JP3767756B2 - Manufacturing method of electrolyte membrane - Google Patents

Manufacturing method of electrolyte membrane Download PDF

Info

Publication number
JP3767756B2
JP3767756B2 JP00399596A JP399596A JP3767756B2 JP 3767756 B2 JP3767756 B2 JP 3767756B2 JP 00399596 A JP00399596 A JP 00399596A JP 399596 A JP399596 A JP 399596A JP 3767756 B2 JP3767756 B2 JP 3767756B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
film
membrane
polymer
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00399596A
Other languages
Japanese (ja)
Other versions
JPH09199144A (en
Inventor
恭子 浜村
賢彦 朝岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP00399596A priority Critical patent/JP3767756B2/en
Publication of JPH09199144A publication Critical patent/JPH09199144A/en
Application granted granted Critical
Publication of JP3767756B2 publication Critical patent/JP3767756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子電解質型燃料電池、水の電気分解装置等の電気化学装置に使用される電解質膜を製造する方法に関するものである。
【0002】
【従来の技術】
従来、高分子電解質型燃料電池は、水素を燃料とする小型軽量電源として自動車その他への応用が有力視されている。この電池はガス拡散電極といわれる白金等の触媒をテフロンとカーボンブラックの混合物に分散した正極および負極と、この間に挟まれた高分子電解質膜とから構成される。電解質膜は、化学的に安定でイオン伝導性に優れるフッ化炭素系のイオン交換樹脂が用いられる。
【0003】
この高分子電解質型燃料電池の性能は、ガス拡散電極の性能と高分子電解質膜の性能に大きく依存する。高分子電解質膜の電気抵抗が大きいと、電池電圧の低下が起こり、特に高電流条件下でその影響が大きくなる。そのため低抵抗の高分子電解質膜の開発が重要な課題となっている。
一方、燃料電池用としての出力性能を向上させるため高分子電解質膜は、より薄い電解質膜とすることが望まれている。すなわち、薄い電解質膜ほど水管理がし易く、内部抵抗を低くし易いため出力性能が向上する。この薄い高分子電解質膜としては、化学的安定性、導電性に優れているフッ化炭素系のイオン交換樹脂膜が用いられている(たとえばNafionなど膜厚50μm以上)。
【0004】
薄い高分子電解質膜(膜厚50μm以下)の製造の従来技術としては、フッ化炭素系イオン交換樹脂の溶液からキャスト法で薄膜を形成した後、電解質膜の強度、安定性を得るために熱処理をおこなう。しかし、上記の薄い高分子電解質膜では、十分な強度を得るために高温(140℃以上)で処理を施すと含水率、導電率が低下する。また、熱処理温度が低いと強度が低くなるといった問題がある。
【0005】
一般に高分子電解質膜の導電率を向上させるには、イオン交換基を増す方法があるが、この方法では、薄膜の骨格となる主鎖の割合が減少し、さらに含水率の増加による膜の膨潤によって膜の強度は低下する。よって上記の方法では、導電率と強度を同時に向上させることは困難である。
他の目的で使用する高分子電解質膜においても、その機能である導電性は必要であり、なおかつ膜としての強度も必要である。
【0006】
また高分子電解質膜は、燃料電池において電極などに挟まれたセパレーターとしての構造材の役割もあるため、強度が弱いとショートの危険がある。さらに長時間安全に運転させるためにも強度は必要である。
特開平3−84866号や特開平3−208262号の公報には、固体高分子電解質膜とガス拡散電極との接合方法が開示されている。この接合方法では、2枚のガス拡散電極で固体高分子電解質膜を挟んだ挟持体を密閉系に収容して、水または有機溶媒、有機溶媒と水の混合溶媒等を供給する。そして、この挟持体を飽和水蒸気圧下または溶媒中で加熱、加圧して接合することにより良好な接合状態を保持して安定で高性能な燃料電池セルが得られるとしている。
【0007】
【発明が解決しようとする課題】
上記した従来の固体高分子電解質膜を利用した燃料電池の製造方法では、固体高分子電解質膜は、ガス拡散電極に挟まれた状態で飽和水蒸気圧下または溶媒中で加熱・加圧処理されるのであり、得られるものは接合体である。さらに接合に使われる固体高分子電解質膜は加熱前に既に高分子(ポリマー)の高次構造が形成されている。この高次構造は強固なもので、また含水率も制限を受ける構造となっていると考えられる。したがって、この状態の膜を上記雰囲気で加熱・加圧処理しても上記ポリマーの高次構造は改善されず、また含水率に伴う導電率の電解質膜自体の特性は必ずしも向上させる製造法ではない。
【0008】
本発明は、所望の強度を有しながら高い含水率が保て、結果として高導電率を有する高分子電解質膜の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の電解質膜の製造方法は、電解質膜の原料でありイオン交換基をもつ親水性部分とポリマーの主鎖を構成する疎水性部分とを有する有機化合物を含む液体より液体媒質を除去して、メタノールに可溶な生成膜を形成する膜生成工程と、得られた生成膜を水中または飽和水蒸気圧下で加熱する加熱工程と、からなることを特徴とする。
【0010】
上記膜生成工程は、イオン交換基を有するポリマーの溶解液より溶媒を除去するのが好ましい。
上記膜生成工程において上記液体より液体媒質を除去する温度は、80℃以下であるのが好ましく、また加熱工程は加圧下に実施するのが望ましい。
また、加熱温度は、100〜200℃の範囲でおこなうのが好ましい
【0011】
【発明の実施の形態】
本発明の高分子電解質膜の製造方法は、電解質膜の原料であるイオン交換基をもつ親水性部分とポリマーの主鎖を構成する疎水性部分とを有する有機化合物を含む液体より液体媒質を除去して生成膜形成する膜生成工程と、生成膜を水中または飽和水蒸気圧下で加熱する加熱工程とからなる。
本発明の膜生成工程で得られる生成膜は疎水性部分により親水性部分が固定されておらず、水中または飽和水蒸気圧下で加熱処理を受けることで、親水性部分を広げて含水率の高い高分子電解質膜が製造できる。
【0012】
本発明において、イオン交換基を有する有機化合物は、電解質膜の原料であり、ポリマーでも、あるいはモノマー、オリゴマー等のポリマーになる前段階のものでもよい。ポリマーになる前段階のものは、膜生成工程の液体媒質の除去と並行してポリマーとなる有機化合物が望ましい。
該有機化合物の種類として、フッ化炭素、炭化水素系等の電解質膜となりうる化合物であればよく、イオン交換基を有するものである。
【0013】
本発明で使用可能なポリマーとしては、フッ化炭素系、炭化水素系などのポリマーでイオン交換基が導入されたものであれば利用でき、また溶媒に可溶(キャスト法による成膜が可能なポリマー)なものが望ましい。
有機化合物中のイオン交換基としては、カチオン系の−SO3 H、−COOH、−PO(OH)2 、−POH(OH)、−Ph(OH)等が、アニオン系の−NH2 、−NHR、−NRR' 、−NRR' ''+ 、−NH3 + 等(R:アルキル基、シクロアルキル基、アリール基などを表す)のものが使用できる。
【0014】
上記イオン交換基を有する有機化合物を含む液体とは、該有機化合物が溶媒に溶解した溶解液、あるいは該有機化合物が液体中に分散した乳濁液や該有機化合物が液体中に懸濁した懸濁液である。その中でも、有機化合物が溶媒に溶解した溶液を使用するのが、膜が生成しやすいことにより望ましい。
膜生成工程における上記有機化合物を含む液体より除去する対象物である液体媒質とは、上記の溶解液の場合には、溶媒であり、上記乳濁液の場合には分散媒であり、上記懸濁液の場合には、液体そのものである。
【0015】
したがって、本発明の膜生成工程では、イオン交換基を有するポリマーの溶解液より溶媒を除去して生成膜を形成するのがよい。
膜生成工程では、たとえば、溶媒の除去を制御してイオン交換基を有する親水性部分とポリマーの主鎖を形成する疎水性部分とがそれぞれ集まりミクロ相分離の状態で形成させることが望ましい。図1に膜生成工程および加熱工程でのイオン交換基を主とする親水性部分1とポリマーの疎水性部分2の様子の概念図を示す。溶解液中ではイオン交換基を溶媒側に内側疎水性の樹脂部分が存在するミセル状で存在する(1−A)。溶媒除去による膜生成で親水性部分と疎水性部分とがそれぞれ集まっている(1−B)。この段階では図の点線で示した疎水性部分同士の相互作用はまだ小さく、メタノールに可溶の状態を保持している。加熱工程では親水性部分に水を含んで(1−C)のように親水性部が大きくなって連通しその周囲を疎水性部分が固めた形状で電解質膜が形成される。なお、形成された電解質膜は、加熱によって図の点線で示した疎水性部分同士の相互作用が強くなり、メタノールに不溶となる。
【0016】
膜生成工程の液体媒質の除去条件は、0から80℃の範囲が好ましい。たとえば、溶媒の除去の場合、大気雰囲気、または気流中下、減圧下や、真空中など溶媒が蒸発する雰囲気に置いて溶媒を除去する。特に25℃以下で周囲と平衡状態に近い状態で静置し溶媒をできるだけゆっくり蒸発させるのが望ましい。溶媒除去温度が0℃より低いと、乾燥が遅くなりすぎて好ましくなく、80℃より高いと溶媒の蒸発が速すぎて親水性部分、疎水性部分がそれぞれ十分集まらずに、疎水性部分が固まってしまう等の構造変化が起こり、次の加熱工程の水中で加圧・加熱しても含水率が向上できないので好ましくない。
【0017】
水中または飽和水蒸気圧下で加熱する加熱温度は、100〜200℃の範囲が好ましい。加熱温度が100℃未満であると膜の構造変化が十分でなく強度、導電性が低く、含水率も高まらないので好ましくない。220℃ぐらいから膜の熱分解が起きるため加熱温度の上限は、200℃とするのが好ましい。
加熱時間は、30秒以上1時間以内が好ましく、1分から30分以内がより好ましい。加熱時間が30秒未満であると膜の構造変化が十分でなく、1時間を超えるとそれ以上の構造変化がなく、逆に膜が変性分解するおそれがあり好ましくない。
【0018】
加熱工程にまわす生成膜は、疎水性部分同士の相互作用が小さいためメタノールなどの1価のアルコール類に浸漬すると溶解してしまい、構造上の強度が小さい。
また、加熱工程を加圧下で行う場合には、膜の含水率をより高めると同時に膜の密度も高めることができる。
【0019】
加圧方法はホットプレスなどの一軸加圧の他、HIP、オートクレーブなどの通常の加圧方式が適用できる。加圧条件は0〜1t/cm2 の範囲であり、1t/cm2 を超えて加圧しても効果は変わらない。
【0020】
【実施例】
以下、実施例により本発明を具体的に説明する。
(実施例1)
イオン交換基を含有するポリマーの溶解溶液として、5重量%のパーフルオロスルフォン酸ポリマー(商品名:Nafion構造式(化1))溶液(EW=1100)(溶媒は水、1−プロパノール、2−プロパノールの3種類を混合したもの)を用いた。
【0021】
【化1】

Figure 0003767756
【0022】
上記の溶液をガラス板上に塗布し25℃で乾燥して膜厚30μmの薄い生成膜を作製した。
この生成膜を図2に示した外からの加圧が可能な密閉系容器中に数ミリリットルの水とともに配置し、この容器をホットプレス装置内に配して加熱温度160℃、プレス圧 50kg/cm2 昇温時間10分、保持時間10分で処理して高分子電解質膜を得た。
【0023】
なお、図2は生成膜を加熱加圧する装置(密閉系容器とホットプレス装置)の断面図である。この装置は、その中の密閉系容器に生成膜を配置し、この容器をホットプレス装置に配して加熱加圧処理するものである。この装置の構成は以下の通りである。容器の固定板(上部)4と固定板(下部)5とのより生成膜3を挟んで固定する。容器中に水6を配置して、密閉系容器中の雰囲気を飽和水蒸気圧下または水中とする。プレス釜7、蓋8、押し棒9、ねじ10、Oリング11、12は密閉系容器本体を構成し、加圧する場合には、容器をホットプレス装置13に配して上下に可動な押し棒9により固定板4、5間の生成膜3に圧力をかける。なお、密閉系容器中は、加熱による水蒸気により圧力が上昇することから、11、12の位置に0リングを配置し、さらに10の位置のネジを締めることにより密閉する。
【0024】
得られた高分子電解質膜を脱イオン水に室温下で一晩浸漬した後の該高分子電解質膜の含水率は、40%であり、導電率は0.10s/cmであった。この高分子電解質膜はメタノールに不溶となる程度の強度を有していた。
比較例として上記のような水を含む密閉容器を用いず大気中(露点15℃程度の水分を含む)で加熱加圧した以外は同じ加圧加熱条件で処理した場合は、含水率が10%で導電率は0.06s/cmであった。
【0025】
(実施例2)
実施例1で成膜した生成膜を用い、熱処理温度を140℃に下げた他は同じ処理をおこなった。
得られた高分子電解質膜の脱イオン水に室温下で一晩浸漬後の含水率は、45%であり、導電率は0.11s/cmであった。この膜はメタノールに不溶となる程度の強度を有していた。
【0026】
比較例として実施例1に示す水を含む密閉容器を用いず、大気中(露点15℃程度の水分を含む)で加熱加圧した以外は上記と同じ条件で処理した場合は、含水率が13%で導電率は0.07s/cmであった。
実施例1および2により水蒸気飽和条件で熱処理をおこなうことで含水率が向上し導電率もよくなっていることがわかる。
【0027】
(比較例)
メタノールなどの溶媒に溶解しないポリマー膜(市販のNafion膜(N117))をそのまま、実施例1と同一の条件で加圧熱処理をおこなった。
得られた膜の含水率を実施例1の膜と比べたのが表1である。
【0028】
【表1】
Figure 0003767756
【0029】
【表2】
Figure 0003767756
ポリマー溶解溶液から成膜した膜を用いた本実施例1では、飽和水蒸気下で処理することで、大気中で処理した場合の含水率に比べて含水率が300%増加した。比較例のようにポリマーがメタノール等の溶媒に溶解しない程度の強度を予め有した膜を用いた場合では、大気中で加熱加圧した場合の含水率に比べて含水率の増加率は50%で本実施例に比べて小さい。したがって、本発明の方法により高分子電解質膜の含水率の大幅な向上が図れる。
【0030】
導電率について実施例1と比べたのが表2である。
なお、導電率についても、処理前の状態における値が異なるので、上記の処理による増加率で比較すると本実施例1では67%増加しているが、比較例では22%しか増えていない。したがって、本発明の方法により高分子電解質膜の導電率を大幅に高めることができる。
【0031】
【発明の効果】
本発明の製造方法によれば、イオン交換基を有する有機化合物を含む液体から液体媒質を除去して生成した膜は、液体媒質の除去の際に疎水性部分(ポリマー主鎖)と親水性部分(イオン交換基)とにミクロ相分離して存在している。この状態の膜を水中または飽和蒸気圧下で加熱すると、親水性部分に水が導入された状態で加熱され膜分子の構造変化が起きる。その結果親水性部分が連結されて含水率が高まり、導電率も向上する。従来のイオン交換膜では、加熱前の状態で既に疎水性部分にある程度の相互作用があって、ポリマーの高次構造の形成が完了しているため、水中または飽和水蒸気圧下で加熱しても、構造変化が小さく、含水率、導電率の向上はないかもしくは小さい。本発明では、高分子電解質のポリマーの高次構造が形成される前に、水中もしくは飽和水蒸気圧下で加熱するため、親水性部分は吸水により膨潤して連通する。また、その周りを囲む疎水性部分には、水が導入されないので疎水基部分同士の相互作用は、単純に大気中で加熱した場合と同様の強さとなる。したがって、親水性部分の膨潤が保持されることにより含水率、導電率が向上し、また、疎水性部分の相互作用により膜の強度の低下を抑えることができる。
【図面の簡単な説明】
【図1】本発明の工程での高分子電解質膜形成状態の概念図である。
なお、1−Aは高分子電解質の溶解状態、1−Bは膜生成工程での溶媒除去後の状態、1−Cは加熱工程後での親水性部分および疎水性部分の状態である。
【図2】実施例で用いた膜を加熱加圧する装置の断面図である。
【符号の説明】
3 生成膜、 4 固定板(上部)、 5 固定板(下部)、 6 水、 7プレス釜、 9 押し棒、 13 ホットプレス装置、[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an electrolyte membrane used in an electrochemical device such as a solid polymer electrolyte fuel cell and a water electrolysis device.
[0002]
[Prior art]
Conventionally, polymer electrolyte fuel cells are considered to be applied to automobiles and the like as small and light power sources using hydrogen as fuel. This battery is composed of a positive electrode and a negative electrode in which a catalyst such as platinum called a gas diffusion electrode is dispersed in a mixture of Teflon and carbon black, and a polymer electrolyte membrane sandwiched therebetween. As the electrolyte membrane, a fluorocarbon ion exchange resin that is chemically stable and excellent in ion conductivity is used.
[0003]
The performance of the polymer electrolyte fuel cell depends greatly on the performance of the gas diffusion electrode and the performance of the polymer electrolyte membrane. When the electric resistance of the polymer electrolyte membrane is large, the battery voltage is lowered, and the influence becomes particularly large under high current conditions. Therefore, the development of a low resistance polymer electrolyte membrane has become an important issue.
On the other hand, in order to improve the output performance for fuel cells, it is desired that the polymer electrolyte membrane be a thinner electrolyte membrane. That is, the thinner the electrolyte membrane, the easier the water management and the lower the internal resistance, so that the output performance is improved. As this thin polymer electrolyte membrane, a fluorocarbon ion exchange resin membrane having excellent chemical stability and conductivity is used (for example, a film thickness of 50 μm or more such as Nafion).
[0004]
As a conventional technique for producing a thin polymer electrolyte membrane (thickness of 50 μm or less), a thin film is formed by casting from a fluorocarbon ion exchange resin solution, and then heat treatment is performed to obtain the strength and stability of the electrolyte membrane. To do. However, when the above thin polymer electrolyte membrane is treated at a high temperature (140 ° C. or higher) in order to obtain sufficient strength, the water content and conductivity are lowered. Moreover, there exists a problem that intensity | strength will become low when heat processing temperature is low.
[0005]
In general, there is a method to increase the ion exchange group to improve the conductivity of the polymer electrolyte membrane. However, this method reduces the ratio of the main chain that forms the skeleton of the thin film, and further swells the membrane by increasing the moisture content. As a result, the strength of the film decreases. Therefore, with the above method, it is difficult to improve the conductivity and strength at the same time.
The polymer electrolyte membrane used for other purposes also needs to have conductivity as a function, and also needs strength as a membrane.
[0006]
The polymer electrolyte membrane also has a role of a structural material as a separator sandwiched between electrodes in a fuel cell. In addition, strength is necessary for safe operation for a long time.
JP-A-3-84866 and JP-A-3-208262 disclose a method of joining a solid polymer electrolyte membrane and a gas diffusion electrode. In this joining method, a sandwich body in which a solid polymer electrolyte membrane is sandwiched between two gas diffusion electrodes is accommodated in a sealed system, and water or an organic solvent, a mixed solvent of an organic solvent and water, or the like is supplied. The sandwiched body is heated and pressurized in a saturated water vapor pressure or in a solvent and bonded to maintain a good bonded state, and a stable and high-performance fuel cell can be obtained.
[0007]
[Problems to be solved by the invention]
In the fuel cell manufacturing method using the conventional solid polymer electrolyte membrane described above, the solid polymer electrolyte membrane is heated / pressurized under saturated steam pressure or in a solvent while being sandwiched between gas diffusion electrodes. Yes, what is obtained is a joined body. Further, the polymer electrolyte membrane used for bonding already has a high-order polymer structure formed before heating. This higher order structure is considered to be strong and the water content is also limited. Therefore, even if the membrane in this state is heated and pressurized in the above atmosphere, the higher-order structure of the polymer is not improved, and the characteristics of the electrolyte membrane itself with conductivity accompanying the moisture content are not necessarily improved by the manufacturing method. .
[0008]
It is an object of the present invention to provide a method for producing a polymer electrolyte membrane that has a desired strength but maintains a high water content and, as a result, has a high conductivity.
[0009]
[Means for Solving the Problems]
In the method for producing an electrolyte membrane of the present invention, a liquid medium is removed from a liquid containing an organic compound which is a raw material of an electrolyte membrane and has a hydrophilic part having an ion exchange group and a hydrophobic part constituting a polymer main chain. And a film production step for forming a production membrane soluble in methanol, and a heating step for heating the resulting production membrane in water or under saturated water vapor pressure.
[0010]
In the membrane generation step, the solvent is preferably removed from the solution of the polymer having an ion exchange group.
The temperature at which the liquid medium is removed from the liquid in the film generation step is preferably 80 ° C. or lower, and the heating step is preferably performed under pressure.
Moreover, it is preferable to perform heating temperature in the range of 100-200 degreeC .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a polymer electrolyte membrane of the present invention removes a liquid medium from a liquid containing an organic compound having a hydrophilic part having an ion exchange group and a hydrophobic part constituting the main chain of the polymer, which is a raw material of the electrolyte membrane. Thus, the method includes a film generation process for forming a generated film and a heating process for heating the generated film in water or under saturated water vapor pressure.
The formed membrane obtained in the membrane production process of the present invention has a hydrophilic portion that is not fixed by a hydrophobic portion, and is subjected to heat treatment in water or under saturated water vapor pressure to widen the hydrophilic portion and have a high water content. A molecular electrolyte membrane can be manufactured.
[0012]
In the present invention, the organic compound having an ion-exchange group is a raw material for the electrolyte membrane, and may be a polymer or a pre-stage that becomes a polymer such as a monomer or oligomer. An organic compound that becomes a polymer is preferably used in the stage before becoming a polymer in parallel with the removal of the liquid medium in the film forming process.
The organic compound may be any compound that can be an electrolyte membrane such as fluorocarbon or hydrocarbon, and has an ion exchange group.
[0013]
As the polymer that can be used in the present invention, any polymer such as a fluorocarbon or hydrocarbon polymer into which an ion exchange group is introduced can be used, and it is soluble in a solvent (a film can be formed by a casting method). Polymer) is desirable.
The ion-exchange groups in organic compounds, -SO 3 H cation system, -COOH, -PO (OH) 2 , -POH (OH), - Ph (OH) etc., -NH 2 anionic, - NHR, -NRR ', -NRR' R '' +, -NH 3 + etc: those (R alkyl group, a cycloalkyl group, an aryl group represents, etc.) can be used.
[0014]
The liquid containing an organic compound having an ion exchange group is a solution in which the organic compound is dissolved in a solvent, an emulsion in which the organic compound is dispersed in the liquid, or a suspension in which the organic compound is suspended in the liquid. It is a turbid liquid. Among them, it is preferable to use a solution in which an organic compound is dissolved in a solvent because a film is easily formed.
The liquid medium that is an object to be removed from the liquid containing the organic compound in the film generation step is a solvent in the case of the above-described solution, a dispersion medium in the case of the above-described emulsion, and the above-described suspension medium. In the case of a turbid liquid, it is the liquid itself.
[0015]
Therefore, in the film production step of the present invention, it is preferable to form the produced film by removing the solvent from the polymer solution having ion exchange groups.
In the membrane generation step, for example, it is desirable to control the removal of the solvent to form a hydrophilic portion having an ion exchange group and a hydrophobic portion forming the main chain of the polymer in a microphase-separated state. FIG. 1 is a conceptual diagram showing a state of a hydrophilic portion 1 mainly composed of ion exchange groups and a hydrophobic portion 2 of a polymer in a membrane generation step and a heating step. In the solution, the ion exchange group is present on the solvent side and in the form of a micelle having a hydrophobic resin portion on the inner side (1-A). A hydrophilic part and a hydrophobic part are gathered by film formation by removing the solvent (1-B). At this stage, the interaction between the hydrophobic portions indicated by the dotted lines in the figure is still small, and it remains soluble in methanol. In the heating step, an electrolyte membrane is formed in such a shape that water is contained in the hydrophilic portion and the hydrophilic portion becomes larger as shown in (1-C) and communicated with the hydrophobic portion. In addition, the formed electrolyte membrane becomes stronger in interaction with hydrophobic portions indicated by dotted lines in the figure by heating and becomes insoluble in methanol.
[0016]
The condition for removing the liquid medium in the film generation step is preferably in the range of 0 to 80 ° C. For example, in the case of removing the solvent, the solvent is removed by placing it in an air atmosphere or an atmosphere where the solvent evaporates, such as in an air stream, under reduced pressure, or in a vacuum. In particular, it is desirable that the solvent is allowed to stand at a temperature close to equilibrium with the surroundings at 25 ° C. or less and the solvent is evaporated as slowly as possible. When the solvent removal temperature is lower than 0 ° C., drying is too slow, which is not preferable. When the temperature is higher than 80 ° C., the evaporation of the solvent is too fast and the hydrophilic portion and the hydrophobic portion are not collected sufficiently, and the hydrophobic portion is hardened. Such a structural change occurs, and the moisture content cannot be improved even when pressurized and heated in water in the next heating step, which is not preferable.
[0017]
The heating temperature for heating in water or under saturated water vapor pressure is preferably in the range of 100 to 200 ° C. When the heating temperature is less than 100 ° C., the structural change of the film is not sufficient, the strength and conductivity are low, and the moisture content is not increased, which is not preferable. Since the thermal decomposition of the film occurs from about 220 ° C, the upper limit of the heating temperature is preferably 200 ° C.
The heating time is preferably from 30 seconds to 1 hour, more preferably from 1 minute to 30 minutes. If the heating time is less than 30 seconds, the structural change of the film is not sufficient, and if it exceeds 1 hour, there is no further structural change, and conversely, the film may be denatured and decomposed.
[0018]
Since the generated film for the heating step has a small interaction between the hydrophobic portions, it dissolves when immersed in monohydric alcohols such as methanol and has a low structural strength.
Moreover, when performing a heating process under pressure, the density of a film | membrane can also be raised simultaneously with raising the moisture content of a film | membrane more.
[0019]
As a pressing method, a normal pressing method such as HIP or autoclave can be applied in addition to uniaxial pressing such as hot pressing. Pressure conditions is in the range of 0~1t / cm 2, the effect does not change even if pressurized beyond the 1t / cm 2.
[0020]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
Example 1
As a solution for dissolving a polymer containing an ion exchange group, a 5% by weight perfluorosulfonic acid polymer (trade name: Nafion structural formula (chemical formula 1)) solution (EW = 1100) (solvent is water, 1-propanol, 2- A mixture of three types of propanol) was used.
[0021]
[Chemical 1]
Figure 0003767756
[0022]
The above solution was applied on a glass plate and dried at 25 ° C. to produce a thin product film having a thickness of 30 μm.
This produced film is placed in a closed system container capable of being pressurized from the outside as shown in FIG. 2 together with several milliliters of water, and this container is placed in a hot press apparatus so that the heating temperature is 160 ° C., the pressing pressure is 50 kg / The treatment was carried out with a cm 2 temperature raising time of 10 minutes and a holding time of 10 minutes to obtain a polymer electrolyte membrane.
[0023]
FIG. 2 is a cross-sectional view of an apparatus (sealed container and hot press apparatus) for heating and pressurizing the generated film. In this apparatus, a generated film is disposed in a closed container inside the apparatus, and the container is disposed in a hot press apparatus to perform heat and pressure treatment. The configuration of this apparatus is as follows. The formation film 3 is sandwiched and fixed by the fixing plate (upper part) 4 and the fixing plate (lower part) 5 of the container. The water 6 is arrange | positioned in a container and the atmosphere in a closed system container is made into a saturated water vapor pressure or water. The press hook 7, the lid 8, the push bar 9, the screw 10, and the O-rings 11 and 12 constitute a sealed container body, and when pressurizing, the container is arranged in the hot press device 13 and is moved up and down. The pressure is applied to the generated film 3 between the fixed plates 4 and 5 by 9. In addition, since the pressure is increased by steam caused by heating in the closed system container, the 0 ring is arranged at the positions 11 and 12, and further, the screw at the position 10 is tightened.
[0024]
After the obtained polymer electrolyte membrane was immersed in deionized water at room temperature overnight, the water content of the polymer electrolyte membrane was 40% and the conductivity was 0.10 s / cm. This polymer electrolyte membrane was strong enough to be insoluble in methanol.
As a comparative example, the moisture content is 10% when treated under the same pressure and heating conditions except that the air-tight container containing water as described above is not heated (including water having a dew point of about 15 ° C.). The conductivity was 0.06 s / cm.
[0025]
(Example 2)
The same process was performed except that the generated film formed in Example 1 was used and the heat treatment temperature was lowered to 140 ° C.
The water content of the obtained polymer electrolyte membrane after being immersed in deionized water at room temperature overnight was 45% and the conductivity was 0.11 s / cm. This membrane was strong enough to be insoluble in methanol.
[0026]
As a comparative example, when the treatment was performed under the same conditions as described above except that the airtight container containing water shown in Example 1 was not used and heated and pressurized in the atmosphere (including water having a dew point of about 15 ° C.), the moisture content was 13 % And the conductivity was 0.07 s / cm.
It can be seen that the moisture content is improved and the conductivity is improved by performing the heat treatment under the water vapor saturation condition in Examples 1 and 2.
[0027]
(Comparative example)
The polymer film (commercially available Nafion film (N117)) not dissolved in a solvent such as methanol was subjected to pressure heat treatment under the same conditions as in Example 1.
Table 1 compares the water content of the obtained membrane with that of the membrane of Example 1.
[0028]
[Table 1]
Figure 0003767756
[0029]
[Table 2]
Figure 0003767756
In this Example 1 using a film formed from a polymer solution, the water content increased by 300% compared to the water content when treated in the atmosphere by treatment under saturated steam. In the case of using a membrane having a strength that does not dissolve the polymer in a solvent such as methanol as in the comparative example, the rate of increase in moisture content is 50% compared to the moisture content when heated and pressurized in the atmosphere. It is small compared to the present embodiment. Therefore, the water content of the polymer electrolyte membrane can be greatly improved by the method of the present invention.
[0030]
Table 2 compares the conductivity with Example 1.
In addition, since the value in the state before a process also differs about conductivity, when compared with the increase rate by said process, it has increased 67% in the present Example 1, but only 22% in the comparative example. Therefore, the conductivity of the polymer electrolyte membrane can be significantly increased by the method of the present invention.
[0031]
【The invention's effect】
According to the production method of the present invention, a membrane formed by removing a liquid medium from a liquid containing an organic compound having an ion exchange group has a hydrophobic part (polymer main chain) and a hydrophilic part when the liquid medium is removed. (Ion exchange group) and microphase-separated. When the film in this state is heated in water or under saturated vapor pressure, the film is heated in a state where water is introduced into the hydrophilic portion, and the structure of the film molecules changes. As a result, the hydrophilic portions are connected to increase the water content, and the conductivity is also improved. In conventional ion exchange membranes, there is a certain amount of interaction in the hydrophobic part before heating, and the formation of the higher order structure of the polymer has been completed, so even if heated in water or under saturated steam pressure, The structural change is small, and the moisture content and conductivity are not improved or small. In the present invention, heating is performed in water or under saturated water vapor pressure before the polymer higher-order structure of the polymer electrolyte is formed. Therefore, the hydrophilic portion is swollen by water absorption and communicated. In addition, since water is not introduced into the hydrophobic portion surrounding the periphery, the interaction between the hydrophobic group portions has the same strength as when heated simply in the air. Accordingly, the moisture content and conductivity are improved by maintaining the swelling of the hydrophilic portion, and the decrease in the strength of the film can be suppressed by the interaction of the hydrophobic portion.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a polymer electrolyte membrane formation state in the process of the present invention.
1-A is a dissolved state of the polymer electrolyte, 1-B is a state after removing the solvent in the film forming step, and 1-C is a state of the hydrophilic portion and the hydrophobic portion after the heating step.
FIG. 2 is a cross-sectional view of an apparatus for heating and pressurizing a film used in Examples.
[Explanation of symbols]
3 generation film, 4 fixed plate (upper), 5 fixed plate (lower), 6 water, 7 press kettle, 9 push rod, 13 hot press device,

Claims (5)

電解質膜の原料でありイオン交換基をもつ親水性部分とポリマーの主鎖を構成する疎水性部分とを有する有機化合物を含む液体より液体媒質を除去して、メタノールに可溶な生成膜を形成する膜生成工程と、
得られた生成膜を水中または飽和水蒸気圧下で加熱する加熱工程と、からなることを特徴とする電解質膜の製造方法。
The liquid medium is removed from the liquid containing the organic compound, which is the raw material of the electrolyte membrane and has a hydrophilic part having an ion exchange group and a hydrophobic part constituting the main chain of the polymer, thereby forming a methanol-soluble product film. A film generation process to
And a heating step of heating the resulting formed membrane in water or under saturated water vapor pressure.
該膜生成工程は、イオン交換基を有するポリマーの溶解液より溶媒除去して生成膜を形成する請求項に記載の電解質膜の製造方法。The method for producing an electrolyte membrane according to claim 1 , wherein the membrane formation step forms a membrane by removing the solvent from the polymer solution having ion exchange groups. 該膜生成工程における該液体媒質の除去は、80℃以下の温度でなされる請求項に記載の電解質膜の製造方法。The method for producing an electrolyte membrane according to claim 1 , wherein the removal of the liquid medium in the membrane generation step is performed at a temperature of 80 ° C or lower. 該加熱工程は、加圧下でなされる請求項に記載の電解質膜の製造方法。Heating step, the manufacturing method of the electrolyte membrane according to claim 1 which is made under pressure. 該加熱工程の加熱温度は、100〜200℃の範囲である請求項1または請求項に記載の電解質膜の製造方法。The method for producing an electrolyte membrane according to claim 1 or 4 , wherein a heating temperature in the heating step is in a range of 100 to 200 ° C.
JP00399596A 1996-01-12 1996-01-12 Manufacturing method of electrolyte membrane Expired - Fee Related JP3767756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00399596A JP3767756B2 (en) 1996-01-12 1996-01-12 Manufacturing method of electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00399596A JP3767756B2 (en) 1996-01-12 1996-01-12 Manufacturing method of electrolyte membrane

Publications (2)

Publication Number Publication Date
JPH09199144A JPH09199144A (en) 1997-07-31
JP3767756B2 true JP3767756B2 (en) 2006-04-19

Family

ID=11572598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00399596A Expired - Fee Related JP3767756B2 (en) 1996-01-12 1996-01-12 Manufacturing method of electrolyte membrane

Country Status (1)

Country Link
JP (1) JP3767756B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4564147B2 (en) * 2000-08-31 2010-10-20 日東電工株式会社 Proton conductive membrane and proton conductive film obtained therefrom
US7318972B2 (en) * 2001-09-07 2008-01-15 Itm Power Ltd. Hydrophilic polymers and their use in electrochemical cells
JP2008112728A (en) * 2001-12-20 2008-05-15 Sumitomo Chemical Co Ltd Manufacturing method of polymer electrolyte membrane
JP2007265996A (en) * 2001-12-20 2007-10-11 Sumitomo Chemical Co Ltd Method of manufacturing polymer electrolyte membrane
JP2007265997A (en) * 2001-12-20 2007-10-11 Sumitomo Chemical Co Ltd Manufacturing method of polymer electrolyte membrane
JP4052005B2 (en) * 2001-12-20 2008-02-27 住友化学株式会社 Production method of polymer electrolyte membrane
JP2005243492A (en) * 2004-02-27 2005-09-08 Toyobo Co Ltd Ion conductive membrane
JP2005243383A (en) * 2004-02-26 2005-09-08 Toyobo Co Ltd Sulfonic acid group containing polyelectrolyte film and goods using it
JP4720090B2 (en) * 2004-02-26 2011-07-13 東洋紡績株式会社 Sulfonic acid group-containing polymer electrolyte membrane and article using the same
CA2613269A1 (en) 2005-06-27 2007-01-04 Itm Power (Research) Ltd. Membrane electrode assemblies
EP2053677A4 (en) * 2006-07-20 2010-04-07 Sumitomo Chemical Co Polymer electrolyte membrane and method for producing the same, membrane-electrode assembly and fuel battery cell each using the polymer electrolyte membrane, and method for evaluating ion conductivity of polymer electrolyte membrane
JP5571300B2 (en) * 2007-09-03 2014-08-13 富士フイルム株式会社 Solution casting method and solution casting equipment
US20110033778A1 (en) * 2008-03-11 2011-02-10 Sumitomo Chemical Company, Limited Polymer electrolyte membrane
JP5313569B2 (en) * 2008-07-14 2013-10-09 日本電気株式会社 Solid polymer electrolyte membrane and method for producing solid polymer electrolyte membrane
KR102586433B1 (en) 2018-04-26 2023-10-06 현대자동차주식회사 Method For Manufacturing The Electrolyte Membrane For Fuel Cell And Electrolyte Membrane Manufactured By The Same

Also Published As

Publication number Publication date
JPH09199144A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
JP3767756B2 (en) Manufacturing method of electrolyte membrane
Cao et al. Weakly humidity‐dependent proton‐conducting COF membranes
EP1506591B1 (en) Polymer electrolyte membrane, method for the production thereof, and application thereof in fuel cells
EP1483316B1 (en) Proton conducting electrolyte membrane having reduced methanol permeability and the use thereof in fuel cells
KR101607796B1 (en) Process for recycling components of a pem fuel cell membrane electrode assembly
JPH0768377B2 (en) Electrolyte thin film
CN102496732B (en) Preparation method of polyvinylidene fluoride grafted p-styrenesulfonic acid proton exchange membrane
JP2005525682A (en) Graft polymer electrolyte membrane, its production method and its application to fuel cells
Pourcelly Membranes for low and medium temperature fuel cells. State-of-the-art and new trends
Wang et al. Preparation and characterization of a novel layer-by-layer porous composite membrane for vanadium redox flow battery (VRB) applications
JP4014506B2 (en) Fluorine ion exchange membrane
CN1416186A (en) Method for preparing complex film of proton exchange film for fuel cell
US20110171561A1 (en) Composition with enhanced proton conductivity
Senthil et al. TiO2 nanoparticle enhanced high temperature proton conductivity in hyperbranched sulfonated polyarylene aliphatic ketones for proton exchange membrane fuel cell applications
CN1414652A (en) Method of preparing membrane electrode using recasted perfluro sulfonic acid proton exchange film
JP2005197209A (en) Polymeric nano-complex film, its manufacturing method, as well as film-electrode assembly using it, and fuel cell
CN100499238C (en) Organic-inorganic compoiste proton exchange film and preparing method
JP2008195748A (en) Crosslinked aromatic polymer electrolyte membrane and its manufacturing method
JP4576784B2 (en) Proton conductor membrane and production method thereof, membrane-electrode assembly and production method thereof, and electrochemical device
JP4716706B2 (en) PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
JPH06251782A (en) Manufacture of joined body of membrane having high electric conductivity with electrode
JP2002516472A (en) Membrane electrode unit for fuel cells
US11646403B2 (en) Porous sheets and method of making same from porous carbon nanotubes and decomposing microorganisms
JP5836028B2 (en) Proton conductive polymer electrolyte membrane production method
DE10218368A1 (en) Laminated electrolyte membrane of sheet doped with mineral acid and barrier and electrodes with coating of cation exchange material are used for membrane electrode unit used in fuel cell system e.g. direct methanol fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees