JP3766900B2 - Titanium dioxide photocatalyst-containing coating composition - Google Patents

Titanium dioxide photocatalyst-containing coating composition Download PDF

Info

Publication number
JP3766900B2
JP3766900B2 JP05155698A JP5155698A JP3766900B2 JP 3766900 B2 JP3766900 B2 JP 3766900B2 JP 05155698 A JP05155698 A JP 05155698A JP 5155698 A JP5155698 A JP 5155698A JP 3766900 B2 JP3766900 B2 JP 3766900B2
Authority
JP
Japan
Prior art keywords
titanium dioxide
parts
photocatalyst
coating
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05155698A
Other languages
Japanese (ja)
Other versions
JPH11228873A (en
Inventor
和夫 角井
満 中川
Original Assignee
イサム塗料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イサム塗料株式会社 filed Critical イサム塗料株式会社
Priority to JP05155698A priority Critical patent/JP3766900B2/en
Publication of JPH11228873A publication Critical patent/JPH11228873A/en
Application granted granted Critical
Publication of JP3766900B2 publication Critical patent/JP3766900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
本発明の分野
本発明は、脱臭、大気浄化、セルフクリーニング、抗菌等の機能を有する、二酸化チタン光触媒含有塗料組成物に関する。
【0002】
背景技術
近年微粒子二酸化チタンの光触媒活性を利用し、有害物質を光化学反応によって分解し、除去ないし無害化しようとする研究が盛んに行われている。光触媒となる二酸化チタンは一般に平均粒子径0.1μm以下の微粒子ないし超微粒子であるから、飛散や流出を避けるため何らかの形で支持体へ光触媒を固定化しなければならない。一つの固定化方法は光劣化を受けにくい無機バインダー、例えばシリカゾル中に分散して塗料化し、これを基材に塗布、乾燥して光触媒を含む塗膜を形成する方法である(特開平8−164334)。
【0003】
無機バインダーを使用するとバインダー自身が光触媒によって劣化することは避けられるが、塗膜性能特に耐衝撃性において有機樹脂をバインダーとする塗料に及ばない。
【0004】
有機樹脂バインダーを使用した塗膜の光触媒による劣化を抑制するため、二酸化チタン光触媒と無機系脱臭吸着剤の混合物をシリカゾルを使って多孔質マイクロカプセル化し、これを有機樹脂に分散する方法が特開平9−31335に記載されている。ところが、一般に顔料を塗料に均一に分散するためには、凝集により二次粒子に成長した粒子を一定の粒度以下にするためミルを使用してバインダー中で機械的に粉砕しなければならない。この時の物理的応力により光触媒の多孔質無機被覆層の少なくとも一部が破壊され、バインダー樹脂と直接接触するようになると、樹脂の光劣化による塗膜のチョーキング化が促進される。表面を多孔質シリカでコーティングした光触媒を使用しても同じ問題に遭遇する。
【0005】
本発明の開示
そこで本発明は、塗料化に際し避けられない分散工程によっても所望の触媒活性レベルを維持しつつ、バインダー樹脂が比較的長期間光触媒作用によって劣化しない、多孔質シリカ被覆二酸化チタン光触媒を含む塗料組成物を提供する。
【0006】
本発明は、乾燥塗膜中、多孔質シリカ被覆二酸化チタン光触媒含有量が5〜70重量%(好ましくは30〜60重量%)、顔料二酸化チタン含有量が5〜50重量%(好ましくは5〜20重量%)となるように、多孔質シリカ被覆二酸化チタン光触媒および顔料二酸化チタンを有機樹脂ビヒクル中に分散してなる二酸化チタン光触媒含有塗料組成物を提供する。
【0007】
詳細な議論
光触媒として機能するためには大きい比表面積を持たなければならないので、数nmないし数10nm範囲の微粒子ないし超微粒子が使用される。これに対し顔料二酸化チタンは通常0.2〜0.3μm(200〜300nm)の粒径を持っている。このような粒子径の相違により、顔料二酸化チタンは隠蔽力の大きい白色顔料として広く用いられるが、微粒子二酸化チタンはそのような光学的性質を持たない。また顔料二酸化チタンは、表面をZnO,Al2 3 ,SiO2 ,TiO2 ,ZrO2 等の含水酸化物によってコーティングすることによって光触媒活性を抑制してある。光触媒として使用する微粒子二酸化チタンもマトリック樹脂と直接接触しないようにシリカ等によるコーティングが施されている。しかしこの場合は外気と接触する表面を持たなければならないから、コーティング量も顔料二酸化チタンに比較して少なく、かつ被覆層は多孔質である。
【0008】
このような多孔質被覆処理された二酸化チタン光触媒は、例えば石原産業(株)から光触媒酸化チタンSTEシリーズとして市販されている。光触媒となる二酸化チタンの結晶形は通常アナターゼ型である。
【0009】
顔料二酸化チタンは、用途により各種銘柄のものが各社から市販されている。塗料用には耐候性にすぐれたルチル型が一般に使用されており、本発明においてもこれが好ましい。
【0010】
これまで論じたように、有機マトリックス樹脂で固定した二酸化チタン光触媒塗膜の触媒活性と耐チョーキング性は一般に両立しない。換言すれば高い触媒活性を有する塗膜は短期間でチョーキングを起こし易い。本発明者らは、二酸化チタン光触媒と顔料二酸化チタンを一定の割合で併用することにより、触媒活性を所望レベルに維持しつつ耐チョーキング寿命を有意義に延長できることを発見した。
【0011】
その結果、乾燥塗膜中の光触媒の顔料重量濃度PWCは5〜70%,好ましくは30〜60%,顔料二酸化チタンのPWCは5〜50%,好ましくは5〜20%が適当であることがわかった。総PWCは少なくとも40%,好ましくは40〜70%が適当である。
【0012】
有機樹脂は、乾燥塗膜中で光触媒および顔料二酸化チタンのマトリックスを構成する。使用される有機樹脂は慣用のものでよいが、特に含フッ素およびアクリルシリコーン系有機樹脂が好ましい。これら成分は塗料の分野では周知であり、これ以上の詳しい説明は不要であろう。
【0013】
塗料化は、光触媒、顔料二酸化チタンおよび必要により他の添加剤をバインダー樹脂のワニスへ添加し、先に述べたように各種塗料用ミルを用いて所望粒度に達するまで均一に分散する。ガラスビーズ等の分散媒体を使用するミルが好ましい。
【0014】
塗装は、ハケ、ローラー、吹付け等の一般の塗装法を用いて実施することができる。基材は金属、ガラス、セラミックス、コンクリート、木材等であるが、密着性を向上させるためブラスト処理やプライマー塗布を行った後に塗装してもよい。
【0015】
形成された塗膜は、二酸化チタン光触媒による光化学反応によって大気中の有害物質を分解することにより、脱臭、大気浄化、セルフクリーニング、抗菌等の機能を発揮し、かつ有機樹脂を使用するにも拘らず有効寿命が長い。
【0016】
以下の実施例において「部」および「%」は重量基準による。
【0017】
実施例1
表1に示す配合の分散液No.1〜No.8を調製した。
【0018】
【表1】

Figure 0003766900
【0019】
原料混合物をビーカーに入れ、これに粒径1.2〜1.5mmのガラスビーズ(東芝)300重量部を投入し、ディゾルバーにて1200rpmの速度で約20分間分散し、分散終了後ガラスビーズを濾過して除去し、分散液を得た。
【0020】
この分散液90重量部と、住友バイエルウレタン(株)製HDI系ポリイソシアネート硬化剤N−75(60%酢酸ブチル溶液)10重量部と、酢酸ブチル45部を混合し、塗料液とした。
【0021】
この塗料液をガラス板及びフッ素エナメル塗料既塗装板へそれぞれスプレー塗装し、室温で14日間乾燥し、塗板を得た。
【0022】
フッ素エナメル塗料既塗装板へ塗布したものはJIS K5400に規定するサンシャインウエザーメーターにて1000時間の促進暴露試験を行い、その塗膜劣化度をJIS K5400に規定される白亜化度にて評価した。
【0023】
ガラス板に塗布した塗板は強度5mW/cm2 の照射量にてブラックライトを48時間照射した後、以下の試験方法によりNOガス分解性能を評価した。
【0024】
NOガス分解性能試験方法
試験装置:
ガス入口および出口を有する頂面を石英ガラス板で覆ったアクリル樹脂製ボックスに50×300mmの試験片を石英ガラス板との間隔5mmを保って固定し、石英ガラスの上方に設置したブラックライトから照射エネルギー1.5mV/cm2 にて試験片に紫外線を照射する。
試験方法:
測定開始前、前記装置にNOガス濃度3ppmの空気を1.5L/minの流量で60分間通過させ、平衡化させる。平衡に達した後、装置の入口および出口においてガス中のNO濃度それぞれNOINおよびNOOUT を測定し、以下の式を用いてNOガス分解率(%)を求める。
分解率(%)=(NOIN−NOOUT )×100/NOIN
結果:
塗膜中の光触媒と顔料二酸化チタン含量の白亜化度およびNO分解率に対する影響を表2に示す。
【0025】
【表2】
Figure 0003766900
【0026】
実施例2
フッ素樹脂塗料(イソシアネート架橋形)
樹脂:ルミフロンLF−100 48.0部
光触媒:タイペークSTE−01 27.8部
着色顔料:タイペークCR−97 2.7部
溶剤:酢酸ブチル 18.5部
ルミフロンLF−100:旭硝子(株)製フッソ樹脂系ポリオール
上記の原料混合物をビーカーに入れ、これに粒径1.2〜1.5mmのガラスビーズ200重量部を投入し、ディゾルバーにて1200rpmの速度で約20分間分散し、分散終了後、ガラスビーズを濾過により除去し、分散液を得た。この分散液90部と硬化剤(住友バイエルウレタン(株)製ポリイソシアネート硬化剤N−75 60%酢酸ブチル溶液)10重量部と酢酸ブチル45部を混合し、塗料液とした。
【0027】
実施例3
フッ素樹脂塗料(メラミン架橋形)
樹脂:ルミフロンLF−100 48.0部
光触媒:タイペークSTE−01 25.05部
着色顔料:タイペークCR−97 5.45部
溶剤:酢酸ブチル 18.5部
添加剤:DISPER BYK163 3.0部
上記の原料混合物をビーカーに入れ、これに粒径1.2〜1.5mmのガラスビーズ200重量部を投入し、ディゾルバーにて1200rpmの速度で約20分間分散し、分散終了後、ガラスビーズを濾過により除去し、分散液を得た。この分散液90部と三井サイナミッド(株)製メラミン樹脂325 10重量部と酢酸ブチル45部を混合し、塗料液とした。
【0028】
実施例4
Figure 0003766900
上記の原料混合物をビーカーに入れ、これに粒径1.2〜1.5mmのガラスビーズ200重量部を投入し、ディゾルバーにて1200rpmの速度で約20分間分散し、分散終了後、ガラスビーズを濾過により除去し、分散液を得た。この分散液100部とジブチル錫ジラウレートのキシレン溶液(ジブチル錫ジラウレート:キシレン=1:9)1部と酢酸ブチル45部を混合し、塗料液とした。
【0029】
実施例5
Figure 0003766900
上記原料混合物をビーカーに入れ、デイゾルバーにて1200rpmの速度で約20分間分散し、この分散液100部と脱イオン水20部を混合し、塗料液とした。
【0030】
実施例6
アクリルポリオール樹脂塗料(イソシアネート架橋形)
樹脂:アクリディックA−801 48.0部
光触媒:タイペークSTE−01 25.05部
着色顔料:タイペークCR−97 5.45部
溶剤:酢酸ブチル 18.5部
添加剤:DISPER BYK163 3.0部
上記の原料混合物をビーカーに入れ、これに粒径1.2〜1.5mmのガラスビーズ200重量部を投入し、ディゾルバーにて1200rpmの速度で約20分間分散し、分散終了後、ガラスビーズを濾過により除去し、分散液を得た。この分散液90部と硬化剤(住友バイエルウレタン(株)製ポリイソシアネート硬化剤N−75 60%酢酸溶液)10重量部と酢酸ブチル45部を混合し、塗料液とした。
【0031】
実施例7
Figure 0003766900
上記の原料混合物をビーカーに入れ、これに粒径1.2〜1.5mmのガラスビーズ200重量部を投入し、ディゾルバーにて1200rpmの速度で約20分間分散し、分散終了後、ガラスビーズを濾過により除去し、分散液を得た。この分散液90部と酢酸ブチル45部を混合し、塗料液とした。
【0032】
実施例2〜7の塗料について、実施例1と同様に促進耐候性試験およびNO分解試験を行った。
【0033】
試験片の作成および試験方法:
実施例2〜7の塗料を塗装用スプレーガンにてガラス板、及びフッ素塗料エナメル既塗装板に塗布し、実施例2,4〜7は室温にて14日乾燥させたものを試験片とした。実施例3は室温で1時間セッティング後、180℃×20分焼付硬化したものを試験片とした。
作成試験片のうち、フッ素塗料エナメル既塗装板に塗布乾燥したものについては、JIS K5400に規定するサンシャインウエザーメーターにて1000時間、及び2000時間の促進暴露を実施し、その塗膜表面劣化度をJIS K5400に規定する白亜化度にて評価した。また、ガラス板に塗布乾燥したものについては、実施例1と同じ方法でNO分解率を測定した。
【0034】
【表3】
Figure 0003766900
【0035】
上の結果から、二酸化チタン光触媒に顔料二酸化チタンを併用することにより、有機ビヒクル樹脂の光触媒による劣化を抑制し得ることが明らかである。[0001]
Field of the present invention The present invention relates to a titanium dioxide photocatalyst-containing coating composition having functions such as deodorization, air purification, self-cleaning, and antibacterial.
[0002]
Background Art In recent years, active research has been conducted to decompose or remove harmful substances by photochemical reaction using the photocatalytic activity of fine particle titanium dioxide. Since titanium dioxide as a photocatalyst is generally fine particles or ultrafine particles having an average particle diameter of 0.1 μm or less, the photocatalyst must be fixed to the support in some form in order to avoid scattering and outflow. One immobilization method is a method of forming a coating film containing a photocatalyst by dispersing it in an inorganic binder that is not easily subject to photodegradation, for example, silica sol, and coating it on a base material and drying it (Japanese Patent Laid-Open No. Hei 8- 164334).
[0003]
When an inorganic binder is used, it is avoided that the binder itself deteriorates due to the photocatalyst, but the coating performance, particularly impact resistance, is not as good as that of a paint using an organic resin as a binder.
[0004]
In order to suppress deterioration due to the photocatalyst of the coating film using the organic resin binder, there is disclosed a method in which a mixture of a titanium dioxide photocatalyst and an inorganic deodorizing adsorbent is made into a porous microcapsule using silica sol and dispersed in an organic resin. 9-31335. However, in general, in order to uniformly disperse the pigment in the coating material, it is necessary to mechanically grind in the binder using a mill in order to make the particles that have grown into secondary particles by aggregation have a certain particle size or less. When at least a part of the porous inorganic coating layer of the photocatalyst is destroyed due to physical stress at this time and comes into direct contact with the binder resin, the choking of the coating film due to photodegradation of the resin is promoted. The same problem is encountered when using a photocatalyst whose surface is coated with porous silica.
[0005]
DISCLOSURE OF THE INVENTION Accordingly, the present invention provides a porous silica coating in which the binder resin is not deteriorated by photocatalysis for a relatively long period of time while maintaining a desired catalytic activity level even by a dispersion process that is unavoidable during coating. A coating composition comprising a titanium dioxide photocatalyst is provided.
[0006]
In the dried coating film, the present invention has a porous silica-coated titanium dioxide photocatalyst content of 5 to 70% by weight (preferably 30 to 60% by weight), and a pigment titanium dioxide content of 5 to 50% by weight (preferably 5 to 5%). A titanium dioxide photocatalyst-containing coating composition obtained by dispersing a porous silica-coated titanium dioxide photocatalyst and pigment titanium dioxide in an organic resin vehicle so as to be 20% by weight).
[0007]
Detailed discussion Since it must have a large specific surface area in order to function as a photocatalyst, fine particles or ultrafine particles in the range of several nm to several tens of nm are used. In contrast, pigmented titanium dioxide usually has a particle size of 0.2 to 0.3 μm (200 to 300 nm). Due to the difference in particle diameter, pigment titanium dioxide is widely used as a white pigment having a large hiding power, but fine particle titanium dioxide does not have such optical properties. The pigment titanium dioxide has a photocatalytic activity suppressed by coating the surface with a hydrous oxide such as ZnO, Al 2 O 3 , SiO 2 , TiO 2 or ZrO 2 . Fine titanium dioxide used as a photocatalyst is also coated with silica or the like so as not to come into direct contact with the matrix resin. However, in this case, since the surface must be in contact with the outside air, the coating amount is smaller than that of the pigment titanium dioxide, and the coating layer is porous.
[0008]
Such a porous coating-treated titanium dioxide photocatalyst is commercially available from, for example, Ishihara Sangyo Co., Ltd. as a photocatalytic titanium oxide STE series. The crystal form of titanium dioxide serving as a photocatalyst is usually anatase type.
[0009]
Pigmented titanium dioxide is commercially available from various companies depending on the application. A rutile type having excellent weather resistance is generally used for coatings, and this is preferable in the present invention.
[0010]
As discussed so far, the catalytic activity and choking resistance of a titanium dioxide photocatalyst film fixed with an organic matrix resin are generally incompatible. In other words, a coating film having high catalytic activity is likely to cause choking in a short period of time. The present inventors have found that the combined use of a titanium dioxide photocatalyst and pigment titanium dioxide in a certain ratio can significantly extend the anti-choking life while maintaining the catalyst activity at a desired level.
[0011]
As a result, it is appropriate that the pigment weight concentration PWC of the photocatalyst in the dried coating film is 5 to 70%, preferably 30 to 60%, and the PWC of the pigment titanium dioxide is 5 to 50%, preferably 5 to 20%. all right. The total PWC is suitably at least 40%, preferably 40-70%.
[0012]
The organic resin constitutes a matrix of photocatalyst and pigment titanium dioxide in the dried coating. Although the organic resin used may be a conventional one, fluorine-containing and acrylic silicone organic resins are particularly preferable. These components are well known in the field of paints and need no further explanation.
[0013]
In the coating process, a photocatalyst, pigment titanium dioxide and, if necessary, other additives are added to the varnish of the binder resin, and uniformly dispersed until reaching the desired particle size using various coating mills as described above. A mill using a dispersion medium such as glass beads is preferred.
[0014]
The painting can be carried out using a general painting method such as brushing, roller, spraying or the like. The base material is metal, glass, ceramics, concrete, wood, etc., but may be applied after blasting or primer application to improve adhesion.
[0015]
The formed coating film exhibits functions such as deodorization, air purification, self-cleaning, and antibacterial by decomposing harmful substances in the atmosphere by photochemical reaction with titanium dioxide photocatalyst, and even though organic resin is used. Long useful life.
[0016]
In the following examples, “parts” and “%” are based on weight.
[0017]
Example 1
Dispersion No. 1 having the composition shown in Table 1. 1-No. 8 was prepared.
[0018]
[Table 1]
Figure 0003766900
[0019]
The raw material mixture is put into a beaker, and 300 parts by weight of glass beads (Toshiba) having a particle size of 1.2 to 1.5 mm are added thereto, and dispersed in a dissolver at a speed of 1200 rpm for about 20 minutes. Removal by filtration gave a dispersion.
[0020]
90 parts by weight of this dispersion, 10 parts by weight of HDI polyisocyanate curing agent N-75 (60% butyl acetate solution) manufactured by Sumitomo Bayer Urethane Co., Ltd., and 45 parts of butyl acetate were mixed to prepare a coating liquid.
[0021]
The coating liquid was spray-coated on a glass plate and a fluorine enamel coating plate, and dried at room temperature for 14 days to obtain a coated plate.
[0022]
The coating applied to the pre-painted fluorine enamel paint plate was subjected to an accelerated exposure test for 1000 hours with a sunshine weather meter specified in JIS K5400, and the degree of coating film deterioration was evaluated based on the chalking degree specified in JIS K5400.
[0023]
The coated plate coated on the glass plate was irradiated with black light for 48 hours at an intensity of 5 mW / cm 2 and evaluated for NO gas decomposition performance by the following test method.
[0024]
NO gas decomposition performance test method <br/> Test equipment:
From a black light placed above the quartz glass, a 50 × 300 mm test piece was fixed to an acrylic resin box whose top surface with a gas inlet and outlet was covered with a quartz glass plate with a spacing of 5 mm from the quartz glass plate. The test piece is irradiated with ultraviolet rays at an irradiation energy of 1.5 mV / cm 2 .
Test method:
Before starting the measurement, air with an NO gas concentration of 3 ppm is passed through the apparatus at a flow rate of 1.5 L / min for 60 minutes to equilibrate. After reaching equilibrium, the NO concentrations in the gas, NO IN and NO OUT, are measured at the inlet and outlet of the apparatus, respectively, and the NO gas decomposition rate (%) is determined using the following equation.
Decomposition rate (%) = (NO IN −NO OUT ) × 100 / NO IN
result:
Table 2 shows the effects of the photocatalyst and pigment titanium dioxide content in the coating film on the chalking degree and the NO decomposition rate.
[0025]
[Table 2]
Figure 0003766900
[0026]
Example 2
Fluorine resin paint (isocyanate cross-linked type)
Resin: Lumiflon LF-100 48.0 parts Photocatalyst: Typek STE-01 27.8 parts Color pigment: Typek CR-97 2.7 parts Solvent: Butyl acetate 18.5 parts Lumiflon LF-100: Fluoro manufactured by Asahi Glass Co., Ltd. Resin-based polyol The above raw material mixture is placed in a beaker, 200 parts by weight of glass beads having a particle size of 1.2 to 1.5 mm are added thereto, and dispersed in a dissolver at a speed of 1200 rpm for about 20 minutes. The glass beads were removed by filtration to obtain a dispersion. 90 parts of this dispersion, 10 parts by weight of a curing agent (polyisocyanate curing agent N-75 60% butyl acetate solution manufactured by Sumitomo Bayer Urethane Co., Ltd.) and 45 parts of butyl acetate were mixed to obtain a coating liquid.
[0027]
Example 3
Fluorine resin paint (melamine cross-linked type)
Resin: Lumiflon LF-100 48.0 parts Photocatalyst: Typek STE-01 25.05 parts Color pigment: Typek CR-97 5.45 parts Solvent: Butyl acetate 18.5 parts Additive: DISPER BYK163 3.0 parts The raw material mixture is put into a beaker, 200 parts by weight of glass beads having a particle size of 1.2 to 1.5 mm are added thereto, and dispersed in a dissolver at a speed of 1200 rpm for about 20 minutes. After the dispersion is completed, the glass beads are filtered. Removal gave a dispersion. 90 parts of this dispersion, 10 parts by weight of melamine resin 325 manufactured by Mitsui Sinamid Co., Ltd., and 45 parts of butyl acetate were mixed to obtain a coating liquid.
[0028]
Example 4
Figure 0003766900
The above raw material mixture is put into a beaker, 200 parts by weight of glass beads having a particle size of 1.2 to 1.5 mm are added thereto, and dispersed in a dissolver at a speed of 1200 rpm for about 20 minutes. Removal by filtration gave a dispersion. 100 parts of this dispersion, 1 part of a xylene solution of dibutyltin dilaurate (dibutyltin dilaurate: xylene = 1: 9) and 45 parts of butyl acetate were mixed to obtain a coating liquid.
[0029]
Example 5
Figure 0003766900
The raw material mixture was placed in a beaker and dispersed in a dissolver at a speed of 1200 rpm for about 20 minutes, and 100 parts of this dispersion and 20 parts of deionized water were mixed to obtain a coating liquid.
[0030]
Example 6
Acrylic polyol resin paint (isocyanate cross-linked type)
Resin: Acridic A-801 48.0 parts Photocatalyst: Typek STE-01 25.05 parts Color pigment: Typek CR-97 5.45 parts Solvent: Butyl acetate 18.5 parts Additive: DISPER BYK163 3.0 parts Above Into a beaker, 200 parts by weight of glass beads having a particle size of 1.2 to 1.5 mm are added and dispersed in a dissolver at a speed of 1200 rpm for about 20 minutes. After the dispersion is completed, the glass beads are filtered. To obtain a dispersion. 90 parts of this dispersion, 10 parts by weight of a curing agent (polyisocyanate curing agent N-75 60% acetic acid solution manufactured by Sumitomo Bayer Urethane Co., Ltd.) and 45 parts of butyl acetate were mixed to obtain a coating liquid.
[0031]
Example 7
Figure 0003766900
The above raw material mixture is put into a beaker, 200 parts by weight of glass beads having a particle size of 1.2 to 1.5 mm are added thereto, and dispersed in a dissolver at a speed of 1200 rpm for about 20 minutes. Removal by filtration gave a dispersion. 90 parts of this dispersion and 45 parts of butyl acetate were mixed to prepare a coating liquid.
[0032]
The paints of Examples 2 to 7 were subjected to an accelerated weather resistance test and an NO decomposition test in the same manner as in Example 1.
[0033]
Test piece preparation and test method:
The paints of Examples 2 to 7 were applied to a glass plate and a fluorine paint enameled pre-painted plate with a spray gun for painting, and Examples 2 and 4 to 7 were used as test pieces that were dried at room temperature for 14 days. . In Example 3, after setting for 1 hour at room temperature, a sample which was baked and cured at 180 ° C. for 20 minutes was used as a test piece.
Of the prepared test pieces, those that were applied and dried on a pre-coated board with fluorine paint enamel were subjected to 1000 hours and 2000 hours of accelerated exposure using a sunshine weather meter specified in JIS K5400, and the coating surface deterioration degree was determined. Evaluation was made according to the chalking degree defined in JIS K5400. Moreover, about what apply | coated and dried to the glass plate, the NO decomposition rate was measured by the same method as Example 1. FIG.
[0034]
[Table 3]
Figure 0003766900
[0035]
From the above results, it is clear that the deterioration of the organic vehicle resin due to the photocatalyst can be suppressed by using the titanium dioxide photocatalyst in combination with the pigment titanium dioxide.

Claims (2)

乾燥塗膜中の含有量がそれぞれ30〜60重量%および5〜20重量%となるように、多孔質シリカ被覆二酸化チタン光触媒および顔料二酸化チタンをアクリル樹脂、フッ素樹脂またはアクリルシリコーン樹脂より選ばれた有機樹脂塗料ビヒクルに分散してなる二酸化チタン光触媒含有塗料組成物。Porous silica-coated titanium dioxide photocatalyst and pigment titanium dioxide were selected from acrylic resin, fluororesin or acrylic silicone resin so that the content in the dried coating film would be 30 to 60 % by weight and 5 to 20 % by weight, respectively . A titanium dioxide photocatalyst-containing coating composition dispersed in an organic resin coating vehicle. 二酸化チタン光触媒はアナターゼ型であり、顔料二酸化チタンはルチル型である請求項1の塗料組成物。  The coating composition according to claim 1, wherein the titanium dioxide photocatalyst is anatase type and the pigment titanium dioxide is rutile type.
JP05155698A 1998-02-16 1998-02-16 Titanium dioxide photocatalyst-containing coating composition Expired - Fee Related JP3766900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05155698A JP3766900B2 (en) 1998-02-16 1998-02-16 Titanium dioxide photocatalyst-containing coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05155698A JP3766900B2 (en) 1998-02-16 1998-02-16 Titanium dioxide photocatalyst-containing coating composition

Publications (2)

Publication Number Publication Date
JPH11228873A JPH11228873A (en) 1999-08-24
JP3766900B2 true JP3766900B2 (en) 2006-04-19

Family

ID=12890278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05155698A Expired - Fee Related JP3766900B2 (en) 1998-02-16 1998-02-16 Titanium dioxide photocatalyst-containing coating composition

Country Status (1)

Country Link
JP (1) JP3766900B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9073009B2 (en) * 2006-06-01 2015-07-07 Carrier Corporation Air purification system
JP5137352B2 (en) * 2006-07-28 2013-02-06 旭化成イーマテリアルズ株式会社 Aqueous pollution control composition and painted product
ES2357083T3 (en) 2007-08-28 2011-04-18 Basf Se TIO2 PHOTOACTIVE IN COATING MATERIALS.
US8431220B2 (en) * 2009-06-05 2013-04-30 Xerox Corporation Hydrophobic coatings and their processes
WO2014097309A1 (en) 2012-12-17 2014-06-26 Asian Paints Ltd. Stimuli responsive self cleaning coating

Also Published As

Publication number Publication date
JPH11228873A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
EP1512728B1 (en) Photocatalytic coating material, photocatalytic composite material and process for producing the same, self-cleaning water-based coating compositions, and self-cleaning member
JP2004331969A (en) Protective autologous decontamination or autologous cleaning coating against deleterious biological pathogen and toxic chemical
JP4092434B1 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JPH1190315A (en) Coating agent composition, formation of hydrophilic film and product coated with hydrophilic coating film
WO2005085375A1 (en) Coating for metal surfaces, method for the production thereof and use thereof as a self-cleaning protective layer, particularly for the rims of automobiles
WO2009145209A1 (en) Object with photo-catalyst coating
JP2007144403A (en) Composite type particulate photocatalyst, method for manufacturing the same and coating agent and photocatalytically-active member using the same
JP3818811B2 (en) Photocatalytic filter for air purification
JP3976851B2 (en) Method for producing titanium dioxide fine particles, method for producing photocatalyst powder for NOX purification, method for producing paint, method for producing building material
WO2011118780A1 (en) Photocatalyst-coated body and photocatalyst coating liquid
EP1706360B1 (en) COMPOSITION FOR USE NOx REMOVING TRANSLUCENT COATING
JP3766900B2 (en) Titanium dioxide photocatalyst-containing coating composition
JP2005179686A (en) Photocatalytic coating agent, photocatalytic composite material and method for producing the same
JP5552378B2 (en) Visible light responsive photocatalyst-containing interior coating composition and coating film containing the same
JP3978636B2 (en) Coating composition for photocatalyst film formation
JP2000204287A (en) Paint composition with low pollution properties
JP2001081412A (en) PHOTOCATALYTIC COATING FOR CLEANUP OF NOx AND METHOD FOR FORMING FILM THEREOF
JP2002079109A (en) Optical semiconductor metal-organic substance mixed body, composition containing optical semiconductor metal, method for producing photocatalytic film and photocatalytic member
JP5065636B2 (en) Method for producing optical semiconductor fine particles
JP2004091697A (en) Liquid for forming titanium oxide film, method for forming titanium oxide film, titanium oxide film and photocatalytic member
JP2006136782A (en) Photocatalyst aluminum member
JP2004105920A (en) Photocatalyst-carrying structural body
JP2005246296A (en) Mixed solution of photocatalytic metal oxide and organic substance for direct coating of organic matter, metal oxide-containing composition, method for producing photocatalytic film, and obtained photocatalytic film and photocatalytic member
JP2005139314A (en) Coating agent and method for forming porous film using the same
JP5065696B2 (en) Method for producing photocatalytic coating composition and photocatalytic coating composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees