JP2002516472A - Membrane electrode unit for fuel cells - Google Patents

Membrane electrode unit for fuel cells

Info

Publication number
JP2002516472A
JP2002516472A JP2000550170A JP2000550170A JP2002516472A JP 2002516472 A JP2002516472 A JP 2002516472A JP 2000550170 A JP2000550170 A JP 2000550170A JP 2000550170 A JP2000550170 A JP 2000550170A JP 2002516472 A JP2002516472 A JP 2002516472A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
electrode unit
membrane electrode
fuel cell
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000550170A
Other languages
Japanese (ja)
Inventor
スティミング,ウルリッヒ
Original Assignee
カール・フロイデンベルク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カール・フロイデンベルク filed Critical カール・フロイデンベルク
Publication of JP2002516472A publication Critical patent/JP2002516472A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

(57)【要約】 燃料電池用の膜電極ユニット、すなわちアノードとカソードとこれらアノードとカソード間にあるプロトン伝導体とを持ち、そのアノードとカソードは場合によっては触媒で被覆されている膜電極ユニット。このプロトン伝導体は、飽和するまで電解質を含浸させたマイクロ繊維不織布によって形成され、その際この不織布は、+200℃までの温度でも、そしてまた酸化力又は還元力のある条件下でも電解質に対して化学的に不活性であり、この不織布の重量は20〜200g/m2であり、この不織布の厚みは1mm未満であり、細孔容積は65〜92%である。 (57) [Summary] A membrane electrode unit for a fuel cell, that is, a membrane electrode unit having an anode and a cathode and a proton conductor between the anode and the cathode, and the anode and the cathode are optionally coated with a catalyst . The proton conductor is formed by a microfibrous non-woven fabric impregnated with electrolyte to saturation, wherein the non-woven fabric is resistant to the electrolyte at temperatures up to + 200 ° C and also under oxidizing or reducing conditions. is chemically inert, the weight of the nonwoven fabric is 20 to 200 g / m 2, the thickness of the nonwoven fabric is less than 1 mm, the pore volume is 65 to 92%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

本発明は燃料電池用膜電極ユニットに関する。より詳細には本発明は、アノー
ド、カソード、これらのアノードとカソードの間にあるプロトン伝導体を備え、
これらのアノード及びカソードが場合によって触媒でコーティングされている、
燃料電池用膜電極ユニットに関する。
The present invention relates to a membrane electrode unit for a fuel cell. More particularly, the invention comprises an anode, a cathode, a proton conductor between the anode and the cathode,
These anodes and cathodes are optionally coated with a catalyst,
The present invention relates to a membrane electrode unit for a fuel cell.

【0002】[0002]

【従来の技術】[Prior art]

このような膜電極ユニットは公知である。この膜電極ユニットでは、化学的エ
ネルギーから直接的な方法で電気エネルギーを得るために、燃料電池内では水素
及び酸素を含む反応ガス又は流体成分の反応時に、イオン化過程と電気的過程の
分離が起こる。
Such a membrane electrode unit is known. In this membrane electrode unit, in order to obtain electric energy from chemical energy in a direct manner, separation of an ionization process and an electrical process occurs when a reaction gas or a fluid component containing hydrogen and oxygen reacts in a fuel cell. .

【0003】 さまざまなタイプの燃料電池の存在と作用形態が、「Spektrum der Wissensch
aft」(1995年7月)、92〜96のK.D.KreuerとJ.Maierの論文に記載されている。
[0003] The existence and mode of operation of various types of fuel cells is described in "Spektrum der Wissensch
aft "(July 1995), KDKreuer and J. Maier, 92-96.

【0004】 これらの電極は非常に良好な電子伝導体(電気抵抗0.1Ωcm-1前後)でなけれ
ばならない。これは−電解質表面に関連して−触媒反応を必要とする。この電解
質は、導電性はできるだけ低く、イオン伝導性は高いものでなければならない。
この電解質は特に出発ガスをできるだけ透過させないものでなければならない。
全ての物質は、相互間ならびに反応に関係するものに対して化学的に不活性でな
ければならない。すなわち、カソードにおける酸化力が強い条件下でも、アノー
ドにおける還元力が強い条件下でも、望まれざる結合がそれらの間に生じてはな
らない。
[0004] These electrodes must be very good electronic conductors (electrical resistance around 0.1 Ωcm −1 ). This requires a catalytic reaction-in relation to the electrolyte surface. This electrolyte must have as low a conductivity as possible and a high ionic conductivity.
The electrolyte must in particular be as impermeable as possible to the starting gas.
All substances must be chemically inert with respect to one another and to those involved in the reaction. That is, both under conditions of strong oxidizing power at the cathode and under conditions of strong reducing power at the anode, undesired bonds must not form between them.

【0005】 複数の単電池を接続して電池積層物とするためには、単電池に含まれる固形構
成部分に十分な機械的耐荷力を与えなければならない。さらには電池構成部分の
材料や工程の費用、寿命及び環境共存性も重要である。
[0005] In order to connect a plurality of cells to form a battery stack, the solid components included in the cells must be given a sufficient mechanical load bearing capacity. Furthermore, the cost, life, and environmental compatibility of the materials and processes of the battery components are also important.

【0006】 運転温度が80〜90℃である場合、プロトン伝導性ポリマー膜が燃料電池で価値
を認められている。この膜は、分子及びプロトンに自由な運動性をあたえるとい
う液体としての性質と、形状が安定しているという固体としての性質を併せ持つ
。この要件は、スルホン化ペルフルオロビニルエーテル側鎖を備えるポリテトラ
フルオロエチレンをベースとしたペルフルオロ系イオノマー膜によってほぼ理想
的に満たされる。この材料は疎水部分と親水部分からなり、両部分は水が存在す
ると分離し、その際ゲル状ではあるが形状の安定した膜を形成する。このポリマ
ーの疎水性主鎖は、酸化と還元に対して非常に安定しており、膨潤状態でも膜に
形状の安定した骨格をあたえる。水中で膨潤した親水性の、液体類似の、スルホ
ン酸を含む側鎖によって、非常に良好なプロトン伝導性が達成される。数ナノメ
ートルという大きさの細孔は水分子数個の大きさに相当する。水が存在すること
により、経路や細孔内での高度のプロトン運動性がもたらされる。
When the operating temperature is between 80 and 90 ° C., proton conductive polymer membranes have gained value in fuel cells. This membrane has both the property of a liquid, which gives free mobility to molecules and protons, and the property of a solid, which is stable in shape. This requirement is almost ideally met by a perfluoro-based ionomer membrane based on polytetrafluoroethylene with sulfonated perfluorovinyl ether side chains. This material consists of a hydrophobic part and a hydrophilic part, both parts separating in the presence of water, forming a gel-like but stable film. The hydrophobic backbone of this polymer is very stable against oxidation and reduction, and gives the membrane a stable backbone even in the swollen state. Very good proton conductivity is achieved with hydrophilic, liquid-like, sulfonic acid-containing side chains swollen in water. A pore with a size of several nanometers corresponds to a size of several water molecules. The presence of water results in a high degree of proton motility within the pathway and pores.

【0007】 この陽イオン交換装置の不利な点は、すでに引用した文献箇所に記載されてい
るように価格が高いことであって、これは製造手順に手間がかかることによる。
さらにその廃棄処理又はリサイクルも環境上の問題を生じる。
[0007] The disadvantage of this cation exchange device is that it is expensive, as described in the references already cited, due to the complexity of the production procedure.
Furthermore, its disposal or recycling also raises environmental concerns.

【0008】 燃料電池の動作中に、このような膜は乾燥する傾向がある。特に燃焼用酸素が
空気流によって電池に供給される場合そうであるが、水分子をアノードからカソ
ードに運ぶというプロトンの流れの特性もその理由である。
[0008] During operation of a fuel cell, such membranes tend to dry. The nature of the proton flow, which transports water molecules from the anode to the cathode, is also the case, especially when the combustion oxygen is supplied to the cell by an air flow.

【0009】 公知のフィルム又はそのスルホン酸基の熱に対する安定性の上限は、90〜100
℃である。それよりも高い温度では形態構造が崩壊を始める。
The upper limit of the heat stability of a known film or its sulfonic acid group is 90 to 100.
° C. At higher temperatures the morphology begins to collapse.

【0010】 したがってこの公知のペルフルオロ系イオノマー膜は、独立したフォイルとし
て、より高い動作温度における用途を閉ざされており、したがって下記の使用に
は適さない: a)改質されたメタノールから得た水素を温度130℃以上で燃料として使用する
こと(この方法は、「Spektrum der Wissenschaft」(1995年7月)97〜104のU.
Benzらの論文に記載されている)。 b)温度130℃以上で、典型的には150〜200℃で、アノードでメタノールを直接
酸化するために使用すること。
[0010] The known perfluoro-based ionomer membranes are therefore closed off at higher operating temperatures as stand-alone foils and are therefore unsuitable for: a) hydrogen obtained from modified methanol As fuel at a temperature of 130 ° C. or higher (this method is described in U.S. Pat.
Benz et al.). b) use at temperatures above 130 ° C., typically 150-200 ° C., for direct oxidation of methanol at the anode;

【0011】[0011]

【発明が解決しようとする課題】[Problems to be solved by the invention]

本発明の課題は、ペルフルオロ系イオノマー膜の上記の有利な特性に下記の特
性を加えるような、燃料電池用膜電極ユニットを製造することである。 1.従来の技術のポリマー膜よりも製造コストを軽減すること。 2.廃棄処理の際の汚染物質を削減すること。 3.触媒毒の作用を軽減して、改質されたメタノールを燃料として水素に適用し
、装置内部でメタノールを改質又は直接酸化するため、200℃までの温度安定性
を得ること。
It is an object of the present invention to produce a membrane electrode unit for a fuel cell which adds the following properties to the above-mentioned advantageous properties of a perfluoro-based ionomer membrane. 1. Lower manufacturing costs than prior art polymer membranes. 2. Reduction of pollutants during disposal. 3. To reduce the effect of catalyst poison, apply reformed methanol to hydrogen as fuel, and reform or directly oxidize methanol inside the device, so that temperature stability up to 200 ° C is obtained.

【0012】[0012]

【課題を解決するための手段】[Means for Solving the Problems]

上記課題は、本発明請求項1の諸特徴による上位概念にしたがった膜電極ユニ
ットによって解決される。有利な実施形態を下位請求項に記載した。
The object is achieved by a membrane electrode unit according to the general concept of the invention. Advantageous embodiments are set out in the subclaims.

【0013】 本発明が意図するのは、飽和するまで電解質を含浸したマイクロ繊維不織布に
よってプロトン伝導体を形成することである。この不織布は、温度+200℃まで
、そしてまた酸化力及び還元力のある条件下でも、電解質に対して化学的に不活
性であり、不織布の重量は20〜200g/m2であり、不織布の厚みは最大1mmであり
、細孔容積は65〜92%である。
[0013] The present invention contemplates forming a proton conductor from a microfibrous nonwoven fabric impregnated with an electrolyte until saturated. This nonwoven is chemically inert to the electrolyte up to a temperature of + 200 ° C. and also under conditions of oxidizing and reducing power, the weight of the nonwoven is 20-200 g / m 2 and the thickness of the nonwoven is Is up to 1 mm and the pore volume is 65-92%.

【0014】 マイクロ繊維不織布の平均細孔半径は20nmから10μmとする。The micropore nonwoven fabric has an average pore radius of 20 nm to 10 μm.

【0015】 本発明の対象物の場合、マイクロ繊維不織布の不織布骨格が膜の機械的安定性
を確保しているので、この機械的安定性を電解質がもたらす必要はない。これに
より膜の材料コストは、例えばペルフルオロ系イオノマーのこれに相当する寸法
の独立した膜を製造する費用と比較して、最大90%削減することができる。
In the case of the object according to the invention, the electrolyte does not need to provide this mechanical stability, since the nonwoven fabric skeleton of the microfiber nonwoven fabric ensures the mechanical stability of the membrane. This can reduce the material cost of the membrane by up to 90%, for example, as compared to the cost of producing independent membranes of comparable dimensions, for example perfluoroionomers.

【0016】 このマイクロ繊維不織布は、ペルフルオロ系イオノマーで満たされたものとす
ることができる。このペルフルオロ系イオノマーは、スルホン化ペルフルオロビ
ニルエチレン側鎖を備えるポリテトラフルオロエチレンとすることができる。そ
れに代わる方法としては、このマイクロ繊維不織布に1〜5モルの硫酸水溶液又
は濃縮燐酸を含浸させることが考えられる。その他燐酸ジルコニウム水和物及び
燐酸二水素アンモニウム水和物を使用することもできる。
[0016] The microfiber nonwoven fabric can be filled with a perfluoro-based ionomer. The perfluoro-based ionomer can be polytetrafluoroethylene with sulfonated perfluorovinylethylene side chains. As an alternative method, it is conceivable to impregnate the microfiber nonwoven fabric with a 1 to 5 mol aqueous sulfuric acid solution or concentrated phosphoric acid. In addition, zirconium phosphate hydrate and ammonium dihydrogen phosphate hydrate can also be used.

【0017】 本発明は燃料電池の出力(イオン伝導性)の点で、ペルフルオロ系イオノマー
からなる純粋なポリマー膜と同等であり、しかも従来の高価な材料を使用する必
要がないことを、下記の例で明らかにしよう。
The present invention shows that the output (ion conductivity) of a fuel cell is equivalent to a pure polymer membrane composed of a perfluoro ionomer, and that there is no need to use a conventional expensive material. Let me clarify with an example.

【0018】[0018]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

各例とも基礎材料は共通であって、下記の通りである。 The basic materials are common in each example and are as follows.

【0019】 ・不織布材料:断面が四角形(幅6〜13μm、高さ1.7〜2.4μm)であるポリス
ルホン繊維。
Nonwoven fabric material: a polysulfone fiber having a square cross section (width: 6 to 13 μm, height: 1.7 to 2.4 μm).

【0020】 ・ポリスルホン材料の機械的特性: 溶融範囲:343〜399℃ 引張強さ:70 Mpa 破断伸び:50〜100% ヤング率:2.4Gpa 負荷1.8MPa時の曲げ温度:174℃。Mechanical properties of polysulfone material: Melting range: 343 to 399 ° C. Tensile strength: 70 Mpa Elongation at break: 50 to 100% Young's modulus: 2.4 GPa Bending temperature under 1.8 MPa load: 174 ° C.

【0021】 ・繊維の製造:ポリスルホンの塩化メチレン溶液を静電場で繊維化する。例え
ばそのためにDE-OS2620399に記載の装置を使用することができる。繊維は線形に
連続して動く繊維キャリアーに集められる。
Production of fiber: A solution of polysulfone in methylene chloride is fibrillated in an electrostatic field. For example, the device described in DE-OS 26 20 399 can be used for that purpose. The fibers are collected in a linearly moving fiber carrier.

【0022】 ・不織布の特性: 重量:150g/m2 厚み(圧縮時):0.05mm 厚み(電解質を含浸時):0.18mm 非圧縮状態の平均細孔半径:8μm 圧縮状態の平均細孔半径:4μm 細孔容積:83%。Characteristics of non-woven fabric: Weight: 150 g / m 2 Thickness (when compressed): 0.05 mm Thickness (when impregnated with electrolyte): 0.18 mm Average pore radius in non-compressed state: 8 μm Average pore radius in compressed state: 4 μm pore volume: 83%.

【0023】 本発明の膜の温度安定性は、それと異なる他の理由がない限り、主として不織
布材料によって決定され、そのため温度安定性が失われるのは、純粋な繊維材料
ポリスルホンの場合約174℃になってからである。不織布中で繊維が相互に機械
的に結合しているため、さらに機械的安定性も温度250℃まで高められる。これ
により燃料電池の高温動作が可能になり、そのためアノード触媒毒発生は明らか
に少なくなる。
The temperature stability of the membranes of the present invention is determined primarily by the nonwoven material, unless there is a different reason to the contrary, so that the temperature stability is lost to about 174 ° C. for the pure fiber material polysulfone. It is after that. Since the fibers are mechanically bonded to each other in the nonwoven fabric, the mechanical stability is further increased to a temperature of 250 ° C. This allows the fuel cell to operate at high temperatures, thereby significantly reducing anode catalyst poisoning.

【0024】 例1 直径16mmのガラス濾過器内で、DuPont社市販のペルフルオロ系イオノマーであ
る液体Nafionを、マイクロ繊維不織布に被覆する。わずかな負圧をかけてこの液
相物を不織布の細孔構造に吸引する。溶剤を分離するため、こうして含浸させた
膜を乾燥棚内で60℃で処理する。その後は再処理まで蒸留水水中で保管可能であ
る。
Example 1 Liquid Nafion, a perfluoro-based ionomer available from DuPont, is coated on a nonwoven microfiber in a glass filter 16 mm in diameter. Applying a slight negative pressure, the liquid phase material is sucked into the pore structure of the nonwoven fabric. The membrane impregnated in this way is treated at 60 ° C. in a drying cabinet to separate off the solvent. Thereafter, it can be stored in distilled water until reprocessing.

【0025】 例2〜4 上記マイクロ繊維不織布に例1と同様に、三つの異なるモル数の硫酸水溶液を
含浸させる。その際粘性を減じるために硫酸を約70℃まで加熱する。異常を生じ
ることなく、70℃まで加熱した酸の中で不織布を数分間煮沸することができる。
Examples 2 to 4 Similar to Example 1, the microfiber nonwoven fabric is impregnated with three different moles of an aqueous sulfuric acid solution. The sulfuric acid is heated to about 70 ° C. in order to reduce the viscosity. The nonwoven can be boiled for several minutes in an acid heated to 70 ° C. without any abnormalities.

【0026】 こうして得られた膜の保管は、同じ含浸媒質中で行うのが合目的である。The storage of the membrane thus obtained is expediently carried out in the same impregnating medium.

【0027】 このようにして準備された膜に対し、1979年5月付けのDIN53779に記載の方法
にしたがって比導電率を求めた。結果は下表の通りである。
The specific conductivity of the thus prepared film was determined according to the method described in DIN 53779, dated May 1979. The results are shown in the table below.

【0028】[0028]

【表1】 [Table 1]

【0029】 表中の例5は、従来技術によるポリマー膜に対して同じ測定を行った場合の比
較例であって、ペルフルオロ系イオノマー(Nafion-117、Dupont社)からなり、
厚み125μmで、他の支持を必要とせずに自己支持できるポリマー膜を用いた。
Example 5 in the table is a comparative example in which the same measurement was performed on a polymer film according to the prior art, and was composed of a perfluoro ionomer (Nafion-117, Dupont),
A polymer film having a thickness of 125 μm and capable of self-supporting without requiring other supports was used.

【0030】 比導電率S/cmの数値は次のことを示す。すなわち純粋なNafionに比べるとコス
トが非常に有利で、構造がより単純であり、機械的にも安定性がある本発明の膜
によって、従来技術に相当する出力を持つ燃料電池を動作可能であるということ
である。温度100℃以上の場合に採用するときは、濃縮燐酸をイオン伝導体とし
て使用できる。
The numerical values of the specific conductivity S / cm indicate the following. In other words, the membrane of the present invention, which has a very advantageous cost compared to pure Nafion, has a simpler structure, and is mechanically stable, can operate a fuel cell having an output equivalent to that of the prior art. That's what it means. When employed at a temperature of 100 ° C. or higher, concentrated phosphoric acid can be used as the ion conductor.

【0031】 例えば厚み125μmの膨潤Nafion膜と比較すると、例1〜4に使用された電解質
を含浸した不織布は2倍の厚みがある。
For example, when compared with a swollen Nafion membrane having a thickness of 125 μm, the non-woven fabric impregnated with the electrolyte used in Examples 1 to 4 has twice the thickness.

【0032】 電圧と電流の積から得られる燃料電池の出力は、酸濃度を高くすること、すな
わち比導電率S/cmを高くすることによってだけでなく、より薄い不織布を使用し
て拡散障害を少なくすることによっても得られる。
The output of the fuel cell, which is obtained from the product of the voltage and the current, can be obtained not only by increasing the acid concentration, that is, by increasing the specific conductivity S / cm, but also by using a thinner nonwoven fabric to prevent the diffusion obstacle. It can also be obtained by reducing.

【0033】 例として、例1、3、5に対応するそれぞれの室温における電流/電圧曲線を
図1に示す。従来技術(例5)と比較すると、これに匹敵する特性曲線が本発明
による膜によって得られることがわかる。酸濃度が高くなれば、又は不織布材料
が薄くなれば、電池出力が高くなるという上記の効果は、この図においては各曲
線を縦軸の座標の正の方向に移動させることによって得られる。
As an example, FIG. 1 shows current / voltage curves at room temperature corresponding to Examples 1, 3, and 5, respectively. In comparison with the prior art (Example 5), it can be seen that comparable characteristic curves are obtained with the membrane according to the invention. The above effect of increasing the acid concentration or the thinning of the non-woven fabric material to increase the battery output is obtained by moving each curve in the figure in the positive direction of the vertical axis.

【0034】 不織布に高い温度安定性があるため、100℃以上の温度に応用するとき、電解
質として濃縮燐酸をも使用できる。
[0034] Due to the high temperature stability of the nonwoven fabric, concentrated phosphoric acid can also be used as an electrolyte when applied to temperatures above 100 ° C.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 触媒により被覆可能なアノードと、触媒により被覆可能なカ
ソードと、これらのアノードとカソード間にあるプロトン伝導体とを備える燃料
電池用膜電極ユニットであって、 前記プロトン伝導体が、飽和するまで電解質を含浸させたマイクロ繊維不織布
によって形成され、該マイクロ繊維不織布が、+200℃までの温度で、かつ酸化
力及び還元力のある条件下で前記電解質に対して化学的に不活性であり、前記マ
イクロ繊維不織布が、重量20〜200g/m2、厚み1mm未満、細孔容積65〜92%であ
ることを特徴とする燃料電池用膜電極ユニット。
1. A membrane electrode unit for a fuel cell comprising an anode coatable with a catalyst, a cathode coatable with a catalyst, and a proton conductor between the anode and the cathode, wherein the proton conductor is Formed by a microfibrous nonwoven fabric impregnated with electrolyte until saturated, said microfibrous nonwoven fabric being chemically inert to said electrolyte at temperatures up to + 200 ° C. and under conditions of oxidizing and reducing power Wherein the microfiber nonwoven fabric has a weight of 20 to 200 g / m 2 , a thickness of less than 1 mm, and a pore volume of 65 to 92%.
【請求項2】 前記マイクロ繊維不織布の平均細孔半径が20nmから10μmで
あることを特徴とする、請求項1に記載の燃料電池用膜電極ユニット。
2. The membrane electrode unit for a fuel cell according to claim 1, wherein the micropore nonwoven fabric has an average pore radius of 20 nm to 10 μm.
【請求項3】 前記マイクロ繊維不織布がペルフルオロ系イオノマーを充填
されていることを特徴とする、請求項1又は2に記載の燃料電池用膜電極ユニッ
ト。
3. The fuel cell membrane electrode unit according to claim 1, wherein the microfiber nonwoven fabric is filled with a perfluoro ionomer.
【請求項4】 前記ペルフルオロ系イオノマーが、スルホン化ペルフルオロ
ビニルエーテル側鎖を備えるポリテトラフルオロエチレンであることを特徴とす
る、請求項3に記載の燃料電池用膜電極ユニット。
4. The membrane electrode unit for a fuel cell according to claim 3, wherein the perfluoro ionomer is polytetrafluoroethylene having a sulfonated perfluorovinyl ether side chain.
【請求項5】 前記マイクロ繊維不織布が、1〜5モルの硫酸水溶液を含浸
されていることを特徴とする、請求項1又は2に記載の燃料電池用膜電極ユニッ
ト。
5. The membrane electrode unit for a fuel cell according to claim 1, wherein the microfiber nonwoven fabric is impregnated with a 1 to 5 mol aqueous sulfuric acid solution.
【請求項6】 前記マイクロ繊維不織布が濃縮燐酸を含浸されていることを
特徴とする、請求項1又は2に記載の燃料電池用膜電極ユニット。
6. The membrane electrode unit for a fuel cell according to claim 1, wherein the microfiber nonwoven fabric is impregnated with concentrated phosphoric acid.
【請求項7】 前記マイクロ繊維不織布が、燐酸ジルコニウム水和物又は燐
酸二水素アンモニウム水和物を含浸されていることを特徴とする、請求項1又は
2に記載の燃料電池用膜電極ユニット。
7. The membrane electrode unit for a fuel cell according to claim 1, wherein the microfiber nonwoven fabric is impregnated with zirconium phosphate hydrate or ammonium dihydrogen phosphate hydrate.
JP2000550170A 1998-05-18 1999-04-01 Membrane electrode unit for fuel cells Pending JP2002516472A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19821978.4 1998-05-18
DE19821978A DE19821978C2 (en) 1998-05-18 1998-05-18 Membrane electrode unit for a fuel cell
PCT/EP1999/002233 WO1999060650A1 (en) 1998-05-18 1999-04-01 Membrane-electrode unit for a fuel cell

Publications (1)

Publication Number Publication Date
JP2002516472A true JP2002516472A (en) 2002-06-04

Family

ID=7867976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000550170A Pending JP2002516472A (en) 1998-05-18 1999-04-01 Membrane electrode unit for fuel cells

Country Status (10)

Country Link
EP (1) EP1088361A1 (en)
JP (1) JP2002516472A (en)
KR (1) KR100392921B1 (en)
CN (1) CN1294762A (en)
AU (1) AU738679B2 (en)
BR (1) BR9910535A (en)
CA (1) CA2327520A1 (en)
DE (1) DE19821978C2 (en)
WO (1) WO1999060650A1 (en)
ZA (1) ZA200001232B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038834A (en) * 2003-06-30 2005-02-10 Sumitomo Chemical Co Ltd Polyelectrolyte composite membrane, its manufacturing method, and its use
JP2013152938A (en) * 2006-08-02 2013-08-08 Basf Fuel Cell Gmbh Membrane electrode assemblies and fuel cells with improved performance

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10101315A1 (en) * 2001-01-12 2002-07-25 Ulrich Stimming Fuel cell with proton-conducting solid electrolyte for operation in the temperature range 200-600 ° C
DE10208275A1 (en) * 2002-02-26 2003-09-04 Creavis Tech & Innovation Gmbh Flexible electrolyte membrane based on a carrier comprising polymer fibers, process for their production and the use thereof
CN1308381C (en) * 2002-07-26 2007-04-04 旭硝子株式会社 Polymer membrane, process for its production and membrane-electrode assembly for solid polymer electrolyte fuel cells
CN100454623C (en) * 2004-04-28 2009-01-21 日产自动车株式会社 Membrane-electrode assembly for fuel cell and fuel cell using same
US9640805B2 (en) * 2005-10-17 2017-05-02 GM Global Technology Operations LLC Coating process for fuel cell components

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1002588A (en) * 1973-04-04 1976-12-28 Alfred D. Nelson Membrane of micro-fibers for fuel cells
DE2620399C3 (en) * 1976-05-08 1980-11-13 Fa. Carl Freudenberg, 6940 Weinheim Device for electrostatic spraying
JPS6337134A (en) * 1986-08-01 1988-02-17 Tokuyama Soda Co Ltd Fluorine-containing ion exchange membrane
CA2227835C (en) * 1995-07-27 2008-07-15 Hoechst Research & Technology Deutschland Gmbh & Co. Kg Polymeric electrolytes and process for their preparation
US5672438A (en) * 1995-10-10 1997-09-30 E. I. Du Pont De Nemours And Company Membrane and electrode assembly employing exclusion membrane for direct methanol fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038834A (en) * 2003-06-30 2005-02-10 Sumitomo Chemical Co Ltd Polyelectrolyte composite membrane, its manufacturing method, and its use
JP2013152938A (en) * 2006-08-02 2013-08-08 Basf Fuel Cell Gmbh Membrane electrode assemblies and fuel cells with improved performance

Also Published As

Publication number Publication date
AU3704099A (en) 1999-12-06
KR100392921B1 (en) 2003-07-28
BR9910535A (en) 2001-01-16
WO1999060650A1 (en) 1999-11-25
DE19821978C2 (en) 2002-06-06
ZA200001232B (en) 2002-05-13
KR20010071286A (en) 2001-07-28
CA2327520A1 (en) 1999-11-25
EP1088361A1 (en) 2001-04-04
DE19821978A1 (en) 1999-11-25
AU738679B2 (en) 2001-09-27
CN1294762A (en) 2001-05-09

Similar Documents

Publication Publication Date Title
CA2320696C (en) Ion conductive matrixes and their use
KR101135479B1 (en) A polymer electrolyte membrane for fuel cell, a method for preparing the same, and a fuel cell system comprising the same
JP4082999B2 (en) Method for producing a membrane electrode assembly for a membrane fuel cell
JP4769518B2 (en) Polymer electrolyte membrane and fuel cell employing polymer electrolyte membrane
US20220352534A1 (en) Bipolar ionomer membrane
KR101818547B1 (en) Polymer electrolyte membrane, method for manufacturing the same and membraneelectrode assembly comprising the same
KR100343209B1 (en) Reinforced compositie ion conducting polymer membrane and fuel cell adopting the same
JP4979243B2 (en) Polymer electrolyte membrane, method for producing the same, and fuel cell
JP5166868B2 (en) Membrane electrode unit for direct methanol fuel cell (DMFC) and its use in direct methanol fuel cell (DMFC)
JP5547133B2 (en) Polymer electrolyte membrane for fuel cells
JP2003515894A (en) Direct methanol battery with circulating electrolyte
JP2006019294A (en) Polymer electrolyte membrane for fuel cell, and forming method for the same
KR100590967B1 (en) High Temperature Proton Exchange Membrane using Ionomer/Soild Proton Conductor by nano-templating, Preparation Method thereof and Fuel Cell Containing the Same
JP2024508632A (en) Composite proton conducting membrane
JP4899238B2 (en) Composite cross-linked electrolyte
JP2002516472A (en) Membrane electrode unit for fuel cells
KR101312262B1 (en) Polymer membrane, a method for preparing the polymer membrane and a fuel cell employing the same
JP2004063430A (en) Solid high molecular electrolyte film for fuel cell
JP2002313363A (en) Solid polymer electrolyte film and its manufacturing method
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
CN101978536A (en) Membrane electrode assembly and fuel cell
JP4664683B2 (en) Membrane-electrode assembly and fuel cell thereof
JP4045661B2 (en) ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER ELECTROLYTE FUEL CELL USING THE SAME
KR100355392B1 (en) Fuel cell adopting multi-layered ion conductive polymer layer
US20060177720A1 (en) Reinforced composite ionic conductive polymer membrane, fuel cell adopting the same, and method of making the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040720