JP3766457B2 - Acetoacetate group-containing polyvinyl alcohol resin and process for producing the same - Google Patents

Acetoacetate group-containing polyvinyl alcohol resin and process for producing the same Download PDF

Info

Publication number
JP3766457B2
JP3766457B2 JP29350295A JP29350295A JP3766457B2 JP 3766457 B2 JP3766457 B2 JP 3766457B2 JP 29350295 A JP29350295 A JP 29350295A JP 29350295 A JP29350295 A JP 29350295A JP 3766457 B2 JP3766457 B2 JP 3766457B2
Authority
JP
Japan
Prior art keywords
degree
pva
polyvinyl alcohol
alcohol resin
diketene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29350295A
Other languages
Japanese (ja)
Other versions
JPH09110925A (en
Inventor
義明 伊藤
光夫 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP29350295A priority Critical patent/JP3766457B2/en
Publication of JPH09110925A publication Critical patent/JPH09110925A/en
Application granted granted Critical
Publication of JP3766457B2 publication Critical patent/JP3766457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、透明性及び水溶液の安定性に優れたアセト酢酸エステル基含有ポリビニルアルコール系樹脂及びその製造法に関する。
【0002】
【従来の技術】
従来のアセト酢酸エステル基含有PVA系樹脂(以下AA化PVAと略記する)はポリビニルアルコール系樹脂(以下PVAと略記する)をジケテンと反応させて製造されており、具体的には酢酸溶媒中にPVAを溶解又は分散させておき、これにジケテンを添加反応する方法、PVAをジメチルホルムアミドまたはジオキサンなどの溶媒に予め、溶解しておき、これにジケテンを添加反応する方法が古くから知られている。
【0003】
しかしこれらの従来技術では、反応液から、反応生成物を収得するために反応生成物に沈澱剤を加え、生成物を沈澱させた後に生成物と母液の分離、また分離した母液中から溶媒と沈澱剤の回収、更に、分離された生成物からの溶媒及び沈澱剤の除去など多くの繁雑な工程が不可欠であり、かかる工程が必然的に製品コストに大きく影響し、工業化に際しては、経済的に不利を招くものであった。
【0004】
しかして本出願人はかかる従来技術に比してより容易にしかも安価にAA化PVAを得る方法について検討を重ねた結果、PVAにジケテンガス又は液状ジケテンを直接接触させてAA化PVAを得る方法を見いだし、先に特許出願した(特開昭55−137107号公報、特開昭55−94904号公報)。該方法では、未反応のジケテンの除去が容易で後処理工程が簡略化され、また触媒量も少量で良かったが、AA化PVAがやや着色し、また未溶解分が生成し、AA化PVAを使用する一部の用途では問題となっていた。
【0005】
その改良技術として、本出願人はPVAに吸蔵しうる限度内の有機酸を共存させてAA化PVAを得る方法についても特許出願した(特開昭57−40508号公報)。
該方法により、AA化PVAの着色問題、未溶解分生成問題はおおよそ解決された。
【0006】
【発明が解決しようとする課題】
しかし近年AA化PVAは、その優れた特性により広範囲な用途に大量に使用されるようになり、技術の高度化のもと、従来ではほとんど問題とならなかったより高品質の物性が求められる様になっている。
結晶化度の高いPVAをアセト酢酸エステル化した場合に上記に示した幾つかの方法により製造されたAA化PVAではいずれも水溶液の透明性がやや悪く、未溶解分の生成が多く、又粉末で長期間保存すると、保存後の該粉末を水溶液にした時に未溶解分の生成が多く、又水溶液で長期間保存しても粘度の安定性が悪く、未溶解分の生成、粘度の安定性という点で更に改善の余地がある事が判明した。
【0007】
【課題を解決するための手段】
本発明者は、かかる問題を克服すべく鋭意検討し、AA化PVAの粒度別のアセト酢酸エステル化度(以下AA化度と略記する)を検討していたところ、驚くべきことに、44〜74、74〜105、105〜177、177〜297、297〜500、500〜1680μmの各粒径に分別されたアセト酢酸エステル基含有ポリビニルアルコール系樹脂の各々のアセト酢酸エステル化度を、中和滴定によるアルカリ消費量から計算し、最も高いアセト酢酸エステル化度を最も低いAA化度で割った値が3.0〜1.0であるAA化PVAが、水溶液の透明性が良く、未溶解分の生成量が少なく、又粉末で長期間保存しても、粘度の安定性が良好であることを見いだし、本発明を完成するに至った。
【0008】
なお粒径が44〜74μmとは標準金網により350メッシュ(44μm)オン、200メッシュ(74μm)パスによりふるい分けされた粒径のものを意味し、74〜105μmとは200メッシュ(74μm)オン、145メッシュ(105μm)パスによりふるい分けされた粒径のものを、105〜177μmとは145メッシュ(105μm)オン、80メッシュ(177μm)パスによりふるい分けされた粒径のものを、177〜297μmとは80メッシュ(177μm)オン、48メッシュ(297μm)パスによりふるい分けされた粒径のもの、297〜500μmとは48メッシュ(297μm)オン、32メッシュ(500μm)パスによりふるい分けされた粒径のものを、500〜1680μmとは32メッシュ(500μm)オン、10.5メッシュ(1680μm)パスによりふるい分けされた粒径のものを意味する。
【0009】
かかるAA化度分布の測定法としては、上記の如くAA化PVAを44〜74、74〜105、105〜177、177〜297、297〜500、500〜1680μmの各粒径に分別した後、各々のAA化度を、中和滴定によるアルカリ消費量から計算し、最も高いAA化度を最も低いAA化度で割って算出する。但しAA化PVAの粒度分布が狭く、特定の粒度の部分にすべて入ってしまい、単一のAA化度の値しか算出されない場合は、AA化度分布を1.0とする。
【0010】
【発明の実施の形態】
以下、本発明について詳述する。
本発明のAA化PVAは、PVAとジケテンを反応させる方法、PVAをアセト酢酸エステルと反応させる方法、アセト酢酸ビニルを共重合させる方法等によりPVA中にアセト酢酸エステル基を導入し、該PVA中のAA化度分布を、上記の如く規定したもので、該AA化度分布が3.0〜1.0であることが必要であり、好ましくは2.0〜1.0、更に好ましくは、1.5〜1.0である。
【0011】
AA化度分布が3.0を越えると、AA化PVAを水に溶解した時に微量の未溶解物が存在したり、透明度が下がったり、AA化PVAを水溶液にして長期間保存した時の粘度が増加し、又AA化PVAを粉末で長期間保存したのち、水溶液にした時の粘度が製造直後の粉末を水溶液にした時の粘度に比べて高くなり、本発明の目的を達し得ない。
【0012】
上記の如きAA化度分布のAA化PVAを得る方法としては特に制限されず、例えば、原料PVAの膨潤度及び溶出率、粒度等を特定の範囲に調節したり、AA化PVA製造後、AA化度が高い粒度画分や低い粒度画分を除去したり、またAA化PVAの平均のAA化度を低めに調節する等が挙げられるが、通常は原料PVAの膨潤度及び溶出率、粒度を調節することが実用的である。
【0013】
以下原料PVAの調節について詳述する。
かかる原料PVAとしては、ポリ酢酸ビニルの低級アルコール溶液をアルカリなどのケン化触媒によってケン化して得られたPVAその誘導体、さらに酢酸ビニルと共重合性を有する単量体と酢酸ビニルとの共重合体のケン化物が挙げられる。
【0014】
酢酸ビニル成分のケン化度として好ましくは5〜100モル%、更に好ましくは75〜99モル%である。平均重合度としては特に限定されないが、好ましくは200〜3000である。
【0015】
該単量体としては、例えばエチレン、プロピレン、イソブチレン、α−オクテン、α−ドデセン、α−オクタデセン等のオレフィン類、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸等の不飽和酸類あるいはその塩あるいはモノ又はジアルキルエステル等、アクリロニトリル、メタアクリロニトリル等のニトリル類、アクリルアミド、メタクリルアミド等のアミド類、エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸あるいはその塩、アルキルビニルエーテル類、N−アクリルアミドメチルトリメチルアンモニウムクロライド、アリルトリメチルアンモニウムクロライド、ジメチルジアリルアンモニウムクロリド、ジメチルアリルビニルケトン、N−ビニルピロリドン、塩化ビニル、塩化ビニリデン、ポリオキシエチレン(メタ)アリルエーテル、ポリオキシプロピレン(メタ)アリルエーテルなどのポリオキシアルキレン(メタ)アリルエーテル、ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート等のポリオキシアルキレン(メタ)アクリレート、ポリオキシエチレン(メタ)アクリルアミド、ポリオキシプロピレン(メタ)アクリルアミド等のポリオキシアルキレン(メタ)アクリルアミド、ポリオキシエチレン(1−(メタ)アクリルアミドー1,1−ジメチルプロピル)エステル、ポリオキシエチレンビニルエーテル、ポリオキシプロピレンビニルエーテル、ポリオキシエチレンアリルアミン、ポリオキシプロピレンアリルアミン、ポリオキシエチレンビニルアミン、ポリオキシプロピレンビニルアミン等との共重合ケン化物が挙げられる。
【0016】
本発明では該PVAの膨潤度及び溶出率を以下のように調節するのである。即ち本発明におけるPVAの膨潤度、溶出率とは下式(1)、(2)で定義されるもので、膨潤度としては、1.0以上であることが必要であり、好ましくは1.0以上500以下であり、更に好ましくは3.0以上200以下である。溶出率としては3.0%以上であることが必要であり、好ましくは3.0%以上97.0%以下、更に好ましくは5.0%以上60.0%以下である。
(1) 膨潤度=(A−B)/B≧1.0
(2) 溶出率(%)=(C/30)×100≧3.0
A:PVA30gに270gの水を加えて、25℃で24時間放置した後 、真空度100mmHgの吸引で10分濾過して濾紙(No.2)上に残存する吸水膨潤したPVAの重量(g)
B:上記吸水膨潤したPVAを105℃で、乾燥し、恒量となった時の 重量(g)
C:PVA30gに270gの水を加えて、25℃で24時間放置した後 、真空度100mmHgの吸引で10分濾過して上記濾紙を用いて得られた濾液から、水及び揮発成分を留去した時の不揮発成分の重量(g)
【0017】
膨潤度が1.0未満の時あるいは溶出率が3.0%未満の時、AA化度分布が3.0以下のAA化PVAを得ることが困難となる。
【0018】
原料PVAの膨潤度、溶出率をコントロールするには、原料PVAを静置あるいは流動させながら加熱処理し結晶化度を調節する方法等の処理が挙げられるが、揮発分調節の点で流動加熱処理する方法が好ましい。
【0019】
本発明においては上記の原料PVAの粒度を20〜5000μm、更に44〜168μmの粉末とすることにより本発明の効果をより顕著に得ることができる。
【0020】
粒度が5000μmを越えるとPVA粒子とジケテンの接触が不均一となりジケテンの反応率を低下せしめるので好ましくなく、20μm未満の場合反応熱により粒子が融着しやすくなり、更に洗浄、乾燥等の後処理が困難となり好ましくない。
【0021】
該PVAの粒度の調節は、PVAの製造後、標準ふるいで調節したり、風力分級してもよい。
【0022】
またこれらの原料PVA粉末中には、製造工程中のアルコール類、エステル類及び水分を数%含んでいるものもあり、これらの成分中にはジケテンと反応して、ジケテンを消費し、ジケテンの反応率を低下せしめるので、後述するAA化PVAの製造に供する際には、加熱、減圧操作を行うなどして可及的に減少せしめてから使用することが望ましい。
【0023】
次にかかる原料PVA粉末を用いたAA化PVAの製造法について詳述する。
本発明においては上述の如き原料PVA粉末を用いれば、該PVA粉末にアセト酢酸エステル基を導入する方法としてはとくに限定されず、前述の如くPVAとジケテンを反応させる方法、PVAをアセト酢酸エステルと反応させる方法等公知のいずれの方法も採用することができるが、一般にPVAとジケテンを反応させる方法で製造すると製造工程が簡略で、品質の良いAA化PVAが得られるため好ましく、更に上記の如き原料PVA粉末とジケテンを反応させる方法で製造する場合は、ジケテンの仕込み量が少なく、またジケテンの反応収率が向上するという利点を有するので好ましく、以下該方法について説明する。
【0024】
原料PVA粉末とジケテンを反応させる方法としては、該PVA粉末とガス状あるいは液状のジケテンを直接反応させても良いし、有機酸を原料PVA粉末に予め吸着吸蔵せしめた後、不活性ガス雰囲気下で液状又はガス状のジケテンを噴霧、反応するか、または原料PVA粉末に有機酸と液状ジケテンの混合物を噴霧、反応するなどの方法が用いられる。
【0025】
有機酸を使用する方法では、有機酸としては酢酸が最も有利であるが、これのみに限られるものではなく、プロピオン酸、酪酸、イソ酪酸等も任意に使用される。
有機酸の量は反応系内の原料PVA粉末が吸着及び吸蔵しうる限度内の量、換言すれば反応系の該樹脂と分離した有機酸が存在しない程度の量が好ましい。具体的には、原料PVA粉末100重量部に対して0.1〜80重量部、好ましくは、0.5〜50重量部、特に好ましくは5〜30重量部の有機酸を共存させるのが適当である。0.1重量%以下では本発明の効果は得難く、一方80重量%の過剰の有機酸が存在するとAA化度が不均一な生成物が得られやすく、未反応のジケテンが多くなる傾向がある。
【0026】
有機酸を原料PVA粉末に均一吸着、吸蔵するには、有機酸を単独で原料PVA粉末に噴霧する方法、適当な溶剤に有機酸を溶解しそれを噴霧する方法等、任意の手段が実施可能である。
【0027】
原料PVA粉末とジケテンとの反応条件としては、原料PVA粉末に液状ジケテンを噴霧等の手段によって均一に吸着、吸収せしめる場合は、不活性ガス雰囲気下、温度20〜120℃に加温し、所定の時間撹拌あるいは流動化を継続することが好ましい。
【0028】
またジケテンガスを反応させる場合、接触温度は30〜250℃、好ましくは、50〜200℃であり、ガス状のジケテンが原料PVA粉末との接触時に液化しない温度とジケテン分圧条件下に接触させることが好ましいが、一部のガスが液滴となることは、なんら支障はない。
接触時間は接触温度に応じて、即ち温度が低い場合は時間が長く、温度が高い場合は、時間が短くてよいのであって、1分〜6時間の範囲から適宜選択する。
【0029】
ジケテンガスを供給する場合には、ジケテンガスそのままか、ジケテンガスと不活性ガスとの混合ガスでも良く、原料PVA粉末に該ガスを吸収させてから昇温しても良いが、該樹脂を加熱しながら、加熱した後に該ガスを接触させるのが好ましい。
【0030】
AA化の反応の触媒としては、酢酸ナトリウム、酢酸カリウム、第一アミン、第二アミン、第三アミンなどの塩基性化合物が有効であり、該触媒量は公知の反応方法に比べて少量で良く、原料PVA粉末に対し0.1〜5.0重量%である。原料PVA粉末は、通常酢酸ナトリウムを含んでいるので触媒を添加しなくてもよい場合が多い。触媒量が多すぎるとジケテンの副反応が起こりやすく好ましくない。
【0031】
AA化を実施する際の反応装置としては、加温可能で撹拌機の付いた装置であれば十分である。例えば、ニーダー、ヘンシェルミキサー、リボンブレンダー、その他各種ブレンダー、撹拌乾燥装置である。
【0032】
本発明によって得られたAA化PVAは特異な性能を有しているので、その特性を利用して各種の用途に使用され得る。具体的な用途としては次の様なものが挙げられる。
【0033】
(1)成形物関係
繊維、フィルム、シート、パイプ、チューブ、防漏膜、暫定皮膜、ケミカルレース用、水溶性繊維
(2)接着剤関連
木材、紙、アルミ箔、プラスチック等の接着剤、粘着剤、再湿剤、不織布用バインダー、石膏ボードや繊維板等の各種建材用バインダー、各種粉体造粒用バインダー、セメントやモルタル用添加剤、ホットメルト型接着剤、感圧接着剤、アニオン性塗料の固着剤
【0034】
(3)被覆剤関係
紙のクリアーコーティング剤、紙の顔料コーティング剤、紙の内添サイズ剤、繊維製品用ザイズ剤、経糸糊剤、繊維加工剤、皮革仕上げ剤、塗料、防曇剤、金属腐食防止剤、亜鉛メッキ用光沢剤、帯電防止剤、導電剤、暫定塗料
(4)疎水性樹脂用ブレンド剤関係
疎水性樹脂の帯電防止剤、及び親水性付与剤、複合繊維、フィルムその他成形物用添加剤
(5)懸濁分散安定剤関係
塗料、墨汁、水性カラー、接着剤等の顔料分散安定剤、塩化ビニル、塩化ビニリデン、スチレン、(メタ)アクリレート、酢酸ビニル等の各種ビニル化合物の懸濁重合用分散安定剤
【0035】
(6)乳化分散安定剤
エチレン性不飽和化合物、ブタジエン性化合物の乳化重合用乳化剤、ポリオレフィン、ポリエステル樹脂等疎水性樹脂、エポキシ樹脂、パラフィン、ビチューメン等の後乳化剤
(7)増粘剤関係
各種水溶液やエマルジョンの増粘剤
(8)凝集剤関係
水中懸濁物及び溶存物の凝集剤、パルプ、スラリーの濾水性
(9)土壌改良剤関係
(10)感光剤、感電子関係、感光性レジスト樹脂
(11)その他イオン交換樹脂、イオン交換樹脂、イオン交換膜関係、キレート交換樹脂
【0036】
【実施例】
以下、本発明について実施例を挙げて更に詳しく説明する。尚例中にことわりのない限り、「部」とあるのは、「重量部」、「%」とあるのは、「重量%」を示す。
【0037】
実施例1
原料用PVA(ケン化度99.0モル%、重合度1280)製造の最終工程の乾燥の際に80℃で60分熱処理して粒度63〜1680μmの膨潤度3.5、溶出率12.1%のPVA粉末を得た。該PVA粉末を原料PVA粉末として、内容積7lのニーダーに444部仕込み、これに酢酸100部を入れ、膨潤させ、回転数20rpmで撹拌しながら、60℃に昇温後、ジケテン111部と酢酸33部の混合液を4時間かけて滴下し、更に30分間反応させた。反応終了後メタノール500部で洗浄した後70℃で、6時間乾燥し、AA化度8.7モル%のAA化PVAを得た(ジケテン転化率66%)。かかるAA化PVAを前述の如く7種類のふるいにより、6種類の画分を取り出し、AA化度を測定したところ44〜74μm:10.1モル%、74〜105μm:9.6モル%、105〜177μm:8.8モル%、177〜297μm:8.6モル%、297〜500μm:7.9モル%、500〜1680μm:7.2モル%でAA化度分布(最高AA化度/最低AA化度)は1.4であった。かかるAA化PVAを用いて以下の測定を行った。
【0038】
(1)水溶液の安定性
AA化PVAの12%水溶液の粘度及び未溶解分を以下の様に測定した。
(a)粘度
AA化PVAの12%水溶液を25℃の恒温槽に1週間放置して放置前後の水溶液の粘度をBROOKFIELD MODEL DV−II粘度計(スピンドルNo.3、12rpm)で測定し、放置前の粘度に対する放置後の粘度の比(1)を求めた。
【0039】
(b)未溶解分
AA化PVAの12%水溶液100gを純水で600gに希釈し、内容積200mlの遠心沈降管4本に各々150gずつとり分けて5000rpmで30分間遠心分離する。沈降物を予め重量既知の蒸発皿に捕集して105℃、3時間乾燥した沈降物の絶乾重量を測定し、下式にて未溶解分の重量%を求めた。
未溶解分(%)=(沈降物絶乾重量(g)/12)×100
【0040】
(2)粉末の安定性
AA化PVAの粉末を、60℃の恒温室に1ケ月放置した後、12%水溶液を調製し、放置前後の水溶液の粘度を上記の様に測定し、粘度比を求めた。
【0041】
(3)透明性
JIS K 6726に準じ、AA化PVAの4%水溶液の430nmにおける透過率(%)を、分光光度計により求めた。
(1)〜(3)の結果は表1に示した。
【0043】
実施例
実施例1においてケン化度96モル%、重合度2000、膨潤度10.1、溶出率18.3%、粒度105〜1680μmの原料PVA粉末を457部を用い、酢酸の仕込み量を137部、ジケテンの仕込み量を81.8部にした以外は同様に操作し、AA化度7.2モル%のAA化PVAを得た(ジケテン転化率74%)。かかるAA化PVAを前述の如く7種類のふるいにより、分割したところ105〜177μm、177〜297μm、297〜500μm、500〜1680μmの画分が得られた。それぞれ画分のAA化度を測定したところ105〜177μm:8.3モル%、177〜297μm:7.3モル%、297〜500μm:6.8モル%、500〜1680μm:6.4モル%でAA化度分布(最高AA化度/最低AA化度)は1.3であった。得られたAA化PVAについて実施例1と同様に測定を行った。測定結果を表1に示す。
【0044】
実施例
実施例1においてケン化度を88モル%、重合度1700、膨潤度202、溶出率94.5%、粒度74〜1680μmの原料PVA490部を用い、酢酸の仕込み量を49部、ジケテンの仕込み量を42.5部にした以外は同様に操作し、AA化度4.4モル%のAA化PVAを得た(ジケテン転化率87%)。かかるAA化PVAを前述の如く7種類のふるいにより、6種類の画分を取り出し、AA化度を測定したところ44〜74μm:5.2モル%、74〜105μm:5.1モル%、105〜177μm:4.8モル%、177〜297μm:4.4モル%、297〜500μm:3.9モル%、500〜1680μm:3.0モル%でAA化度分布(最高AA化度/最低AA化度)は1.7であった。得られたAA化PVAについて実施例1と同様に測定を行った。測定結果を表1に示す。
【0045】
実施例
実施例1においてケン化度を80モル%、重合度500、膨潤度9.5、溶出率14.3%、粒度44〜1680μmの原料PVA528部を用い、酢酸の仕込み量を16部、ジケテンの仕込み量を32部にした以外は同様に操作し、AA化度3.2モル%のAA化PVAを得た(ジケテン転化率84%)。かかるAA化PVAを前述の如く7種類のふるいにより、6種類の画分を取り出し、AA化度を測定したところ44〜74μm:3.6モル%、74〜105μm:3.4モル%、105〜177μm:3.2モル%、177〜297μm:3.2モル%、297〜500μm:3.1モル%、500〜1680μm:3.0モル%でAA化度分布(最高AA化度/最低AA化度)は1.2であった。得られたAA化PVAについて実施例1と同様に測定を行った。測定結果を表1に示す。
【0046】
比較例1
原料用PVA(ケン化度99.0モル%、重合度1280)製造の最終工程の乾燥の際に105℃で120分熱処理した膨潤度0.8、溶出率2.7%のPVA粉末を用いる以外は同様に操作しAA化度5.1モル%のAA化PVAを得た(ジケテン転化率39%)。かかるAA化PVAを前述の如く7種類のふるいにより、6種類の画分を取り出し、AA化度を測定したところ44〜74μm:11.4モル%、74〜105μm:6.2モル%、105〜177μm:4.5モル%、177〜297μm:3.0モル%、297〜500μm:2.9モル%、500〜1680μm:1.6モル%でAA化度分布(最高AA化度/最低AA化度)は7.1であった。得られたAA化PVAについて実施例1と同様に測定を行った。測定結果を表1に示す。
【0047】
比較例2
原料用PVA(ケン化度87.0モル%、重合度1700、膨潤度1.2、溶出率2.8%、粒度177〜1680μm)490部を用い、酢酸の仕込み量を49部、ジケテンの仕込み量を75部にした以外は同様に操作し、AA化度4.0モル%のAA化PVAを得た(ジケテン転化率45%)。かかるAA化PVAを前述の如く7種類のふるいにより、6種類の画分を取り出し、AA化度を測定したところ44〜74μm:8.5モル%、74〜105μm:7.0モル%、105〜177μm:5.0モル%、177〜297μm:2.9モル%、297〜500μm:2.5モル%、500〜1680μm:2.4モル%でAA化度分布(最高AA化度/最低AA化度)は3.5であった。得られたAA化PVAについて実施例1と同様に測定を行った。測定結果を表1に示す。
【0048】
【表1】
─────────────────────────────────
粘度比 未溶解分 透明度
─────────────
水溶液放置 粉末放置 (%) 430nmの透過率(%)
─────────────────────────────────
実施例1 1.03 1.04 0.02 97
実施例2 1.01 1.01 0.01 98
実施例3 1.05 1.04 0.03 96
実施例4 1.00 1.01 0.00 98
─────────────────────────────────
比較例1 2.24 2.71 0.44 54
比較例2 1.89 2.02 0.21 62
─────────────────────────────────
【0049】
【発明の効果】
本発明のAA化PVAは、特定のAA化度分布を有しているため水溶液にした時の透明性が高く、未溶解分も少なく更に水溶液にして長期間保存しても粘度変化が少なく、又粉末で長期間保存した後水溶液にした時も製造直後の粉末を水溶液にした時と粘度変化が少ない。又特定の膨潤度及び溶出率、粒度を持つ原料PVAとジケテンを反応させると、効率よく本発明のAA化PVAを製造することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an acetoacetate group-containing polyvinyl alcohol resin excellent in transparency and aqueous solution stability and a method for producing the same.
[0002]
[Prior art]
A conventional acetoacetate group-containing PVA resin (hereinafter abbreviated as AA-modified PVA) is produced by reacting a polyvinyl alcohol resin (hereinafter abbreviated as PVA) with diketene, specifically in an acetic acid solvent. A method of dissolving or dispersing PVA and adding diketene to this, and a method of dissolving PVA in a solvent such as dimethylformamide or dioxane in advance and then adding and reacting with diketene have long been known. .
[0003]
However, in these conventional techniques, a precipitant is added to the reaction product in order to obtain the reaction product from the reaction solution, and after the product is precipitated, the product and the mother liquor are separated, and the solvent is separated from the separated mother liquor. Many complicated processes such as recovery of the precipitating agent and removal of the solvent and precipitant from the separated product are indispensable, and this process inevitably greatly affects the product cost. Was disadvantageous.
[0004]
Therefore, as a result of repeated studies on a method for obtaining AA-modified PVA more easily and at a lower cost than the prior art, the present applicant has obtained a method for obtaining AA-modified PVA by directly contacting PVA with diketene gas or liquid diketene. As a result, patent applications have been filed previously (Japanese Patent Laid-Open Nos. 55-137107 and 55-94904). In this method, unreacted diketene can be easily removed, the post-treatment process is simplified, and a small amount of catalyst may be used. However, AA-PVA is slightly colored, and an undissolved part is generated, and AA-PVA is produced. It was a problem in some applications that use.
[0005]
As an improvement technique, the present applicant has also filed a patent application for a method for obtaining AA-modified PVA by coexisting an organic acid within the limits that can be occluded in PVA (Japanese Patent Laid-Open No. 57-40508).
By this method, the coloration problem of AA-PVA and the problem of undissolved matter formation were roughly solved.
[0006]
[Problems to be solved by the invention]
However, in recent years, AA-PVA has been used in large quantities for a wide range of applications due to its superior characteristics, and under the sophistication of technology, higher-quality physical properties that have hardly been a problem in the past are required. It has become.
When PVA with high crystallinity is converted to acetoacetate ester, all of the AA-PVA produced by the above-mentioned methods have slightly poor transparency of the aqueous solution, and many undissolved products are produced. When stored for a long period of time, when the powder after storage is made into an aqueous solution, many undissolved components are generated. In this regard, it has been found that there is room for further improvement.
[0007]
[Means for Solving the Problems]
The present inventor has eagerly studied to overcome such problems, and has studied the degree of acetoacetate esterification (hereinafter abbreviated as AA degree) for each particle size of AA-modified PVA. 74, 74 to 105, 105 to 177, 177 to 297, 297 to 500, and 500 to 1680 μm, the degree of acetoacetate esterification of each acetoacetate group-containing polyvinyl alcohol resin fractionated to each particle size was neutralized. Calculated from the alkali consumption by titration, AA-PVA with a value obtained by dividing the highest degree of acetoacetate esterification by the lowest degree of AA conversion of 3.0 to 1.0 is excellent in transparency of the aqueous solution and is not dissolved Thus, the present inventors have found that the viscosity stability is good even when stored in a powder for a long period of time, and the present invention has been completed.
[0008]
The particle size of 44 to 74 μm means a particle size screened by 350 mesh (44 μm) on a standard wire mesh and a 200 mesh (74 μm) pass, and 74 to 105 μm means 200 mesh (74 μm) on, 145 The particle size screened by the mesh (105 μm) pass is 105 to 177 μm is 145 mesh (105 μm) on, the particle size screened by the 80 mesh (177 μm) pass is 177 to 297 μm and 80 mesh (177 μm) ON, particle size screened by 48 mesh (297 μm) pass, 297-500 μm is 48 mesh (297 μm) ON, particle size screened by 32 mesh (500 μm) pass, 500- 1680μm means 32 mesh (500μm) Mean a particle size screened by a 10.5 mesh (1680 μm) pass.
[0009]
As a method for measuring the AA degree distribution, after the AA PVA is fractionated into particle sizes of 44 to 74, 74 to 105, 105 to 177, 177 to 297, 297 to 500, and 500 to 1680 μm as described above, Each AA degree is calculated from the alkali consumption by neutralization titration, and the highest AA degree is divided by the lowest AA degree. However, when the particle size distribution of the AA-PVA is narrow and all of the specific particle size is included, and only a single AA degree value is calculated, the AA degree degree distribution is set to 1.0.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The AA-modified PVA of the present invention introduces an acetoacetate group into PVA by reacting PVA with diketene, reacting PVA with acetoacetate, copolymerizing vinyl acetoacetate, etc. The AA degree distribution is defined as described above, and the AA degree distribution is required to be 3.0 to 1.0, preferably 2.0 to 1.0, and more preferably, 1.5 to 1.0.
[0011]
When the AA degree distribution exceeds 3.0, a small amount of undissolved material is present when the AA PVA is dissolved in water, the transparency is lowered, or the viscosity when the AA PVA is stored as an aqueous solution for a long period of time. In addition, after the AA-PVA is stored as a powder for a long period of time, the viscosity when it is made into an aqueous solution is higher than the viscosity when the powder immediately after production is made into an aqueous solution, and the object of the present invention cannot be achieved.
[0012]
The method for obtaining the AA-PVA having the AA-degree distribution as described above is not particularly limited. For example, the degree of swelling, dissolution rate, particle size, etc. of the raw material PVA are adjusted to a specific range, or after AA-PVA production, AA For example, the particle size fraction having a high degree of conversion or a low particle size fraction may be removed, or the average AA degree of AA-modified PVA may be adjusted to a low level. It is practical to adjust.
[0013]
Hereinafter, the adjustment of the raw material PVA will be described in detail.
Examples of such raw material PVA include PVA derivatives obtained by saponifying a lower alcohol solution of polyvinyl acetate with a saponification catalyst such as alkali, and a copolymer of a vinyl acetate and a monomer copolymerizable with vinyl acetate. A saponified compound may be mentioned.
[0014]
The saponification degree of the vinyl acetate component is preferably 5 to 100 mol%, more preferably 75 to 99 mol%. Although it does not specifically limit as an average degree of polymerization, Preferably it is 200-3000.
[0015]
Examples of the monomer include olefins such as ethylene, propylene, isobutylene, α-octene, α-dodecene, α-octadecene, acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid and the like. Unsaturated acids or salts thereof, mono- or dialkyl esters, nitriles such as acrylonitrile and methacrylonitrile, amides such as acrylamide and methacrylamide, olefin sulfonic acids such as ethylene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid or the like Salt, alkyl vinyl ethers, N-acrylamidomethyltrimethylammonium chloride, allyltrimethylammonium chloride, dimethyldiallylammonium chloride, dimethylallylvinylketone, N-vinylpyrrole , Vinyl chloride, vinylidene chloride, polyoxyethylene (meth) allyl ether, polyoxyalkylene (meth) allyl ether such as polyoxypropylene (meth) allyl ether, polyoxyethylene (meth) acrylate, polyoxypropylene (meth) Polyoxyalkylene (meth) acrylates such as acrylate, polyoxyalkylene (meth) acrylamides such as polyoxyethylene (meth) acrylamide, polyoxypropylene (meth) acrylamide, polyoxyethylene (1- (meth) acrylamide-1,1 -Dimethylpropyl) ester, polyoxyethylene vinyl ether, polyoxypropylene vinyl ether, polyoxyethylene allylamine, polyoxypropylene allylamine, polyoxyethylene vinyl Triethanolamine, a copolymer saponified product of a polyoxypropylene vinyl amine.
[0016]
In the present invention, the swelling degree and elution rate of the PVA are adjusted as follows. That is, the swelling degree and elution rate of PVA in the present invention are defined by the following formulas (1) and (2), and the swelling degree needs to be 1.0 or more, preferably 1. It is 0 or more and 500 or less, More preferably, it is 3.0 or more and 200 or less. The elution rate needs to be 3.0% or more, preferably 3.0% or more and 97.0% or less, more preferably 5.0% or more and 60.0% or less.
(1) Swelling degree = (A−B) /B≧1.0
(2) Elution rate (%) = (C / 30) × 100 ≧ 3.0
A: After adding 270 g of water to 30 g of PVA and leaving it to stand at 25 ° C. for 24 hours, the weight (g) of the water-absorbed and swollen PVA remaining on the filter paper (No. 2) after filtering for 10 minutes by suction at a vacuum degree of 100 mmHg
B: Weight (g) when the water-absorbed PVA was dried at 105 ° C. to become a constant weight.
C: 270 g of water was added to 30 g of PVA, left at 25 ° C. for 24 hours, filtered with suction at a vacuum of 100 mmHg for 10 minutes, and water and volatile components were distilled off from the filtrate obtained using the filter paper . Non-volatile component weight (g)
[0017]
When the degree of swelling is less than 1.0 or the elution rate is less than 3.0%, it becomes difficult to obtain an AA-modified PVA having an AA degree distribution of 3.0 or less.
[0018]
In order to control the swelling degree and elution rate of the raw material PVA, there is a method such as a method of adjusting the crystallinity by heat treatment while leaving the raw material PVA stationary or flowing. Is preferred.
[0019]
In this invention, the effect of this invention can be acquired more notably by making the particle size of said raw material PVA into a powder of 20-5000 micrometers, and also 44-168 micrometers.
[0020]
If the particle size exceeds 5000 μm, the contact between the PVA particles and the diketene is not uniform, and the reaction rate of the diketene is reduced, which is not preferable. When the particle size is less than 20 μm, the particles are easily fused by the heat of reaction, and further post-treatment such as washing and drying Is not preferable.
[0021]
The particle size of the PVA may be adjusted with a standard sieve after the production of PVA, or may be classified by wind force.
[0022]
Some of these raw material PVA powders contain several percent of alcohols, esters and moisture in the production process, and these components react with diketene and consume diketene. Since the reaction rate is lowered, it is desirable to reduce the reaction rate as much as possible by performing heating and pressure-reducing operations when it is used for the production of AA-PVA described later.
[0023]
Next, a method for producing AA-PVA using such raw material PVA powder will be described in detail.
In the present invention, if the raw material PVA powder as described above is used, the method for introducing an acetoacetate group into the PVA powder is not particularly limited. As described above, the method of reacting PVA with diketene, and PVA with acetoacetate Any known method such as a reaction method can be employed, but generally, a method of reacting PVA with diketene is preferable because the production process is simple and a high-quality AA-modified PVA can be obtained. In the case of producing by the method of reacting the raw material PVA powder and diketene, it is preferable because the amount of diketene charged is small and the reaction yield of diketene is improved, and this method will be described below.
[0024]
As a method of reacting the raw material PVA powder and the diketene, the PVA powder and the gaseous or liquid diketene may be directly reacted, or after the organic acid is preliminarily adsorbed and occluded in the raw material PVA powder, The liquid or gaseous diketene is sprayed and reacted, or the raw material PVA powder is sprayed and reacted with a mixture of an organic acid and liquid diketene.
[0025]
In the method using an organic acid, acetic acid is the most advantageous as the organic acid, but is not limited thereto, and propionic acid, butyric acid, isobutyric acid, and the like are arbitrarily used.
The amount of the organic acid is preferably within an amount that can be adsorbed and occluded by the raw material PVA powder in the reaction system, in other words, an amount that does not exist the organic acid separated from the resin in the reaction system. Specifically, it is appropriate that 0.1 to 80 parts by weight, preferably 0.5 to 50 parts by weight, particularly preferably 5 to 30 parts by weight of an organic acid coexist with 100 parts by weight of the raw material PVA powder. It is. If the amount is less than 0.1% by weight, it is difficult to obtain the effect of the present invention. On the other hand, if there is an excess of 80% by weight of organic acid, a product having a non-uniform AA degree tends to be obtained and unreacted diketene tends to increase. is there.
[0026]
In order to uniformly adsorb and occlude the organic acid on the raw material PVA powder, any means such as a method of spraying the organic acid alone on the raw material PVA powder, a method of dissolving the organic acid in an appropriate solvent and spraying it can be implemented. It is.
[0027]
As a reaction condition between the raw material PVA powder and the diketene, in the case where the liquid diketene is uniformly adsorbed and absorbed by means such as spraying on the raw material PVA powder, it is heated to a temperature of 20 to 120 ° C. in an inert gas atmosphere, and is predetermined. It is preferable to continue stirring or fluidization for a period of time.
[0028]
When the diketene gas is reacted, the contact temperature is 30 to 250 ° C., preferably 50 to 200 ° C., and the gaseous diketene is brought into contact with the temperature at which the gaseous diketene does not liquefy at the time of contact with the raw material PVA powder and the diketene partial pressure condition. However, it is not a problem that a part of the gas becomes droplets.
The contact time depends on the contact temperature, that is, when the temperature is low, the time is long, and when the temperature is high, the time may be short, and is appropriately selected from the range of 1 minute to 6 hours.
[0029]
When supplying the diketene gas, the diketene gas as it is or a mixed gas of diketene gas and inert gas may be used, and the temperature may be increased after the gas is absorbed by the raw material PVA powder. The gas is preferably contacted after heating.
[0030]
As the catalyst for the AA reaction, basic compounds such as sodium acetate, potassium acetate, primary amine, secondary amine, and tertiary amine are effective, and the amount of the catalyst may be small compared to known reaction methods. And 0.1 to 5.0% by weight based on the raw material PVA powder. Since the raw material PVA powder normally contains sodium acetate, there is often no need to add a catalyst. If the amount of catalyst is too large, side reaction of diketene is likely to occur, which is not preferable.
[0031]
As a reaction apparatus for carrying out AA conversion, an apparatus that can be heated and has a stirrer is sufficient. For example, a kneader, a Henschel mixer, a ribbon blender, other various blenders, and a stirring and drying device.
[0032]
Since the AA-PVA obtained by the present invention has unique performance, it can be used for various applications by utilizing its properties. Specific applications include the following.
[0033]
(1) Molded fiber, film, sheet, pipe, tube, leak-proof film, provisional film, for chemical lace, water-soluble fiber (2) Adhesive-related wood, paper, aluminum foil, plastic, etc., adhesive Agent, rehumidifier, binder for nonwoven fabric, binder for various building materials such as gypsum board and fiberboard, binder for various types of powder granulation, additive for cement and mortar, hot melt adhesive, pressure sensitive adhesive, anionic Paint sticking agent 【0034】
(3) Coating-related paper clear coating agent, paper pigment coating agent, paper internal sizing agent, textile sizing agent, warp sizing agent, textile processing agent, leather finishing agent, paint, anti-fogging agent, metal Corrosion inhibitors, brighteners for galvanizing, antistatic agents, conductive agents, provisional paints (4) Blending agents for hydrophobic resins Antistatic agents for hydrophobic resins, hydrophilicity imparting agents, composite fibers, films and other molded products Additives for suspension (5) Suspension dispersion stabilizers Paints, ink dispersions, water color, pigment dispersion stabilizers such as adhesives, various vinyl compounds such as vinyl chloride, vinylidene chloride, styrene, (meth) acrylate, vinyl acetate Dispersion stabilizer for turbid polymerization [0035]
(6) Emulsification dispersion stabilizer Ethylenically unsaturated compounds, emulsifiers for emulsion polymerization of butadiene compounds, hydrophobic resins such as polyolefins and polyester resins, post-emulsifiers such as epoxy resins, paraffin and bitumen (7) Various aqueous solutions related to thickeners And emulsion thickeners (8) Coagulant-related suspensions and dissolved flocculants in water, pulp and slurry drainage (9) Soil improver-related (10) Photosensitizer, electrosensitive, photosensitive resist resin (11) Other ion exchange resins, ion exchange resins, ion exchange membranes, chelate exchange resins [0036]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. Unless otherwise specified in the examples, “parts” means “parts by weight”, and “%” means “% by weight”.
[0037]
Example 1
Raw material PVA (saponification degree 99.0 mol%, polymerization degree 1280) was dried at the final step of production, and heat treated at 80 ° C. for 60 minutes to give a degree of swelling of 63 to 1680 μm, a degree of swelling of 3.5, and an elution rate of 12.1. % PVA powder was obtained. Using the PVA powder as a raw material PVA powder, 444 parts were charged in a kneader having an internal volume of 7 liters, 100 parts of acetic acid was put into it, swollen, heated to 60 ° C. while stirring at a rotation speed of 20 rpm, 111 parts of diketene and acetic acid 33 parts of the mixed solution was dropped over 4 hours, and the mixture was further reacted for 30 minutes. After completion of the reaction, the reaction product was washed with 500 parts of methanol and then dried at 70 ° C. for 6 hours to obtain AA-modified PVA having a degree of AA conversion of 8.7 mol% (diketene conversion: 66%). As described above, the AA-modified PVA was extracted from the six types of fractions using the seven types of sieves, and the AA degree was measured. As a result, the AA degree was determined to be 44 to 74 μm: 10.1 mol%, 74 to 105 μm: 9.6 mol%, 105 ˜177 μm: 8.8 mol%, 177-297 μm: 8.6 mol%, 297-500 μm: 7.9 mol%, 500-1680 μm: 7.2 mol%, and AA degree distribution (highest AA degree / lowest The AA degree was 1.4. The following measurements were performed using such AA-PVA.
[0038]
(1) Stability of aqueous solution The viscosity and undissolved content of a 12% aqueous solution of AA-PVA were measured as follows.
(A) A 12% aqueous solution of viscosity AA-PVA was left in a thermostatic bath at 25 ° C. for 1 week, and the viscosity of the aqueous solution before and after being left was measured with a BROOKFIELD MODEL DV-II viscometer (spindle No. 3, 12 rpm). The ratio (1) of the viscosity after standing to the previous viscosity was determined.
[0039]
(B) 100 g of 12% aqueous solution of undissolved AA-PVA is diluted to 600 g with pure water, and 150 g each is divided into four centrifugal sedimentation tubes with an internal volume of 200 ml and centrifuged at 5000 rpm for 30 minutes. The sediment was collected in an evaporating dish with a known weight in advance, and the absolute dry weight of the sediment dried at 105 ° C. for 3 hours was measured.
Undissolved content (%) = (precipitate absolute dry weight (g) / 12) × 100
[0040]
(2) Stability of powder After AA-PVA powder is left in a thermostatic chamber at 60 ° C. for 1 month, a 12% aqueous solution is prepared, and the viscosity of the aqueous solution before and after being left is measured as described above. Asked.
[0041]
(3) Transparency According to JIS K 6726, the transmittance (%) at 430 nm of a 4% aqueous solution of AA-PVA was determined with a spectrophotometer.
The results of (1) to (3) are shown in Table 1.
[0043]
Example 2
In Example 1, 457 parts of raw material PVA powder having a saponification degree of 96 mol%, a polymerization degree of 2000, a swelling degree of 10.1, an elution rate of 18.3%, and a particle size of 105 to 1680 μm was used, and the acetic acid charge was 137 parts. The same operation was carried out except that the amount of diketene charged was 81.8 parts to obtain AA-PVA having an AA degree of 7.2 mol% (diketene conversion: 74%). When the AA-PVA was divided by seven types of sieves as described above, fractions of 105 to 177 μm, 177 to 297 μm, 297 to 500 μm, and 500 to 1680 μm were obtained. When the AA degree of each fraction was measured, 105 to 177 μm: 8.3 mol%, 177 to 297 μm: 7.3 mol%, 297 to 500 μm: 6.8 mol%, 500 to 1680 μm: 6.4 mol% The AA degree distribution (maximum AA degree / lowest AA degree) was 1.3. The obtained AA-PVA was measured in the same manner as in Example 1. The measurement results are shown in Table 1.
[0044]
Example 3
In Example 1, a raw material PVA having a saponification degree of 88 mol%, a polymerization degree of 1700, a swelling degree of 202, an elution rate of 94.5%, and a particle size of 74 to 1680 μm was used, the acetic acid charge was 49 parts, and the diketene charge was The AA-modified PVA having a degree of AA conversion of 4.4 mol% was obtained (diketene conversion rate 87%). As described above, the AA-modified PVA was extracted from the six types of fractions using the seven types of sieves, and the AA degree was measured. As a result, it was determined that 44-74 μm: 5.2 mol%, 74-105 μm: 5.1 mol%, 105 ˜177 μm: 4.8 mol%, 177-297 μm: 4.4 mol%, 297-500 μm: 3.9 mol%, 500-1680 μm: 3.0 mol%, and AA degree distribution (highest AA degree / lowest The AA degree was 1.7. The obtained AA-PVA was measured in the same manner as in Example 1. The measurement results are shown in Table 1.
[0045]
Example 4
In Example 1, 528 parts of raw material PVA having a saponification degree of 80 mol%, a polymerization degree of 500, a swelling degree of 9.5, an elution rate of 14.3%, and a particle size of 44 to 1680 μm was used. The same operation was carried out except that the amount charged was 32 parts, and an AA-modified PVA having an AA degree of 3.2 mol% was obtained (diketene conversion rate: 84%). As described above, the AA-modified PVA was extracted from the six types of fractions using the seven types of sieves, and the AA degree was measured. As a result, it was determined that 44-74 μm: 3.6 mol%, 74-105 μm: 3.4 mol% ˜177 μm: 3.2 mol%, 177-297 μm: 3.2 mol%, 297-500 μm: 3.1 mol%, 500-1680 μm: 3.0 mol%, and AA degree distribution (highest AA degree / lowest The AA degree was 1.2. The obtained AA-PVA was measured in the same manner as in Example 1. The measurement results are shown in Table 1.
[0046]
Comparative Example 1
PVA powder for raw material (saponification degree 99.0 mol%, polymerization degree 1280) PVA powder with swelling degree 0.8 and elution rate 2.7% heat-treated at 105 ° C for 120 minutes when drying in the final step of production The AA-modified PVA having an AA conversion of 5.1 mol% was obtained in the same manner as above (diketene conversion: 39%). As described above, the AA-modified PVA was extracted from the six types of fractions using the seven types of sieves, and the AA degree was measured. As a result, the AA degree was measured. ˜177 μm: 4.5 mol%, 177-297 μm: 3.0 mol%, 297-500 μm: 2.9 mol%, 500-1680 μm: 1.6 mol%, and AA degree distribution (maximum AA degree / lowest The AA degree was 7.1. The obtained AA-PVA was measured in the same manner as in Example 1. The measurement results are shown in Table 1.
[0047]
Comparative Example 2
490 parts of raw material PVA (saponification degree 87.0 mol%, polymerization degree 1700, swelling degree 1.2, elution rate 2.8%, particle size 177 to 1680 μm), acetic acid charge amount 49 parts, diketene The same operation was performed except that the charged amount was 75 parts, and an AA-PVA having an AA conversion of 4.0 mol% was obtained (diketene conversion: 45%). As described above, 6 types of the AA-modified PVA were taken out using 7 types of sieves, and the AA degree was measured. As a result, the AA degree was determined to be 44 to 74 μm: 8.5 mol%, 74 to 105 μm: 7.0 mol% ˜177 μm: 5.0 mol%, 177-297 μm: 2.9 mol%, 297-500 μm: 2.5 mol%, 500-1680 μm: 2.4 mol%, and AA degree distribution (highest AA degree / lowest AA conversion degree) was 3.5. The obtained AA-PVA was measured in the same manner as in Example 1. The measurement results are shown in Table 1.
[0048]
[Table 1]
─────────────────────────────────
Viscosity ratio Undissolved content Transparency
─────────────
Leave in aqueous solution Leave in powder (%) 430nm transmittance (%)
─────────────────────────────────
Example 1 1.03 1.04 0.02 97
Example 2 1.01 1.01 0.01 98
Example 3 1.05 1.04 0.03 96
Example 4 1.00 1.01 0.00 98
─────────────────────────────────
Comparative Example 1 2.24 2.71 0.44 54
Comparative Example 2 1.89 2.02 0.21 62
─────────────────────────────────
[0049]
【The invention's effect】
Since the AA-PVA of the present invention has a specific AA degree distribution, it has high transparency when made into an aqueous solution, has little undissolved content, and has little viscosity change even when stored in an aqueous solution for a long period of time. Also, when the powder is stored for a long period of time and then converted into an aqueous solution, the change in viscosity is small compared to when the powder just after manufacture is converted into an aqueous solution. Further, when the raw material PVA having a specific degree of swelling, dissolution rate, and particle size is reacted with diketene, the AA-PVA of the present invention can be produced efficiently.

Claims (4)

44〜74、74〜105、105〜177、177〜297、297〜500、500〜1680μmの各粒径に分別されたアセト酢酸エステル基含有ポリビニルアルコール系樹脂の各々のアセト酢酸エステル化度を、中和滴定によるアルカリ消費量から計算し、最も高いアセト酢酸エステル化度を最も低いアセト酢酸エステル化度で割った値が3.0〜1.0であることを特徴とするアセト酢酸エステル基含有ポリビニルアルコール系樹脂。  44 to 74, 74 to 105, 105 to 177, 177 to 297, 297 to 500, 500 to 1680 μm, the degree of acetoacetate esterification of each acetoacetate group-containing polyvinyl alcohol resin fractionated into particle sizes of Calculated from the alkali consumption by neutralization titration, the value obtained by dividing the highest degree of acetoacetic esterification by the lowest degree of acetoacetate esterification is 3.0 to 1.0, containing acetoacetate groups Polyvinyl alcohol resin. 請求項1記載のアセト酢酸エステル基含有ポリビニルアルコール系樹脂を製造するに当たり、下式(1)及び(2)を満足するポリビニルアルコール系樹脂とジケテンを反応させることを特徴とするアセト酢酸エステル基含有ポリビニルアルコール系樹脂の製造法。
(1) 膨潤度=(A−B)/B≧1.0
(2) 溶出率(%)=(C/30)×100≧3.0
A:ポリビニルアルコール系樹脂30gに270gの水を加えて、25℃ で24時間放置した後、真空度100mmHgの吸引で10分濾過して濾紙(No.2)上に残存する吸水膨潤したポリビニルアルコール系樹脂の重量(g)
B:上記吸水膨潤したポリビニルアルコール系樹脂を105℃で、3時間 乾燥し、恒量となった時の重量(g)
C:ポリビニルアルコール系樹脂30gに270gの水を加えて、25℃ で24時間放置した後、真空度100mmHgの吸引で10分濾過し上記濾紙を用いて得られた濾液から、水及び揮発成分を留去した時の不揮発成分の重量(g)
The acetoacetate group-containing polyvinyl alcohol resin satisfying the following formulas (1) and (2) is reacted with diketene in producing the acetoacetate group-containing polyvinyl alcohol resin according to claim 1 A method for producing a polyvinyl alcohol resin.
(1) Swelling degree = (A−B) /B≧1.0
(2) Elution rate (%) = (C / 30) × 100 ≧ 3.0
A: Add 270 g of water to 30 g of polyvinyl alcohol resin, leave it at 25 ° C. for 24 hours, filter with suction at a vacuum of 100 mmHg for 10 minutes, and remain on the filter paper (No. 2). Resin weight (g)
B: Weight (g) when the polyvinyl alcohol resin swollen with water was dried at 105 ° C. for 3 hours to obtain a constant weight.
C: 270 g of water was added to 30 g of polyvinyl alcohol resin, left at 25 ° C. for 24 hours, filtered with suction at a vacuum of 100 mmHg for 10 minutes, and water and volatile components were removed from the filtrate obtained using the above filter paper. Weight of non-volatile component when distilled off (g)
ポリビニルアルコール系樹脂の膨潤度が1.0〜500で、溶出率が3.0〜97.0%であることを特徴とする請求項2記載のアセト酢酸エステル基含有ポリビニルアルコール系樹脂の製造法。  The method for producing an acetoacetate group-containing polyvinyl alcohol resin according to claim 2, wherein the degree of swelling of the polyvinyl alcohol resin is 1.0 to 500 and the elution rate is 3.0 to 97.0%. . ジケテンと反応させるポリビニルアルコール系樹脂の粒度が20〜5000μmであることを特徴とする請求項2又は3いずれか記載のアセト酢酸エステル基含有ポリビニルアルコール系樹脂の製造法。  The method for producing a polyvinyl alcohol resin containing an acetoacetate group according to any one of claims 2 and 3, wherein the polyvinyl alcohol resin to be reacted with diketene has a particle size of 20 to 5000 µm.
JP29350295A 1995-10-16 1995-10-16 Acetoacetate group-containing polyvinyl alcohol resin and process for producing the same Expired - Fee Related JP3766457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29350295A JP3766457B2 (en) 1995-10-16 1995-10-16 Acetoacetate group-containing polyvinyl alcohol resin and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29350295A JP3766457B2 (en) 1995-10-16 1995-10-16 Acetoacetate group-containing polyvinyl alcohol resin and process for producing the same

Publications (2)

Publication Number Publication Date
JPH09110925A JPH09110925A (en) 1997-04-28
JP3766457B2 true JP3766457B2 (en) 2006-04-12

Family

ID=17795577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29350295A Expired - Fee Related JP3766457B2 (en) 1995-10-16 1995-10-16 Acetoacetate group-containing polyvinyl alcohol resin and process for producing the same

Country Status (1)

Country Link
JP (1) JP3766457B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4783554B2 (en) * 2004-02-26 2011-09-28 日本合成化学工業株式会社 Aqueous emulsion and use thereof
EP1571161B1 (en) * 2004-03-05 2007-05-16 Nippon Synthetic Chemical Industry Co., Ltd Aqueous emulsion and use thereof
JP5036325B2 (en) * 2006-02-22 2012-09-26 日本合成化学工業株式会社 Aqueous emulsion and its use
JP2007311240A (en) * 2006-05-19 2007-11-29 National Institute Of Advanced Industrial & Technology Proton conductive electrolytic film, and manufacturing method and use thereof
JP5254064B2 (en) * 2009-01-24 2013-08-07 日本合成化学工業株式会社 Method for producing acetoacetate group-containing polyvinyl alcohol resin
WO2022065358A1 (en) * 2020-09-24 2022-03-31 三菱ケミカル株式会社 Acetoacetyl group-containing poly(vinyl alcohol)-based resin and method for producing acetoacetyl group-containing poly(vinyl alcohol)-based resin

Also Published As

Publication number Publication date
JPH09110925A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
JP3248599B2 (en) Emulsion polymerization method for producing large size emulsion polymer particles
EP2088162B1 (en) Method for manufacturing polymer dispersions, dispersions created thereby and their application
JPS5856526B2 (en) Manufacturing method for water-absorbing starch products
US9593174B2 (en) Acetoacetyl group-containing polyvinyl alcohol resin powder composition, and production method therefor
CN101809047A (en) Cross-linkable monomers and polymers and the use thereof
EP0896029B1 (en) Crosslinkable redispersable powder composition
JP3766457B2 (en) Acetoacetate group-containing polyvinyl alcohol resin and process for producing the same
JP3612124B2 (en) Acetoacetate group-containing polyvinyl alcohol resin composition
JPS6412281B2 (en)
JP3612110B2 (en) Acetoacetate group-containing polyvinyl alcohol resin composition
CN111072800A (en) Modified ultra-high molecular weight polyvinyl alcohol and preparation method and application thereof
JP4052497B2 (en) Method for producing acetoacetate group-containing polyvinyl alcohol resin
JP3758705B2 (en) Emulsion dispersion stabilizer
JP3565641B2 (en) Acetoacetate group-containing polyvinyl alcohol resin composition
JP2635280B2 (en) Cationic polymer emulsion and method for producing the same
JP3579152B2 (en) Acetoacetic ester group-containing polyvinyl alcohol resin
JP4627381B2 (en) Method for producing acetoacetate group-containing polyvinyl alcohol resin
JPS6412282B2 (en)
JP3532308B2 (en) Paper processing agent
JP3579137B2 (en) Emulsion dispersion stabilizer
JP2002053616A (en) Polyvinyl alcoholic polymer and powder comprising the polymer
JPS6031845B2 (en) Method for producing polyvinyl alcohol with improved quality
WO2022065358A1 (en) Acetoacetyl group-containing poly(vinyl alcohol)-based resin and method for producing acetoacetyl group-containing poly(vinyl alcohol)-based resin
JPS63270704A (en) Highly polymerized modified polyvinyl alcohol having sulfonic acid group, manufacture thereof and use thereof
JP2023143188A (en) Acetoacetic ester group-containing polyvinyl alcohol-based resin

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees