JP3767318B2 - LD pumped solid state laser device - Google Patents

LD pumped solid state laser device Download PDF

Info

Publication number
JP3767318B2
JP3767318B2 JP2000125030A JP2000125030A JP3767318B2 JP 3767318 B2 JP3767318 B2 JP 3767318B2 JP 2000125030 A JP2000125030 A JP 2000125030A JP 2000125030 A JP2000125030 A JP 2000125030A JP 3767318 B2 JP3767318 B2 JP 3767318B2
Authority
JP
Japan
Prior art keywords
output
light
solid
state laser
monitor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000125030A
Other languages
Japanese (ja)
Other versions
JP2001308429A (en
Inventor
知史 入口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2000125030A priority Critical patent/JP3767318B2/en
Publication of JP2001308429A publication Critical patent/JP2001308429A/en
Application granted granted Critical
Publication of JP3767318B2 publication Critical patent/JP3767318B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、LD励起固体レーザ装置の出力安定化に関する。
【0002】
【従来の技術】
従来、半導体レーザからの出力光(以下適宜「LD光」と称する)を集光して固体レーザ媒質に照射し、この固体レーザ媒質から誘導放出される基本波を、光共振器内に収容した非線形光学結晶に照射することにより、第二高調波(以下適宜「SH波」と称する)を生成し、その第二高調波を光共振器内で発振させ出力ミラーを介して外部に出力するようにした波長変換固体レーザ装置が知られている。
【0003】
この具体例を図3及び図4により説明する。図3に示すように、半導体レーザ31からの出力光は、コリメータレンズ32a及びフォーカスレンズ32bを介して固体レーザ媒質(Nd:YAG)33に照射される。固体のレーザ媒質33の片面には、半導体レーザ31からのLD光を透過させ、固体のレーザ媒質33から誘導放出される基本波及びそのSH波を高反射率のもとに反射させる高反射コーティング膜が形成されており、この高反射コーティング膜と出力ミラー36との間で光共振器が構成されている。
【0004】
光共振器の内部には、SH波発生用の非線形光学素子(以下「SHG」ともいう、例えばKNbO)35が挿入されており、半導体レーザ31からの出力光で固体のレーザ媒質33を励起することによって誘導放出された基本波が、非線形光学素子35に照射されることにより、第二高調波が生成される。出力ミラー36はSH波を主として透過させ、従ってこの出力ミラー36を介してSH波が光共振器外に出力される。
【0005】
この光共振器外に出力されたSH波から、出力ミラー36に近接配置されたビームサンプラー37によって、その一部が所定の割合でモニタ光Lmとして分離されて光検出器38に導かれ、その強度が検出される。この検出結果は、レーザコントローラ39にフィードバックされ、SH波出力を一定に保持するようにLD電流が制御される。また装置の主要部はレーザコントローラ39により所定温度に制御される。
【0006】
【発明が解決しようとする課題】
上記構成においては、図4に示すように、光検出器38に入射するモニタ光の検出に重大な問題がある。光検出器38の受光面38aはケーシング38b内に配置され、受光面保護用樹脂38c、ガラス基板38dで覆われているが、モニタ光Lmが保護用樹脂38cやガラス基板38dの内部で多重反射し干渉する状態が生じる。モニタ光が干渉する場合には、受光面保護用の樹脂やガラス基板のわずかな温度変化やモニタ光のわずかな入射角度変化が生じても、モニタ光が受光面38aに入射する迄の干渉条件が変化し、出力光強度(Lo)が一定であってもPD受光面38aに入射する有効なモニタ光の強度Leが変動する。
【0007】
従って、レーザ出力光強度Loに対する有効なモニタ光強度Leの比率Le/Loが変動することとなり、レーザ出力光強度Loが安定している場合でもモニタ光強度検出値が変動する。モニタ光強度検出値が変動すると、これを一定に保持するようにレーザコントローラ39によりLD駆動電流が制御され、モニタ光が本来の機能に反して、上記の光干渉の影響に応じてレーザ出力Loの変動を招くという結果を生じさせることになる。
本発明は、光検出器受光面に入射する有効なモニター光の強度の割合が保護用樹脂やガラス基板のわずかな温度変化などの影響によっても変動せず、出力の安定なLD励起固体レーザ装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明のLD励起固体レーザ装置は、半導体レーザからの出力光により固体レーザ媒質を励起するとともに、固体レーザ媒質を含む光共振器内に非線形光学素子を設置し、固体レーザ媒質から誘導放出される基本波の第二高調波を出力ミラーを介して外部に出力するように構成され、その出力の所定の一部を光検出器にて検出し、その検出出力が一定となるように半導体レーザの駆動電流を変化させて出力の安定化を行うレーザ装置において、光検出器の受光面の前段に受光面に入射するモニタ光の干渉を除去する手段を設けたものであり、干渉除去手段としては、受光面保護用樹脂やガラス基板の一面または両面をスリ面状にし、モニタ光を拡散させることにより、或いは受光面保護用の樹脂やガラス基板を楔形にすることが好適である。
上記手段により、モニタ光の干渉が無くなり、受光面保護用の樹脂やガラス基板のわずかな温度変化やモニタ光の入射角度変化が多少生じた場合においてもレーザ出力は変動しない。
【0009】
【発明の実施の形態】
図1は本発明の実施例のLD励起固体レーザ装置のシステム構成例図、図2の(A)、(B)、(C)はそれぞれ図1の一部(PD)の詳細図である。
図1において、1は固体レーザ媒質を励起するための半導体レーザ、2(2a、2b)は半導体レーザ1からの光を固体レーザ媒質に照射するための光学系で、2aはコリメータレンズ、2bはフォーカスレンズである。3は固体レーザ媒質であり、例えばNd:YAGを用いる。5は固体のレーザ媒質3の出力からSH波を発生させるための非線形光学素子であり、例えばKNbOを用いる。6は出力ミラーで上記のSH波を透過させ基本波を反射させる特性を有するものが用いられる。固体のレーザ媒質3の前端面には、半導体レーザ1からのLD光を透過させ、固体のレーザ媒質3から誘導放出される基本波及びそのSH波を高反射率のもとに反射させる高反射コーティング膜3aが形成されている。以上の高反射コーティング膜3aと出力ミラー6とでSH波に対する光共振器を形成する。
【0010】
7は出力ミラー6に近接配置されたビームサンプラーであり、出力ミラー6のSH波出力Lを実際のSH波出力(透過光)Loとモニタ光SH波(反射光)Lmとに所定の割合で分離する。8はモニタ光Lmの強度を検出するための光検出器、9はレーザ光出力Loを所定に制御するためのレーザコントローラであり、光検出器8による検出結果がドライバ9にフィードバックされ、SH波出力Loを一定に保持するようにLD電流を制御する。
【0011】
以上のシステム構成において、本発明では、光検出器8の受光面8a前段に受光面に入射するモニタ光の多重反射を防止しモニタ光の干渉を除去する手段を設けている。このモニタ光干渉除去手段S(S1、S2、S3)の具体的実施態様を図2の(A)、(B)及び(C)にそれぞれ示す。図2の(A)は、光検出器8の入力面を構成するガラス基板8dにスリ面(S1)を形成したものである。このスリ面S1は受光面8aに対向する範囲だけでなく、ガラス基板8d全面に形成することが望ましい。なお、スリ面S1は図では表面(入射面)に形成しているが、内面(出射面)または両面に形成しても良い。このスリ面S1により、検出器8に入射するモニタ光Lmはスリ面で拡散光となり、またばらばらの位相で受光面8aに到達するので、干渉を生じることはない。
【0012】
図2の(B)は、光検出器8の入力面側に設ける光干渉除去手段Sとして、光検出器8の入力面を構成するガラス基板8dを受光面38aに対して斜面S2とし、樹脂層及びガラス基板を楔型状に形成したものである。この楔型形状によって、入射したモニタ光が反射する毎に光路長が次第に変化し、干渉を生じる可能性は殆どなくなる。この場合、ガラス基板8dの傾斜方向は、図の如くモニタ光Lmに近づく方向とすることが望ましいが、遠ざかる方向に傾斜させる構成としてもよい。
【0013】
図2の(C)は、光検出器8の入力面側に設ける光干渉除去手段Sとして、光検出器8の入力面を構成するガラス基板8dの外側近傍に光拡散板(S3)を設けたものである。光拡散板S3は、ガラス基板8dの全面に対向して平行に設けるが、場合により図2の(B)の方式と併用し、光拡散板(S3)自体を若干斜面状に配置してもよい。
なお、本発明の要点ではないが、この実施の形態においては、半導体レーザ1の出力波長は例えば809nmとし、固体のレーザ媒質3にNd:YAGを用いてレーザ基本波を946nm、そのSH波(非線形光学素子:KNbO)を473nmとしている。
【0014】
以上の構成のうち、フォーカスレンズ2b、固体のレーザ媒質3、エタロン、非線形光学素子5、出力ミラー6及びビームサンプラー7は共通のベース板(図示せず)上に固着されている。このベース板には、温度センサが埋め込まれており、またベース板の下面側には、放熱板が熱的に連結された温度調節用のペルチェ素子が配置されている。温度計の温度検出値Kは、レーザコントローラ9にフィードバックされ、ベース板の温度、つまり非線形光学素子5の温度を一定保持するように、ペルチェ素子の駆動電流が制御される。
【0015】
次に、本発明装置の動作について説明する。
半導体レーザ1からの出力光は、コリメータレンズ2a及びフォーカスレンズ2bを介して固体レーザ媒質(Nd:YAG)3に照射される。半導体レーザ1からの出力光で固体のレーザ媒質3を励起することによって誘導放出された基本波が、非線形光学素子5に照射されることにより、第二高調波が生成される。出力ミラー6はSH波を主として透過させ、従ってこの出力ミラー6を介してSH波Lが光共振器外に出力される。
【0016】
この光共振器外に出力されたSH波Lは、出力ミラー6に近接配置されたビームサンプラー7によって、実際の出力光Loとモニタ光Lmとに所定の割合で分離され、モニタ光Lmが光検出器8に導かれ、その強度が検出される。
このモニタLmの検出においては、光検出器8において受光面8aの前段に、受光面に入射するモニタ光の多重反射を防止しモニタ光の干渉を除去する手段S、例えばスリ面S1を設けたことにより、検出器8に入射するモニタ光Lmは入射面で拡散光となり、ばらばらの位相で受光面8aに到達するので、干渉を生じることが防止され、レーザ出力光強度Loに対する有効なモニタ光強度Leの比率Le/Loが所定に保たれ、レーザ出力光強度Loが安定している限りモニタ光強度検出値が変動せず、またモニタ光強度検出値が変動すると、これを一定に保持するようにコントローラ9によりLD駆動電流が制御され、モニタ光が本来の機能を果たし、レーザ出力Loが安定に維持される。
【0017】
【発明の効果】
以上説明したように、本発明のLD励起波長変換固体レーザ装置によれば、光検出器の受光面の前段に受光面に入射するモニタ光の多重反射防止しモニタ光の干渉を除去する手段を設けたことにより、樹脂やガラス基板の内部で多重反射による干渉が起こらないため、出力が安定な限りPDの出力が変動することはない。従って、受光面保護用の樹脂やガラス基板温度変化やモニタ光の入射角度変化が多少生じた場合においてもレーザ出力は変動しない。従って、環境温度変化に強いLD励起固体レーザ装置を構成できる。
【符号の説明】
LD:半導体レーザ
2a:LD光用コリメータレンズ
2b:LD光用集光レンズ
3:レーザ媒質(Nd YAG結晶)
5:非線形結晶(KNbO結晶)
6:出力ミラー
7:ビームサンプラー
8:ホトダイオード
9:レーザコントローラ
【図面の簡単な説明】
【図1】本発明の実施例のLD励起固体レーザ装置の概略システム構成図である。
【図2】本発明装置LD励起固体レーザ装置の要部の実施態様を示す。
【図3】従来のLD励起固体レーザ装置の構成例を示す。
【図4】従来のLD励起固体レーザ装置の動作説明用図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to output stabilization of an LD-pumped solid-state laser device.
[0002]
[Prior art]
Conventionally, output light from a semiconductor laser (hereinafter referred to as “LD light” as appropriate) is collected and irradiated onto a solid-state laser medium, and a fundamental wave guided and emitted from the solid-state laser medium is accommodated in an optical resonator. By irradiating the nonlinear optical crystal, second harmonics (hereinafter referred to as “SH waves” as appropriate) are generated, and the second harmonics are oscillated in the optical resonator and output to the outside through the output mirror. A wavelength conversion solid-state laser device is known.
[0003]
A specific example of this will be described with reference to FIGS. As shown in FIG. 3, the output light from the semiconductor laser 31 is applied to the solid-state laser medium (Nd: YAG) 33 through the collimator lens 32a and the focus lens 32b. A highly reflective coating that transmits LD light from the semiconductor laser 31 on one side of the solid laser medium 33 and reflects the fundamental wave and the SH wave that are stimulated and emitted from the solid laser medium 33 with high reflectivity. A film is formed, and an optical resonator is formed between the highly reflective coating film and the output mirror 36.
[0004]
A nonlinear optical element (hereinafter also referred to as “SHG”, for example, KNbO 3 ) 35 for generating an SH wave is inserted inside the optical resonator, and a solid laser medium 33 is excited by output light from the semiconductor laser 31. By irradiating the nonlinear optical element 35 with the fundamental wave stimulated and emitted as a result, a second harmonic is generated. The output mirror 36 mainly transmits the SH wave, and therefore the SH wave is output to the outside of the optical resonator through the output mirror 36.
[0005]
A part of the SH wave output outside the optical resonator is separated as a monitor light Lm at a predetermined ratio by a beam sampler 37 disposed close to the output mirror 36 and guided to the photodetector 38. Intensity is detected. The detection result is fed back to the laser controller 39, and the LD current is controlled so as to keep the SH wave output constant. The main part of the apparatus is controlled to a predetermined temperature by a laser controller 39.
[0006]
[Problems to be solved by the invention]
In the above configuration, as shown in FIG. 4, there is a serious problem in the detection of monitor light incident on the photodetector 38. The light receiving surface 38a of the photodetector 38 is disposed in the casing 38b and is covered with the light receiving surface protecting resin 38c and the glass substrate 38d. However, the monitor light Lm is subjected to multiple reflection inside the protecting resin 38c and the glass substrate 38d. And a state of interference occurs. When the monitor light interferes, even if a slight temperature change of the resin for protecting the light receiving surface or the glass substrate or a slight change in the incident angle of the monitor light occurs, the interference condition until the monitor light enters the light receiving surface 38a Changes, and even if the output light intensity (Lo) is constant, the intensity Le of the effective monitor light incident on the PD light receiving surface 38a varies.
[0007]
Therefore, the ratio Le / Lo of the effective monitor light intensity Le to the laser output light intensity Lo varies, and the monitor light intensity detection value varies even when the laser output light intensity Lo is stable. When the monitor light intensity detection value fluctuates, the LD drive current is controlled by the laser controller 39 so as to keep it constant, and the monitor light is contrary to the original function, and the laser output Lo according to the influence of the light interference described above. This will result in a fluctuation of.
The present invention provides an LD-pumped solid-state laser device with a stable output, in which the ratio of the intensity of effective monitor light incident on the light-receiving surface of the photodetector does not fluctuate due to the influence of a slight temperature change of the protective resin or the glass substrate. The purpose is to provide.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an LD-pumped solid-state laser device of the present invention excites a solid-state laser medium with output light from a semiconductor laser, and installs a nonlinear optical element in an optical resonator including the solid-state laser medium. It is configured to output the second harmonic of the fundamental wave stimulated and emitted from the laser medium to the outside through the output mirror, and a predetermined part of the output is detected by the photodetector, and the detection output is constant. In the laser device that stabilizes the output by changing the drive current of the semiconductor laser so that the following is obtained, means for removing the interference of the monitor light incident on the light receiving surface is provided in front of the light receiving surface of the photodetector. Yes, as interference removal means, either one or both sides of the light-receiving surface protection resin or glass substrate are formed into a ground surface, and the monitor light is diffused, or the light-receiving surface protection resin or glass substrate is wedge-shaped. It is preferable to.
By the above means, the interference of the monitor light is eliminated, and the laser output does not fluctuate even when a slight temperature change of the resin for protecting the light receiving surface or the glass substrate and a slight change in the incident angle of the monitor light occur.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a system configuration diagram of an LD-pumped solid-state laser device according to an embodiment of the present invention, and FIGS. 2A, 2B, and 2C are detailed views of a part (PD) of FIG.
In FIG. 1, 1 is a semiconductor laser for exciting a solid laser medium, 2 (2a, 2b) is an optical system for irradiating the solid laser medium with light from the semiconductor laser 1, 2a is a collimator lens, 2b is It is a focus lens. 3 is a solid-state laser medium, for example, Nd: YAG is used. Reference numeral 5 denotes a non-linear optical element for generating an SH wave from the output of the solid laser medium 3, and for example, KNbO 3 is used. 6 is an output mirror having the characteristic of transmitting the SH wave and reflecting the fundamental wave. The front end face of the solid laser medium 3 transmits the LD light from the semiconductor laser 1 and reflects the fundamental wave and the SH wave stimulated and emitted from the solid laser medium 3 with high reflectivity. A coating film 3a is formed. The high reflection coating film 3a and the output mirror 6 form an optical resonator for SH waves.
[0010]
A beam sampler 7 is arranged close to the output mirror 6, and the SH wave output L of the output mirror 6 is converted into an actual SH wave output (transmitted light) Lo and monitor light SH wave (reflected light) Lm at a predetermined ratio. To separate. 8 is a light detector for detecting the intensity of the monitor light Lm, and 9 is a laser controller for controlling the laser light output Lo to a predetermined level. The detection result of the light detector 8 is fed back to the driver 9, and the SH wave The LD current is controlled so as to keep the output Lo constant.
[0011]
In the system configuration described above, in the present invention, means for preventing the multiple reflection of the monitor light incident on the light receiving surface and removing the interference of the monitor light is provided upstream of the light receiving surface 8a of the photodetector 8. Specific embodiments of the monitor light interference removing means S (S1, S2, S3) are shown in FIGS. 2A, 2B, and 2C, respectively. (A) of FIG. 2 forms a slit surface (S1) in the glass substrate 8d which comprises the input surface of the photodetector 8. FIG. The slit surface S1 is desirably formed not only in the range facing the light receiving surface 8a but also on the entire surface of the glass substrate 8d. In addition, although the surface S1 is formed on the surface (incident surface) in the drawing, it may be formed on the inner surface (exiting surface) or both surfaces. Due to the slit surface S1, the monitor light Lm incident on the detector 8 becomes diffused light on the slit surface and reaches the light receiving surface 8a with a disparate phase, so that no interference occurs.
[0012]
FIG. 2B shows an optical interference removing means S provided on the input surface side of the photodetector 8, wherein the glass substrate 8 d constituting the input surface of the photodetector 8 is inclined S 2 with respect to the light receiving surface 38 a, and resin The layer and the glass substrate are formed in a wedge shape. With this wedge shape, the optical path length gradually changes every time the incident monitor light is reflected, and there is almost no possibility of causing interference. In this case, the inclination direction of the glass substrate 8d is desirably a direction approaching the monitor light Lm as shown in the figure, but may be configured to be inclined in a direction away from the monitor light Lm.
[0013]
FIG. 2C shows a light diffusing plate (S3) provided near the outside of the glass substrate 8d constituting the input surface of the photodetector 8 as the optical interference removing means S provided on the input surface side of the photodetector 8. It is a thing. The light diffusing plate S3 is provided in parallel to face the entire surface of the glass substrate 8d. However, in some cases, the light diffusing plate (S3) itself may be arranged in a slightly inclined shape in combination with the method of FIG. Good.
Although not the main point of the present invention, in this embodiment, the output wavelength of the semiconductor laser 1 is, for example, 809 nm, Nd: YAG is used for the solid laser medium 3, the laser fundamental wave is 946 nm, and the SH wave ( Nonlinear optical element: KNbO 3 ) is 473 nm.
[0014]
In the above configuration, the focus lens 2b, the solid laser medium 3, the etalon, the nonlinear optical element 5, the output mirror 6, and the beam sampler 7 are fixed on a common base plate (not shown). A temperature sensor is embedded in the base plate, and a Peltier element for temperature adjustment, in which a heat radiating plate is thermally connected, is disposed on the lower surface side of the base plate. The temperature detection value K of the thermometer is fed back to the laser controller 9, and the drive current of the Peltier element is controlled so as to keep the temperature of the base plate, that is, the temperature of the nonlinear optical element 5 constant.
[0015]
Next, the operation of the device of the present invention will be described.
Output light from the semiconductor laser 1 is applied to the solid-state laser medium (Nd: YAG) 3 through the collimator lens 2a and the focus lens 2b. When the nonlinear optical element 5 is irradiated with the fundamental wave stimulated and emitted by exciting the solid laser medium 3 with the output light from the semiconductor laser 1, a second harmonic is generated. The output mirror 6 mainly transmits the SH wave. Therefore, the SH wave L is output to the outside of the optical resonator through the output mirror 6.
[0016]
The SH wave L output to the outside of the optical resonator is separated into the actual output light Lo and the monitor light Lm at a predetermined ratio by the beam sampler 7 disposed close to the output mirror 6, and the monitor light Lm It is guided to the detector 8 and its intensity is detected.
In the detection of the monitor Lm, means S, for example, a slit surface S1, for preventing multiple reflection of the monitor light incident on the light receiving surface and removing the interference of the monitor light is provided in the light detector 8 before the light receiving surface 8a. As a result, the monitor light Lm incident on the detector 8 becomes diffused light on the incident surface and reaches the light receiving surface 8a with a disparate phase, so that interference is prevented and effective monitor light for the laser output light intensity Lo is obtained. As long as the ratio Le / Lo of the intensity Le is maintained at a predetermined value and the laser output light intensity Lo is stable, the monitor light intensity detection value does not vary, and if the monitor light intensity detection value varies, it is held constant. As described above, the LD drive current is controlled by the controller 9, the monitor light performs its original function, and the laser output Lo is stably maintained.
[0017]
【The invention's effect】
As described above, according to the LD excitation wavelength conversion solid-state laser device of the present invention, the means for preventing the reflection of the monitor light and preventing the interference of the monitor light by preventing the reflection of the monitor light incident on the light receiving surface before the light receiving surface of the photodetector. By providing, interference due to multiple reflection does not occur inside the resin or glass substrate, so that the output of the PD does not fluctuate as long as the output is stable. Therefore, the laser output does not fluctuate even when there is a slight change in the temperature of the resin for protecting the light receiving surface, the glass substrate, or the change in the incident angle of the monitor light. Therefore, an LD-pumped solid-state laser device that is resistant to environmental temperature changes can be configured.
[Explanation of symbols]
LD: Semiconductor laser 2a: LD light collimator lens 2b: LD light condensing lens 3: Laser medium (Nd YAG crystal)
5: Non-linear crystal (KNbO 3 crystal)
6: Output mirror 7: Beam sampler 8: Photo diode 9: Laser controller [Brief description of the drawings]
FIG. 1 is a schematic system configuration diagram of an LD-pumped solid state laser apparatus according to an embodiment of the present invention.
FIG. 2 shows an embodiment of the main part of the LD-excited solid-state laser device of the present invention.
FIG. 3 shows a configuration example of a conventional LD-pumped solid-state laser device.
FIG. 4 is a diagram for explaining the operation of a conventional LD-pumped solid-state laser device.

Claims (1)

半導体レーザ(LD)からの出力光により固体レーザ媒質を励起するとともに、固体レーザ媒質を含む光共振器内に非線形光学素子を設置し、固体レーザ媒質から誘導放出される基本波の第二高調波を出力ミラーを介して外部に出力するように構成され、モニタ光を光検出器にて検出し、その検出出力が一定となるように半導体レーザの駆動電流を変化させて出力の安定化を行うレーザ装置において、光検出器の受光面の前段に受光面に入射するモニタ光の干渉を除去する手段を設け、前記モニタ光の干渉を除去する手段は、前記光検出器の入力面を構成するガラス基板に形成されたスリ面からなることを特徴とするLD励起固体レーザ装置  A solid-state laser medium is excited by output light from a semiconductor laser (LD), and a nonlinear optical element is installed in an optical resonator including the solid-state laser medium, and the second harmonic of the fundamental wave stimulated and emitted from the solid-state laser medium. Is output to the outside via an output mirror, the monitor light is detected by a photodetector, and the output of the semiconductor laser is changed so that the detection output is constant, thereby stabilizing the output. In the laser apparatus, means for removing interference of monitor light incident on the light receiving surface is provided in front of the light receiving surface of the photodetector, and the means for removing interference of the monitor light constitutes an input surface of the photodetector. An LD-pumped solid-state laser device comprising a groove surface formed on a glass substrate
JP2000125030A 2000-04-26 2000-04-26 LD pumped solid state laser device Expired - Lifetime JP3767318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000125030A JP3767318B2 (en) 2000-04-26 2000-04-26 LD pumped solid state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000125030A JP3767318B2 (en) 2000-04-26 2000-04-26 LD pumped solid state laser device

Publications (2)

Publication Number Publication Date
JP2001308429A JP2001308429A (en) 2001-11-02
JP3767318B2 true JP3767318B2 (en) 2006-04-19

Family

ID=18635058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000125030A Expired - Lifetime JP3767318B2 (en) 2000-04-26 2000-04-26 LD pumped solid state laser device

Country Status (1)

Country Link
JP (1) JP3767318B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4763337B2 (en) * 2005-05-09 2011-08-31 株式会社島津製作所 Semiconductor laser pumped solid-state laser device
KR101096906B1 (en) 2005-06-22 2011-12-22 엘지전자 주식회사 Apparatus for generating harmonic wave of laser and driving method thereof
WO2007096965A1 (en) * 2006-02-23 2007-08-30 Mitsubishi Denki Kabushiki Kaisha Wavelength conversion laser

Also Published As

Publication number Publication date
JP2001308429A (en) 2001-11-02

Similar Documents

Publication Publication Date Title
EP0514758B1 (en) Laser light generator
US7218655B2 (en) Solid state laser insensitive to temperature changes
JP2003218446A (en) Optical module and optical component
WO2007097177A1 (en) Wavelength converter and image display
US7103075B2 (en) Solid laser apparatus
JP3767318B2 (en) LD pumped solid state laser device
JPH0797675B2 (en) Semiconductor laser pumped solid-state laser device
US20050041703A1 (en) Laser system
JPH07181534A (en) Ultraviolet laser device
JPH07128695A (en) Light wavelength converting device
JPH05183220A (en) Semiconductor laser-excited solid-laser device
JP2000252570A (en) Wavelength converting solid-state laser device
JP2761678B2 (en) Laser diode pumped solid state laser
JPH1098222A (en) Wavelength converting solid-state laser
JP2005050847A (en) Laser device
JPH08181370A (en) Laser diode excitation solid state laser
JPH03116992A (en) Semiconductor laser device
JPH10303491A (en) Ld-excited wavelength converting solid laser device
JPH09293920A (en) Solid state laser device stimulated by semiconductor laser and photo detector
JPH1093165A (en) Semiconductor laser for exciting solid-state laser
JP2002311468A (en) Short-wavelength light source and optical device using the same
JPH11273138A (en) Optical semiconductor device and optical pickup
JP2001021772A (en) Laser diode module
JP2005010340A (en) Wavelength conversion laser device
JPH0582872A (en) Laser beam light source

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Ref document number: 3767318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

EXPY Cancellation because of completion of term