちシリカ、活性炭、アルミナ等を備えている。ガス流出物は、一方では、リングの第一角吸着部を経由して流出物移動系統と中央部の排気系統の間を流れ、他方では、吸着質の再生がなされるリングの第二角脱離部を経由して同じ中央部の熱ガス流移送系統と排気系統の間を流れ、これによりガス流出物の循環が確立される。これらの系統は外部の熱交換および/または焼却手段に接続される。この装置は色々なタイプの汚染工場と結びつけることができるが、比較的多量の汚染された流出物(例えば10000−100000m3/時)を発生する汚染工場に特に適している。
発明の開示
本発明によるガス状流出物と混合した物質を浄化する装置は、密閉容器、流出物を密閉容器中に導く第一系統、該物質を捕捉し濃縮する浄化手段、濾過した流出物を密閉容器から排出する少なくとも一つの第二系統、および、例えば密閉容器の内部に、またはもし浄化装置が密閉容器を通して流出物を循環させる現存する包括的プロセス(global process)に組み込まれる場合は外部に、自己充足型の浄化を実現するための(例えばファンのような)手段を備えている。
浄化手段は、固定した浄化障壁、選択的熱脱離集成体、および脱離すべき各浄化器ユニットの吸着材を加熱する手段を含むことを特徴とする。固定した浄化障壁は、密閉容器を横切って介在し汚染物質を吸着するのに適した材料を含み互いに平行に配置された複数の浄化器ユニットを有する。また、選択的熱脱離集成体は、比較的低流量の脱離流体を少なくとも一の浄化器ユニットに流し、脱離流体を選択的に捕集するのに適し密閉容器内を直線的に移動することのできる可動コレクターを含む。
この装置はまた、脱離流体と混合した汚染物質を除去するために、好ましくは密閉容器中に置かれ並進するコレクターに固定された焼却反応器のような手段を含むことができる。
一実施態様によれば、脱離流体を脱離すべき各浄化器ユニットを通して選択的に循環させるために、本装置は部分的に密閉容器の外側に置かれた換気系統を含む。この系統は例えば可動コレクターと共に動く少なくとも一つの補助系統を有している。これにより、選択された各浄化器ユニットおよび/または可動コレクターと共に動く少なくとも一つの補助系統に脱離流体を導き、選択された浄化器ユニットから脱離流体を密閉容器外へ移送するようになっている。
一実施態様によれば、(例えば吸着材中の抵抗体またはジュール効果によって)吸着材を加熱する手段は各浄化器ユニットに含まれる。
他の実施態様によれば、例えば脱離すべき浄化器ユニットの出口にある焼却反応器のように、一部の加熱手段は各浄化器ユニットの外側に置かれ赤外線源よりなっている。
一つの実施態様によれば、各浄化器ユニットは吸着材を入れた数枚の孔あき板と、流出物と吸着材の接触面積を増すための偏差壁を有している。
選択的熱脱離集成体は、コレクターを脱離すべき浄化器ユニットの前に置いてユニットに対して押しつけるための駆動手段を含むことが好ましい。
本発明によるガス状流出物と混合した物質を浄化する方法は、以下の点に特徴がある。すなわち、流出物の循環が、密閉容器中に並置された汚染物質を吸着する材料を含む一連の浄化器ユニットを含む装置によって確立され、各浄化器ユニットは、その吸着能力が飽和したとき、加熱により吸着物質を脱離し補助流体(脱離を行おうとする浄化器ユニットの入口に選択的に供給されるガス。例えば循環流出物の一部または補助系統によって供給される。)により汚染物質を排出するのに必要な時間の間、可動コレクターによって選択的かつ連続的に隔離され、補助流体と混合した汚染物質は可能な限りそれらを除去するのに適した反応器に送られる点に特徴がある。
本発明の装置は、平均量の汚染流出物(例えば1000−5000m3/時)を発生する多くの施設に適合した、適度の費用価格と維持費という単純な解答を与える。この理由には多くの要因がある:
−密閉容器は標準的かつ集成の容易な、平行六面体形の不変部を有しており、主系統および補助系統(空気ダクト)を製作するのに用いたものと同じ材料から経済的に作ることができる。例えば、亜鉛メッキ鋼、ポリエステルあるいは必要であればステンレス鋼を使用できる。
−可動コレクターとその任意の補助系統をもつ脱離集成体は電気的、空気圧的または液圧的手段によって容易に並進させることができるので可動部分は少なくて済む。
−脱離に必要な高い温度上昇は熱反応器内と単一の脱離ユニット内に限られる。これらの浄化器ユニットは互いにまた密閉容器本体から熱的に絶縁されているので、密閉容器の断熱は必要でない。
汚染物質の焼却は密閉容器の内側で、脱離すべき浄化器ユニットのすぐ近くで行うことが好ましい。これにより、脱離熱を赤外線放射によって部分的に供給できるという利点が生ずる。
−任意の脱離と焼却の操作はオフピーク期まで容易に延期することができ、このため必要なエネルギー費用は減少する。
−流出物の温度ならびに汚染物質の濃度と性質が広範囲に変わっても処理の効果を損なうことはない。
−装置はいずれの作動フェーズにおいても静止したままであり、密閉容器は循環を内側で確立するために減圧下にあるので、外部への漏れが起こらない。
−構造、使用、および操業が簡単であるので保全が容易になりしたがって修理調整の頻度が抑えられる。
−従来の方法におけるように脱離手段を倍増する必要はない。
【図面の簡単な説明】
本発明による装置の他の特徴と利点は、添付した図面を参照して、とりわけ汚染流出物浄化の用途に適した、非限定の実施例によって示された実施態様の以下に述べる説明を読むことによって明らかになる、すなわち:
−図1は装置の部分的断面における全面図を示す。
−図2は補助的脱離流移送系統をもつ図1の実施態様の一変形を図式に示す。
−図3は補助的脱離流移送系統と脱離流を外部の焼却反応器に排出する排気系統をもつ図1の実施態様の一変形を示す。
−図4は脱離集成体を移動させる駆動手段を図式に示す。
−図5は数個の画室をもつ浄化器ユニットの第一実施態様を図式に示す。
−図6は図5の実施態様の一変形を示す。
−図7は図5の実施態様の他の一変形を示す。
好ましい実施態様の説明
以下詳細に説明するように、本発明のプロセスは、主に、吸着材を保有する一連の並置した浄化器ユニットを処理すべき流出物の循環通路に配置することと、各ユニットの吸着能力が飽和した際、加熱による脱離および吸着材に捕捉された物質の補助流体による移送に要する時間の間、コレクターを用いて各ユニットを逐次隔離することにある。この方法はガスの脱湿や汚染物質を含む流出物の浄化に適用することができる。このような場合、このプロセスは、例えば、脱離工程にあるユニットのすぐ近くに配置された焼却反応器に汚染物質を送るプロセスを含むことが好ましい。
処理すべき汚染された流出物はダクト1を通って一体物としてつくられた堅牢な密閉容器3の第一端にある吸入室2の中に送られる(図1)。密閉容器3は例えば平行六面体の形状を有し、一般的用途のために、亜鉛メッキ鋼でできている。密閉容器の全横断面は、断熱材でできた層5によって互いに分離された一連の並置された浄化器ユニット4a−4n(例えばnは11に等しい)よりなる浄化障壁4によって閉じられている。これら浄化器ユニットは、処理対象の流出物い混在する汚染物質の性質、特に分子の形状に適した吸着材を保有している。この吸着材は後述するように、例えば、活性炭、ゼオライト、等がよい。
浄化器ユニット4a−4nを通過する流出物の循環はファン6によって行われる。ファン6は浄化障壁4の吸入室2と反対側にある排出室7に配置されているが、浄化装置がGLに組み込まれている場合には密閉容器の外側に配置されていてもよい。障壁4を通過した後、浄化された流出物は密閉容器3から大気中に排出されるか、または流出物が吸引されたところに循環される。
吸着材物質はその飽和度によって規則的な間隔をおいて再生しなければならない。そのため、装置には、少なくとも一つの浄化器ユニットを脱離に要する時間の間濾過障壁4から選択的に隔離する選択的熱脱離集成体が含まれる。
この集成体は、4a乃至4nの各浄化器ユニットの後面全体をカバーする吸入口を有する収束可動コレクター8を含む。このコレクターは駆動手段によりガイドレール9に沿って横方向に移動できる(図4)。
脱離集成体にはまた、各浄化器ユニットの内側または外側で吸着材負荷を加熱する手段がある。使用した吸着材が粒状である場合は、固定した埋め込み抵抗体(図示せず)をこの目的で用いることができる。もし吸着材がハニカム構造体に、または厚みの少ない織物状または粒状の形体中に含まれるならば、コレクター8と共に移動する赤外線エミッターを用いることも可能である。このエミッターは脱離すべき浄化器ユニットの前面あるいは後面の正面に配置することができる。熱波はセルと非常に多孔質である吸着材中に軸方向に深く浸透し、速やかに加熱する。この型の放射を行えば、大部分の熱は吸着材に入り、空気の加熱は単に物質−ガス間の伝導によるのみである。
吸着材が充分に導電性である場合は、他の加熱様式は前・後面の間に電位差を加えることおよび吸着材をジュール効果で加熱することにある。
吸着材を加熱することによって解放された汚染粒子は、出口で高い脱離率を得るために低流量の流体によって浄化器ユニットから駆出される。図2および3を参照して種々の方法について、以下、説明する。
焼却反応器10は、補助流体によって駆出された汚染物質を集める収束コレクターの出口に置かれる。
分解は高温(例えば1000℃)で熱的に行うことができる。この場合、例えば高い比表面積、例えば1500m2/m3の導線のマットレスを有する燃焼室が使用され、これら導線は電流を流すことによって赤熱し、酸化は導線と接触して起こる。この反応は単に赤熱状態だけを維持するには充分発熱的でありもはや電気エネルギーの供給を必要としない。
分解はまた、例えば、ハニカム触媒ブロックを有する周知のタイプの接触酸化反応容器中で(400℃程度の)より低い温度で行うことができ、ガスはブロックと接触して酸化する。このような反応器では、酸化開始温度に達するために、例えば、バーナーのような補助加熱手段が用いられ、この温度はその後、酸化自熱性によって維持される。
再生を行う間ファン6の駆動パワーを著しく減少する場合には、密閉容器3に入る流出物は(図1)、補助的脱離流体自体として用いることができる。この実施態様は例えば(この汚染が例えば昼間の活動と関連している場合、例えば、夜に)流出物による汚染度が周期的に減少する工場に適している。
流出物自体の一部を汚染物質脱離のための補助流体として用いることも可能である。脱離前後の圧力低下が大きいため、脱離系統が平衡に至ることによって各吸着手段の再生が行われる。その単位面積当りの再生度は比較的低いものとなる。この方法ではファンは一つあれば足りる。
流出物の汚染度が補助流体として用いるのに高すぎる場合は、例えば図2の実施態様を用いることができる。この態様は、その出口が各浄化器ユニット4iの後面全体に押しつけられるように形成され、その入口が、密閉容器3の外側で、例えば新鮮な空気用のファンのような流体源(図示せず)と連絡する柔軟パイプ12に結合した末広管11よりなる。この末広管は浄化障壁4の他方の側にあるコレクターと一組になっていることが好ましく、該コレクターおよび焼却反応器10と共に移動する。
図3の変形によれば、焼却反応器10または回収装置は適宜密閉容器の外側に置くことができる。この場合、コレクター8の出口は同様に柔軟パイプ13と反応器10への接続系統14に接続している。
コレクター8、反応器10(図1)および/または末広管11(図2、3)を移動させる駆動手段には、例えば次のようなものが含まれる(図4)。
−例えば、円筒状のボールまたはフェルト滑りレール、ローラー用走行レール、または単一度の並進において線形変位を起こさせる他の標準ガイド機構よりなる周知の型の線形ガイド手段9、
−例えばチェーン(歯付ベルト等)と組み合わせた歯車(小歯車等)と電気式、液圧式または空気圧式モーター、または固定した軌道上を回転するゴム車、線形歯付定規上を回転する小歯車またはロープ付空気式ジャッキとプーリーホイールリターン、あるいは更に一般的には当業者によって通常用いられる駆動歯車を含む周知の型の駆動機素(図示せず)、
−コレクタ8を脱離すべき浄化器ユニット4iに押し付ける縦方向並進機構。コレクター8は二つの液圧式(または空気圧式)ジャッキの本体15に固定されジャッキのロッド16はそれぞれガイドレール9上を滑らかに動くように取りつけられた二つのリング17に固く接続されている。リターンスプリング18は各ジャッキの本体とロッドの間に介在し、恒久的にコレクター8を脱離すべき浄化器ユニットの後面4rに押し付ける効果をもっている。次の浄化器ユニットへの移動に要する時間の間コレクター8を一時的に取りはずすことは、ジャッキに発生器(図示せず)によって生じた液圧をかけることによって行われる。
当業者に知られた可能な、実施態様の変形によれば、この機構は、例えばリターンスプリング付きの電磁石または、等間隔にその位置と高さが、必要な取りはずしに適したボスや止め金を有する、固定カム上を摺動する隙間ゲージ(フィーラー)を含むことができる。
選択された浄化器ユニットの後面の前にコレクター8を止めることは、例えば調節ユニット(図示せず)によって、あるいはトルク制限器を備えて線形変位電動モーターを用いることによって、また、選択された浄化器ユニットの前で、ストップリングを上げてエンジンを停止させることによって、必要な並進距離を調節することで好都合に行われる。各浄化器ユニット中の吸着材の飽和を検知するのに適した吸着量を再生サイクルを自動化するようにこの調節ユニットと関連させることができる。
例えば次のものを吸着材として用いることが可能である。
−天然粒状ゼオライト、
−合成の、脱アルミされたおよび/またはグラフトゼオライト、
−ハネカムまたは金属支持体上の含浸ゼオライト、
−袋詰めゼオライトまたは活性炭、
−粒状活性炭、
−ゼオライトまたは活性炭で被覆した織物、フェルトまたは金属または高分子メリヤス生地、
−活性炭織物。
図5の実施態様によれば、各浄化器ユニット4a〜4nには、浄化障壁4の前4fおよび後面4rの間に、間隔をおいて、平行にまたはアコーディオン形に置かれた数個の平板な画室19がある。それらの各々は多孔板によって横方向に範囲を定められ、例えば活性炭などの吸着材で満たされている。流出物の通路を長くするためにまたそれによって吸着材との接触面積を増すために、前面4fと後面4r上のいくつかの入口と出口は閉じられている。
この流れの偏りはまた各画室間に斜めに設けられた偏向板20によっても得ることができる(図6)。赤外線加熱様式を各画室の吸着材を脱離させるのに用いる場合は、この配置は赤外線の透過にとって好ましい。
図7の変形によれば、各浄化器ユニットはその中を流出物をよく流すためにジグザグ状に配列された複数の平板な画室19よりなる。
これまで説明してきたような装置は多くの分野において用いることができ、特に:
−車体修理工場で塗装ブースから溶剤を除くために、
−都市の廃水揚水場で、硫化水素を除くために、
−プラスチック処理工場で、スチレンを伴ったガス流出物を清浄にするために、
−水処理工場においてスラッジ濾過設備からの悪臭を処理するために、
−塗装工によって現場で溶剤発散物(ネオプレングルー)を集め、清浄にし再循環するために、
−建築業および土木分野において、エポキシ樹脂またはポリウレタンフォームを塗布している間、密閉空間の空気を循環させて処理するために、
−印刷工場においてVOC類を伴ったガス状排出物を清浄にするために、
−食品加工工場で悪臭を分解するために、
−食品加工工業において汚染物質(NOx、C24)のない空気を用意するために、
−移動可能であって、自己充足型の装置が必要な緊急サービスにおいて、
−精製空気が必要な全工業において、
−化学製造プロセスにおいてガス状流出物を清浄にするために、
−試験研究室において、同様にガス流出物を大気中に排出する前に清浄にするために、
−機械工場で公認されたリサイクルを行いながら作業構内を処理するために、
本装置を汚染物質または粒子(特にVOC類)を伴った流出物の浄化に用いる実施態様をこれまで説明してきた。しかし本発明の範囲から逸脱することなく、本装置をガスを除去するのに用いることもできる。このような場合、種々の浄化器障壁の負荷は親水性の吸着材、すなわち天然または合成ゼオライト、シリカゲル、シリカ、アルミナ、シリカ−アルミナ、塩化カリウム、塩化リチウム等の、大きな活性表面を有する親水性材料よりなる。
TECHNICAL FIELD This invention relates to a method and apparatus for purifying gaseous effluent streams.
The method and apparatus according to the invention are used in particular for the removal of volatile organic compounds or odorous substances, hereinafter referred to as VOCs. The term VOC is used for hydrocarbons, chlorine compounds, fluorine compounds and chlorofluoro compounds, NO x , SO x , H 2 S and mercaptans, NH 3 and amines, and H 2 O, more commonly for several reasons. Includes all organic and inorganic compounds that may be present in the air at unfavorable concentrations.
Increasing attention to the background technology environment is one of the major concerns for many entrepreneurs who must face more stringent regulations on polluting emissions to the atmosphere.
There are many industrial devices for purifying gaseous effluents that operate primarily by adsorbing contaminants on an adsorbent or by end separation through a filter. After purification in contact with the adsorbent, the purified effluent can be discharged into the atmosphere or at least circulated in the facility to save heating costs in winter.
For example, in certain devices using activated carbon filters that function by cohesion and retention by chemical adsorption, the adsorbent is not renewable and must be replaced as soon as its saturation limit is reached. Granular activated carbon used in other filters can be regenerated at the factory if converted to a manufacturer. If the initial pollutant concentration is high, moving the contaminated factory for a few days will sometimes reach this saturation limit. The cost of adsorbents and their regeneration costs quickly become prohibitive. This solution for filters that use non-renewable consumables is unacceptable in any eco-balance. This is because in this case the contamination is not extinguished, but merely moves from one carrier to another. Due to the cost of replacement, it is often the case that filters are not replaced as often as necessary due to lack of information and sometimes it is difficult to check the condition of the device.
Some purification devices regenerate adsorbents by adsorption and collect or decompose contaminants. However, such devices are often more expensive. These are rather suitable for facilities that generate large amounts of pollutants. In many cases, such devices are very often not an economically acceptable solution. Many facilities are therefore not equipped properly.
For example, U.S. Pat. No. 3,608,273 or French Patent Publication Nos. 2,659,869, 2,709,431 describe methods for treating a fluid containing a substance to be removed. Is characterized in that the fluid is introduced into the tank via a series of spaced filter layers containing an adsorbent such as, for example, activated carbon. Adsorbents that are conductive or have been rendered conductive by the addition of conductive particles or heating wires are used. The adsorbate desorption is performed by heating with an electric current flowing therethrough or an electromagnetic field generated by the winding. Duplicate filter layers can be used, with one series being subjected to adsorption while the other series is being regenerated.
French patent application 94/06281 by the present applicant describes a continuous purification device for contaminated effluent. The device has an internally confined ring with a vertical axis that rotates continuously in a cage, which is a granular solid material that adsorbs contaminants, ie silica, activated carbon, Alumina etc. are provided. The gas effluent, on the one hand, flows between the effluent transfer system and the central exhaust system via the first angle adsorption part of the ring, and on the other hand, the second angle escape of the ring where the adsorbate is regenerated. It flows between the hot gas flow transfer system and the exhaust system in the same central part via the separation part, thereby establishing the circulation of the gas effluent. These systems are connected to external heat exchange and / or incineration means. This device can be combined with various types of contaminated factories, but is particularly suitable for contaminated factories that generate relatively large amounts of contaminated effluent (eg, 10,000-100000 m 3 / hour).
DISCLOSURE OF THE INVENTION An apparatus for purifying a substance mixed with a gaseous effluent according to the present invention comprises a sealed container, a first system for guiding the effluent into the sealed container, a purification means for capturing and concentrating the substance, and a filtered effluent. At least one second system that drains from the sealed container and, for example, inside the sealed container, or externally if the purifier is integrated into an existing global process that circulates the effluent through the sealed container , Provided with means (such as a fan) for realizing self-contained purification.
The purifying means includes a fixed purifying barrier, a selective thermal desorption assembly, and means for heating the adsorbent of each purifier unit to be desorbed. The fixed purification barrier has a plurality of purifier units disposed across and parallel to each other, including a material suitable for adsorbing contaminants that are interposed across the sealed container. In addition, the selective thermal desorption assembly allows a relatively low flow rate of desorbed fluid to flow through at least one purifier unit and linearly moves in a sealed container suitable for selectively collecting desorbed fluid. Includes a movable collector that can do.
The apparatus can also include means, such as an incinerator reactor, preferably placed in a closed vessel and secured to a translating collector to remove contaminants mixed with the desorption fluid.
According to one embodiment, the apparatus includes a ventilation system partially placed outside the closed vessel to selectively circulate desorbed fluid through each clarifier unit to be desorbed. This system has, for example, at least one auxiliary system that moves with the movable collector. This guides the desorbed fluid to at least one auxiliary system that moves with each selected purifier unit and / or movable collector, and transfers the desorbed fluid out of the sealed container from the selected purifier unit. Yes.
According to one embodiment, means for heating the adsorbent (eg, by a resistor or Joule effect in the adsorbent) is included in each purifier unit.
According to another embodiment, some heating means consist of an infrared source located outside each purifier unit, for example an incinerator at the outlet of the purifier unit to be desorbed.
According to one embodiment, each purifier unit has several perforated plates with adsorbents and deviation walls to increase the contact area between the effluent and adsorbents.
The selective thermal desorption assembly preferably includes drive means for placing the collector in front of the clarifier unit to be desorbed and pressing it against the unit.
The method for purifying a substance mixed with a gaseous effluent according to the present invention is characterized by the following points. That is, the effluent circulation is established by a device that includes a series of purifier units that contain materials adsorbing contaminants juxtaposed in a sealed container, and each purifier unit is heated when its adsorption capacity is saturated. The adsorbed material is desorbed by the auxiliary fluid (gas selectively supplied to the inlet of the purifier unit to be desorbed. For example, a part of the circulating effluent or the auxiliary system discharges the pollutant). Characterized in that it is selectively and continuously isolated by a movable collector for the time required to do so that contaminants mixed with the auxiliary fluid are sent to a reactor suitable for removing them as much as possible. .
The apparatus of the present invention provides a simple solution with reasonable cost price and maintenance cost suitable for many facilities that generate an average amount of contaminated effluent (eg 1000-5000 m 3 / hour). There are many factors for this reason:
-The sealed container has standard and easy to assemble parallelepiped invariant parts and is economically made from the same materials used to make the main and auxiliary systems (air ducts). Can do. For example, galvanized steel, polyester, or stainless steel if necessary.
-A desorbing assembly with a movable collector and its optional auxiliary system can be easily translated by electrical, pneumatic or hydraulic means, so there are fewer moving parts.
-The high temperature rise required for desorption is limited in the thermal reactor and in a single desorption unit. Since these purifier units are thermally insulated from each other and from the sealed container body, thermal insulation of the sealed container is not necessary.
The incineration of the pollutants is preferably carried out inside the sealed container and in the immediate vicinity of the purifier unit to be desorbed. This has the advantage that the desorption heat can be partially supplied by infrared radiation.
-Optional desorption and incineration operations can be easily postponed to off-peak periods, thus reducing the required energy costs.
-The effect of the treatment is not impaired if the temperature of the effluent and the concentration and nature of the pollutants vary widely.
-The device remains stationary during any operating phase, and since the closed vessel is under reduced pressure to establish circulation inside, no leakage to the outside occurs.
-Simple construction, use and operation, which facilitates maintenance and thus reduces the frequency of repair adjustments.
-There is no need to double the desorption means as in the conventional method.
[Brief description of the drawings]
Other features and advantages of the device according to the invention can be seen from the following description of an embodiment represented by a non-limiting example, particularly suitable for use in contaminated effluent purification, with reference to the accompanying drawings. That is revealed by:
FIG. 1 shows a full view in partial section of the device.
FIG. 2 diagrammatically shows a variant of the embodiment of FIG. 1 with an auxiliary desorption flow transfer system.
FIG. 3 shows a variant of the embodiment of FIG. 1 with an auxiliary desorption flow transfer system and an exhaust system for discharging the desorption flow to an external incinerator.
FIG. 4 diagrammatically shows the drive means for moving the desorption assembly.
FIG. 5 shows diagrammatically a first embodiment of a purifier unit with several compartments.
FIG. 6 shows a variant of the embodiment of FIG.
FIG. 7 shows another variant of the embodiment of FIG.
DESCRIPTION OF THE PREFERRED EMBODIMENTS As will be described in detail below, the process of the present invention primarily involves placing a series of juxtaposed clarifier units carrying adsorbents in the circulation path of the effluent to be treated, When the adsorption capacity of the unit is saturated, each unit is sequentially isolated using a collector during the time required for desorption by heating and transfer of the substance trapped in the adsorbent by the auxiliary fluid. This method can be applied to dehumidification of gas and purification of effluent containing pollutants. In such cases, the process preferably includes, for example, a process of sending contaminants to an incineration reactor located in the immediate vicinity of the unit in the desorption step.
The contaminated effluent to be treated is sent through the duct 1 into the suction chamber 2 at the first end of a rigid sealed container 3 made as a single piece (FIG. 1). The sealed container 3 has a parallelepiped shape, for example, and is made of galvanized steel for general use. The entire cross section of the sealed container is closed by a purification barrier 4 consisting of a series of juxtaposed purifier units 4a-4n (eg n equals 11) separated from each other by a layer 5 made of insulation. These purifier units have adsorbents that are suitable for the nature of the contaminants, especially the molecular shape, that are mixed with the effluent to be treated. As described later, this adsorbent is preferably activated carbon, zeolite, or the like.
Circulation of the effluent passing through the purifier units 4a-4n is effected by the fan 6. The fan 6 is disposed in the discharge chamber 7 on the side opposite to the suction chamber 2 of the purification barrier 4, but may be disposed outside the sealed container when the purification device is incorporated in the GL. After passing through the barrier 4, the purified effluent is discharged from the sealed container 3 into the atmosphere or circulated where the effluent has been aspirated.
The adsorbent material must be regenerated at regular intervals depending on its saturation. Thus, the apparatus includes a selective thermal desorption assembly that selectively isolates at least one clarifier unit from the filtration barrier 4 for the time required for desorption.
The assembly includes a converging movable collector 8 having an inlet that covers the entire rear surface of each purifier unit 4a-4n. This collector can be moved laterally along the guide rail 9 by the driving means (FIG. 4).
The desorption assembly also has a means for heating the adsorbent load inside or outside each purifier unit. If the adsorbent used is granular, a fixed embedded resistor (not shown) can be used for this purpose. It is also possible to use an infrared emitter that moves with the collector 8 if the adsorbent is contained in a honeycomb structure or in a thin woven or granular form. This emitter can be arranged in front of the front or rear of the purifier unit to be detached. The heat wave penetrates deeply into the cell and the adsorbent that is very porous and heats quickly. With this type of radiation, most of the heat goes into the adsorbent, and the air is heated simply by substance-gas conduction.
If the adsorbent is sufficiently conductive, other heating modes are to apply a potential difference between the front and rear surfaces and to heat the adsorbent by the Joule effect.
Contaminated particles released by heating the adsorbent are ejected from the purifier unit by a low flow rate fluid to obtain a high desorption rate at the outlet. Various methods are described below with reference to FIGS.
The incinerator reactor 10 is placed at the outlet of a converging collector that collects the pollutants ejected by the auxiliary fluid.
Decomposition can be performed thermally at high temperatures (eg 1000 ° C.). In this case, for example, combustion chambers with high specific surface area, for example 1500 m 2 / m 3 conductor mattress, are used, these conductors become red hot by passing electric current and oxidation takes place in contact with the conductors. This reaction is exothermic enough to maintain only a red hot state and no longer requires a supply of electrical energy.
Decomposition can also be performed at lower temperatures (on the order of 400 ° C.), for example, in a well-known type of catalytic oxidation reaction vessel having a honeycomb catalyst block, and the gas oxidizes in contact with the block. In such a reactor, auxiliary heating means such as, for example, a burner are used to reach the oxidation start temperature, which is then maintained by oxidation autothermality.
If the driving power of the fan 6 is significantly reduced during regeneration, the effluent entering the sealed container 3 (FIG. 1) can be used as the auxiliary detachment fluid itself. This embodiment is suitable, for example, for factories where the degree of contamination by spills is periodically reduced (for example, at night if this pollution is associated with daytime activity).
It is also possible to use a part of the effluent itself as an auxiliary fluid for contaminant removal. Since the pressure drop before and after the desorption is large, each adsorption means is regenerated when the desorption system reaches equilibrium. The degree of reproduction per unit area is relatively low. This method requires only one fan.
If the effluent contamination is too high for use as an auxiliary fluid, for example, the embodiment of FIG. 2 can be used. This embodiment is formed such that the outlet is pressed against the entire rear surface of each purifier unit 4i, and the inlet is outside the sealed container 3, for example, a fluid source (not shown) such as a fan for fresh air. ) Is connected to a flexible pipe 12 that communicates with The divergent tube is preferably paired with a collector on the other side of the purification barrier 4 and moves with the collector and the incinerator 10.
According to the modification of FIG. 3, the incinerator 10 or the recovery device can be appropriately placed outside the sealed container. In this case, the outlet of the collector 8 is similarly connected to the flexible pipe 13 and the connection system 14 to the reactor 10.
Examples of driving means for moving the collector 8, the reactor 10 (FIG. 1) and / or the divergent tube 11 (FIGS. 2 and 3) include the following (FIG. 4).
A well-known type of linear guide means 9 comprising, for example, a cylindrical ball or felt slide rail, a roller run rail, or other standard guide mechanism that causes a linear displacement in a single degree of translation,
-For example, gears (small gears) combined with chains (toothed belts, etc.) and electric, hydraulic or pneumatic motors, rubber wheels that rotate on fixed tracks, small gears that rotate on linear toothed rulers Or a known type of drive element (not shown), including a pneumatic jack with rope and pulley wheel return, or more generally a drive gear normally used by those skilled in the art,
A longitudinal translation mechanism for pressing the collector 8 against the purifier unit 4i to be detached; The collector 8 is fixed to the body 15 of two hydraulic (or pneumatic) jacks, and the rods 16 of the jacks are rigidly connected to two rings 17 mounted so as to move smoothly on the guide rails 9 respectively. The return spring 18 is interposed between the main body of each jack and the rod, and has the effect of permanently pressing the collector 8 against the rear surface 4r of the purifier unit to be detached. Temporarily removing the collector 8 for the time required to move to the next clarifier unit is accomplished by applying hydraulic pressure generated by a generator (not shown) to the jack.
According to a possible variant of the embodiment known to the person skilled in the art, this mechanism can for example be an electromagnet with a return spring or a boss or clasp whose position and height are equally spaced and suitable for the required removal. A clearance gauge (feeler) that slides on the fixed cam can be included.
Stopping the collector 8 in front of the rear face of the selected purifier unit can be achieved, for example, by means of an adjustment unit (not shown) or by using a linear displacement electric motor with a torque limiter and also for the selected purifier It is expedient to adjust the required translation distance by raising the stop ring and stopping the engine in front of the unit. An amount of adsorption suitable for detecting adsorbent saturation in each purifier unit can be associated with the adjustment unit to automate the regeneration cycle.
For example, the following can be used as the adsorbent.
-Natural granular zeolite,
Synthetic, dealuminated and / or grafted zeolites,
-Impregnated zeolite on honeycomb or metal support,
-Packed zeolite or activated carbon,
-Granular activated carbon,
-Fabrics coated with zeolite or activated carbon, felt or metal or polymeric knitted fabrics,
-Activated carbon fabric.
According to the embodiment of FIG. 5, each purifier unit 4a-4n has several flat plates placed in parallel or in an accordion form with a spacing between the front 4f and the rear surface 4r of the purification barrier 4. There is a special room 19. Each of them is laterally delimited by a perforated plate and is filled with an adsorbent such as, for example, activated carbon. In order to lengthen the passage of the effluent and thereby increase the contact area with the adsorbent, several inlets and outlets on the front face 4f and the rear face 4r are closed.
This flow deviation can also be obtained by a deflection plate 20 provided obliquely between the compartments (FIG. 6). This arrangement is preferred for infrared transmission when the infrared heating mode is used to desorb the adsorbent in each compartment.
According to the modification of FIG. 7, each purifier unit is composed of a plurality of flat compartments 19 arranged in a zigzag manner in order to allow the effluent to flow well therethrough.
A device as described so far can be used in many fields, in particular:
-To remove the solvent from the paint booth at the body repair shop
-To remove hydrogen sulfide at urban wastewater pumps,
-To clean the gas effluent with styrene in the plastic processing plant,
-To treat malodors from sludge filtration equipment in water treatment plants,
-In order to collect solvent emissions (neoprene glue) on site by the painter, to clean and recycle,
-In the construction and civil engineering fields, to circulate and treat the air in the enclosed space while applying epoxy resin or polyurethane foam,
-To clean gaseous emissions with VOCs in the printing factory,
-In order to decompose bad odors at food processing plants,
-To prepare air free of pollutants (NO x , C 2 H 4 ) in the food processing industry,
-In emergency services where mobile and self-contained devices are required
-In all industries where purified air is needed,
-To clean the gaseous effluent in the chemical manufacturing process,
-In the test laboratory as well, to clean the gas effluent before venting to the atmosphere,
-In order to process the work premises while carrying out the official recycling at the machine shop,
Embodiments have been described so far in which the apparatus is used to purify effluents with contaminants or particles (particularly VOCs). However, the apparatus can also be used to remove gases without departing from the scope of the present invention. In such cases, the various purifier barrier loads are hydrophilic adsorbents, ie hydrophilic with large active surfaces such as natural or synthetic zeolite, silica gel, silica, alumina, silica-alumina, potassium chloride, lithium chloride, etc. Made of material.

Claims (16)

密閉容器(3)と、
好ましくない物質を含有するガス状流出物を、該物質を吸着し濃縮するのに適した材料を有する複数の浄化器ユニット(4a〜4n)を備えた密閉容器に横切って配置された浄化障壁に導く第一系統(1)と、
濾過した流出物を密閉容器から排出する少なくとも一つの第二系統および密閉容器を通して流出物を循環させる手段(6)とを有し、
該浄化障壁の上流側に配置された脱離流体を移送する手段とともに少なくとも一つの浄化器ユニットの選択的熱脱離および選択的脱離によって得られる該物質の分解を行う、密閉容器内の浄化障壁(4)の下流側に配置された可動型複合手段(8、10)を含む、好ましくない物質を含有するガス状流出物を浄化する装置。
A sealed container (3);
Gaseous effluent containing undesired substances is placed on a purification barrier disposed across a closed vessel with a plurality of purifier units (4a-4n) having materials suitable for adsorbing and concentrating the substances. The first system (1) to guide,
Having at least one second system for discharging the filtered effluent from the sealed container and means (6) for circulating the effluent through the sealed container;
Purification in an airtight container for decomposing the material obtained by selective thermal desorption and selective desorption of at least one purifier unit together with means for transferring desorbed fluid disposed upstream of the purification barrier A device for purifying gaseous effluent containing undesirable substances, comprising movable composite means (8, 10) arranged downstream of the barrier (4).
前記可動型複合手段が、コレクター(8)、並進移動手段とともに、選択的脱離により得られる該物質を焼却するための反応器(10)を有する請求項1に記載の装置。2. The apparatus according to claim 1 , wherein the movable composite means comprises a reactor (10) for incinerating the material obtained by selective desorption along with a collector (8) and translational movement means. 反応器(10)が接触型反応器である請求項2記載の装置。The apparatus according to claim 2 , wherein the reactor (10) is a catalytic reactor. 脱離流体の移送手段が、浄化すべき流出物を導く第一系統(1)である請求項1乃至3いずれかに記載の装置。Transfer means of desorption fluid device according to any one of claims 1 to 3 which is the first line guiding the effluent to be purified (1). 脱離流体の移送手段が、部分的に密閉容器の外側に置かれ、末広管(11)と接続した、可動型複合手段と共に移動可能な空気ダクト(12)である請求項1乃至3いずれかに記載の装置。Transfer means of desorption fluid is placed on the outside of the partially closed container and connected to the divergent pipe (11), one of the claims 1 to 3 which is movable air duct with the movable type composite section (12) A device according to the above. 可動型複合手段(8、10)が、各浄化器ユニットに含まれる吸着材を加熱する手段を含む、請求項1乃至5のいずれかに記載の装置。Movable type composite section (8, 10) comprises means for heating the adsorbent contained in each cleaning unit, apparatus according to any one of claims 1 to 5. 加熱手段が、吸着材の中に配置された一連の抵抗体を含む請求項6に記載の装置。The apparatus of claim 6 wherein the heating means includes a series of resistors disposed in the adsorbent. 加熱手段が、ジュール効果型のものである請求項6に記載の装置。The apparatus according to claim 6 , wherein the heating means is of the Joule effect type. 可動型複合手段(8、10)が、各浄化器ユニットの外側に置かれた加熱手段を含む請求項1乃至8のいずれかに記載の装置。Movable type composite section (8, 10) A device according to any one of claims 1 to 8 comprising heating means placed on the outside of the purifier unit. 加熱手段が、少なくとも一つの赤外線源を含む請求項1乃至9のいずれかに記載の装置。Heating means, Apparatus according to any one of claims 1 to 9 comprising at least one source of infrared radiation. 加熱手段が、焼却反応器(10)よりなる少なくとも一つの赤外線源を含む請求項2から9のいずれかに記載の装置。The apparatus according to any one of claims 2 to 9, wherein the heating means comprises at least one infrared source comprising an incinerator (10). 各浄化器ユニットが吸着材を保有する数個の孔あき画室(19)と流出物と吸着材の接触面積を増すための偏向板(20)を含む、請求項1乃至11のいずれかに記載の装置。Deflector for the purifier unit increases the contact area of the adsorbent and the effluent several perforated compartments (19) carrying an adsorbent comprising a (20), according to any one of claims 1 to 11 Equipment. 選択的熱脱離集成体が、コレクターを脱離すべき浄化器ユニットの前に配置しユニットに押しつける駆動手段を含む請求項1乃至12のいずれかに記載の装置。Apparatus according to any one of the selective thermal desorption assembly is, claims 1 to 12 comprising a driving means for pressing the positioned a unit in front of the purifier unit to release de-collectors. 浄化すべき好ましくない物質を含有するガス状流出物が、該物質を吸着し濃縮するのに適した材料を保有する複数の浄化器ユニット(4a〜4n)を有する密閉容器を横切って置かれた浄化障壁に向かって流され、
各浄化器ユニットは、その吸着能力が飽和したとき、可動コレクター(8)によって選択的かつ連続的に隔離され、その中に脱離流体を移送するようにされ、
少なくとも一つの浄化器ユニットの選択的熱脱離と選択的脱離によって得られる該物質の分解を含む、好ましくない物質を含有するガス状流出物を浄化する方法。
A gaseous effluent containing an undesirable substance to be cleaned was placed across a closed container having a plurality of purifier units (4a-4n) containing materials suitable for adsorbing and concentrating the substance. Swept towards the purification barrier,
Each purifier unit is selectively and continuously isolated by its movable collector (8) when its adsorption capacity is saturated, and is adapted to transfer desorbed fluid therein.
A method for purifying gaseous effluent containing undesired substances, comprising selective thermal desorption of at least one purifier unit and decomposition of the substance obtained by selective desorption.
脱離流体が、循環する流出物の一部である請求項14に記載の方法。15. A method according to claim 14 , wherein the desorption fluid is part of a circulating effluent. 脱離流体が、選択的に脱離すべき浄化器ユニットの入口に補助系統(12)により供給されるガスである請求項14に記載の方法。The method according to claim 14, wherein the desorption fluid is a gas supplied by the auxiliary system (12) to the inlet of the purifier unit to be selectively desorbed.
JP51091397A 1995-09-07 1996-09-06 Method and apparatus for purifying gaseous effluent streams with contaminants Expired - Fee Related JP3768242B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR95/10591 1995-09-07
FR9510591A FR2738501B1 (en) 1995-09-07 1995-09-07 PROCESS AND DEVICE FOR PURIFYING VASES OF GASEOUS EFFLUENTS LOADED WITH POLLUTANT SUBSTANCES
PCT/FR1996/001367 WO1997009109A1 (en) 1995-09-07 1996-09-06 Method and device for purifying gaseous effluent streams containing pollutants

Publications (2)

Publication Number Publication Date
JPH10508797A JPH10508797A (en) 1998-09-02
JP3768242B2 true JP3768242B2 (en) 2006-04-19

Family

ID=9482417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51091397A Expired - Fee Related JP3768242B2 (en) 1995-09-07 1996-09-06 Method and apparatus for purifying gaseous effluent streams with contaminants

Country Status (6)

Country Link
US (1) US5879432A (en)
EP (1) EP0790855B1 (en)
JP (1) JP3768242B2 (en)
DE (1) DE69620145T2 (en)
FR (1) FR2738501B1 (en)
WO (1) WO1997009109A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014100452A (en) * 2012-11-21 2014-06-05 Tornex Inc Air cleaning machine
KR101610667B1 (en) 2014-12-22 2016-04-20 서울특별시 Stink decreasing system
CN110292830A (en) * 2019-07-09 2019-10-01 北京石油化工学院 Multicycle VOCs cleaning equipment

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW416871B (en) * 1997-11-15 2001-01-01 Winbond Electronics Corp Device for processing waste gas
DE19823611B4 (en) * 1998-05-27 2005-06-09 Eads Deutschland Gmbh Device for cleaning a passenger compartment of a vehicle to be supplied air flow
FR2793167B1 (en) * 1999-05-03 2007-01-19 Zecools Zeolite Cooling System SOLID REVERSIBLE ADSORPTION REACTOR / GAS AND REGENERATION RESISTOR OF THE ADSORBENT OF SUCH REACTOR
US6212882B1 (en) * 1999-09-07 2001-04-10 Volvo Personvagnar Ab & Engelhard Corp. Assembly, method, and motor vehicle for cleaning ambient air in the vicinity of an internal combustion engine
EP1639233B1 (en) * 2003-06-20 2010-08-04 Detroit Edison Company Using voc as fuel for an engine
WO2005007567A1 (en) 2003-06-20 2005-01-27 Detroit Edison Company Device and method for reforming a voc gas
NL1030149C1 (en) * 2005-10-10 2007-04-11 Eurocore Trading & Consultancy Method and device for regenerating a sorption dryer or cleaner.
US20090320678A1 (en) * 2006-11-03 2009-12-31 Electric Power Research Institute, Inc. Sorbent Filter for the Removal of Vapor Phase Contaminants
US8029600B2 (en) * 2006-11-03 2011-10-04 Electric Power Research Institute, Inc. Sorbent filter for the removal of vapor phase contaminants
US7708803B2 (en) 2006-11-03 2010-05-04 Electric Power Research Institute, Inc. Method and apparatus for the enhanced removal of aerosols from a gas stream
US20140130670A1 (en) 2012-11-14 2014-05-15 Peter Eisenberger System and method for removing carbon dioxide from an atmosphere and global thermostat using the same
US20080289495A1 (en) 2007-05-21 2008-11-27 Peter Eisenberger System and Method for Removing Carbon Dioxide From an Atmosphere and Global Thermostat Using the Same
US8500857B2 (en) * 2007-05-21 2013-08-06 Peter Eisenberger Carbon dioxide capture/regeneration method using gas mixture
US9028592B2 (en) 2010-04-30 2015-05-12 Peter Eisenberger System and method for carbon dioxide capture and sequestration from relatively high concentration CO2 mixtures
DK2563495T3 (en) 2010-04-30 2020-01-06 Peter Eisenberger METHOD OF CARBON Dioxide Capture
DE102010052461A1 (en) * 2010-11-24 2012-05-24 Eisenmann Ag Filter apparatus and method for purifying a gas stream
US20130095999A1 (en) 2011-10-13 2013-04-18 Georgia Tech Research Corporation Methods of making the supported polyamines and structures including supported polyamines
US11059024B2 (en) 2012-10-25 2021-07-13 Georgia Tech Research Corporation Supported poly(allyl)amine and derivatives for CO2 capture from flue gas or ultra-dilute gas streams such as ambient air or admixtures thereof
CN106163636B (en) 2013-12-31 2020-01-10 彼得·艾森伯格尔 For removing CO from the atmosphere2Rotary multiple material bed moving system
CN113082942B (en) * 2021-05-14 2021-09-28 中珪环科(杭州)环保科技有限公司 Heterogeneous multistage oxidation treatment device of VOCs waste gas

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2101555A (en) * 1935-07-11 1937-12-07 Pittsburgh Res Corp Air or gas conditioning apparatus
US2519296A (en) * 1945-10-20 1950-08-15 Delaware Engineering Corp Apparatus for conditioning gases
US2662607A (en) * 1950-07-22 1953-12-15 Milton J Guiberteau Rotating bed adsorber
US3203110A (en) * 1961-05-16 1965-08-31 Fuhring Heinrich Chemical cleaning apparatus
US3292346A (en) * 1964-03-06 1966-12-20 Renard P Adams Gas drying apparatus
US3555785A (en) * 1968-02-02 1971-01-19 Wehr Corp Method and means for efficiently cleaning a gas filter
US3545180A (en) * 1968-08-26 1970-12-08 Carter Day Co Dust collector and filter therefor
SE333631B (en) * 1969-07-17 1971-03-22 C Munters
DE2649294C3 (en) * 1976-10-29 1979-09-06 Hoechst Ag, 6000 Frankfurt Device for ammonia recovery from the exhaust air of a development chamber in copiers
US3902874A (en) * 1973-12-13 1975-09-02 Shell Oil Co Vapor recovery and disposal system
DK148195C (en) * 1977-01-10 1986-04-01 Erling Lauritz Anderberg GAS DEHUMIDIFIER
FR2429035A1 (en) * 1978-06-23 1980-01-18 Fives Cail Babcock Dust filter, for gases, with reverse blowing cleaning - has filter element with separate sections and blowing box sealing on face of each section in turn
JPS5637021A (en) * 1979-09-03 1981-04-10 Mitsubishi Electric Corp Water-making device
US4946479A (en) * 1987-10-28 1990-08-07 Daikin Industries, Ltd. Apparatus for solvent recovery
SU1607907A1 (en) * 1988-05-05 1990-11-23 Хабаровский политехнический институт Apparatus for continuous cleaning of air
JP2514698B2 (en) * 1988-09-26 1996-07-10 株式会社大氣社 Gas treatment equipment
US4966611A (en) * 1989-03-22 1990-10-30 Custom Engineered Materials Inc. Removal and destruction of volatile organic compounds from gas streams
US5064453A (en) * 1989-11-30 1991-11-12 International Air Filter, Inc. Air filter system
FR2659869B1 (en) * 1990-03-22 1992-06-19 Cnge FLUID TREATMENT DEVICE USING AN ADSORPTION STRUCTURE WITH SPACED LAYERS AND REGENERATION BY JOUL EFFECT.
US5057128A (en) * 1990-07-03 1991-10-15 Flakt, Inc. Rotary adsorption assembly
US5176798A (en) * 1991-05-17 1993-01-05 Shell Oil Company System for removal and disposal of minor amounts of organics from contaminated water
US5227598A (en) * 1991-12-23 1993-07-13 General Electric Company In place regeneration of adsorbents using microwaves
FR2691234A1 (en) * 1992-05-14 1993-11-19 Omia Destroying suspended particles by pyrolysis - in particular solvents in air from spray-paint facilities to regenerate the active carbon@ fibres
US5547640A (en) * 1995-01-06 1996-08-20 Kim; Dae S. Compact high temperature air purifier
US5628819A (en) * 1995-09-28 1997-05-13 Calgon Carbon Corporation Method and apparatus for continuous adsorption of adsorbable contaminates and adsorber regeneration

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014100452A (en) * 2012-11-21 2014-06-05 Tornex Inc Air cleaning machine
KR101610667B1 (en) 2014-12-22 2016-04-20 서울특별시 Stink decreasing system
CN110292830A (en) * 2019-07-09 2019-10-01 北京石油化工学院 Multicycle VOCs cleaning equipment
CN110292830B (en) * 2019-07-09 2021-09-28 北京石油化工学院 Multicycle VOCs clarification plant

Also Published As

Publication number Publication date
JPH10508797A (en) 1998-09-02
DE69620145D1 (en) 2002-05-02
EP0790855B1 (en) 2002-03-27
US5879432A (en) 1999-03-09
DE69620145T2 (en) 2002-12-19
EP0790855A1 (en) 1997-08-27
WO1997009109A1 (en) 1997-03-13
FR2738501A1 (en) 1997-03-14
FR2738501B1 (en) 1997-10-17

Similar Documents

Publication Publication Date Title
JP3768242B2 (en) Method and apparatus for purifying gaseous effluent streams with contaminants
KR101143278B1 (en) Air cleaner having regenerative filter, and method for regenerative of air cleaner filter
JP5266758B2 (en) Volatile organic compound processing equipment
KR101549358B1 (en) Energy efficient air cleaning system
KR101719540B1 (en) Indoor Concentrated and Combustion System of VOC with Catalyst Oxidation device and Energy Recycling Means
WO2009002295A1 (en) Purification of a fluid using ozone with an adsorbent and/or a particle filter
WO1988006913A1 (en) Method and apparatus for the continuous separation of contaminants from a fluid mixture
KR102136290B1 (en) Low Energy Consumption Concentrating Rotor For Treating Malodor And VOCs Gases, And Treating System Comprising The Same
KR100784409B1 (en) Concentrated Catalytic Oxidizing System of Volatile Organic Compounds, and Method Therefor
KR100690441B1 (en) Concentrated Catalytic Oxidizing System of Volatile Organic Compounds, and Concentrating Bank Therefor
CN102580452A (en) Indoor polluted air treatment instrument
KR20160136988A (en) SYSTEM FOR REMOVING VOCs USING MICROWAVE
KR102506391B1 (en) Apparatus for VOC purification
KR20190059736A (en) Vocs concentration module of volatile organic compound treatment system having an filter arrangement device
CN109331565B (en) Method for recovering or pyrolyzing organic waste gas by composite adsorption microwave
KR200255633Y1 (en) Volatile Organic Compounds treatment apparatus of car spray booth
JPH10286426A (en) Continuous adsorption device and utilizing method of the same
CN202446965U (en) Indoor polluted air treatment device
WO1998018540A1 (en) Method and apparatus for rejuvenating contaminated filter elements
GB2267047A (en) Purifying NOx-containing gas
CN212069289U (en) Non-drainage small-sized paint spraying treatment equipment
KR200287399Y1 (en) An Apparatus for Recovery and Removal of Volatile Organic Compounds
KR20180040928A (en) Processing method of the portable-type apparatus to remove volatile organic compounds and volatile organic compounds that
KR20030014186A (en) Volatile Organic Compounds treatment apparatus of car spray booth
EP0507777B1 (en) A method of purifying air from combustible pollutants and an apparatus for performing the method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051101

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees