JP3765603B2 - 導電率利用容器成分同定装置 - Google Patents

導電率利用容器成分同定装置 Download PDF

Info

Publication number
JP3765603B2
JP3765603B2 JP34293195A JP34293195A JP3765603B2 JP 3765603 B2 JP3765603 B2 JP 3765603B2 JP 34293195 A JP34293195 A JP 34293195A JP 34293195 A JP34293195 A JP 34293195A JP 3765603 B2 JP3765603 B2 JP 3765603B2
Authority
JP
Japan
Prior art keywords
electrode
waveform
dielectric container
container
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34293195A
Other languages
English (en)
Other versions
JPH08254513A (ja
Inventor
エス. ゴールドマン ドン
ウィルコックス スティーブン
Original Assignee
オプティカル ソリューションズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オプティカル ソリューションズ インコーポレイテッド filed Critical オプティカル ソリューションズ インコーポレイテッド
Publication of JPH08254513A publication Critical patent/JPH08254513A/ja
Application granted granted Critical
Publication of JP3765603B2 publication Critical patent/JP3765603B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/023Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/023Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil
    • G01N27/025Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil a current being generated within the material by induction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、容器の中で液体に含まれた成分を非侵入的に同定する新規かつ有用な装置に関する。
【0002】
【従来の技術】
化学的実在は容器及び導管によってしばしば保存され、液体媒体で送られる。例えば、腸栄養、腸管外栄養、その他の栄養のような医学溶液は材料の純粋な源から導かれた別の管体によって供給された静脈の袋で調合され、あるいは混ぜられる。特に、70%ブドウ糖注射液アメリカ合衆国薬局方(70% dextrose injection U.S.P)、10%トラバソル(アミノ酸注射液)(10% Travasol (amino acidinjection))、イントラリピド20%I.V. 脂質乳濁液(Intralipid 20% I.V. Lipid emulsion)、殺菌水、カリウム塩化物などはこの方法で結合される。管体中にある特定な成分の電気特性を使って容器中にある又は通過する液体に含まれた成分の同一性を決定するために多くのシステムが提案されている。例えば、このようなシステムは、特定な探索機又はプローブ電極が容器又は管体の中で液体と接触するという点で、一般に侵入的である。この型の侵入的な測定は患者に静脈内に処方される薬液体のようなある特定分野で好ましくない。
【0003】
例えば、アメリカ合衆国特許第3,774,238号は、材料の誘電体の特性を決定するために3つのコンデンサーを利用してパイプライン材料の侵入的な測定方法を開示する。
アメリカ合衆国特許第4,074,184号は、蒸気液体相比率を決定するために管体で非伝導性液体の侵入的な静電容量測定方法を開示する。
【0004】
アメリカ合衆国特許第4,227,151号は、容器内で液体の電気導電率を決定する使用のために侵入的な測定細胞を示している。
アメリカ合衆国特許第4,924,702号は、容器の液体レベルを決定する侵入的な静電容量センサーを開示する。
アメリカ合衆国特許第4,928,065号は、非水溶性低導電率懸濁液の特性を決定するために電極から電界を供給する侵入的な測定装置を示す。
【0005】
アメリカ合衆国特許第4,935,207号は、液体容器で検体イオンを検出する侵入的な容量性センサーを採用している。
アメリカ合衆国特許第5,068,617号は、容器の中で複合液体の混合比率を測る侵入的な容量性装置を教示している。
アメリカ合衆国特許第5,208,544号は、導管で流れている高温度溶融重合体合成物について誘電体測定をなす侵入的センサーを開示する。
【0006】
アメリカ合衆国特許第5,255,656号は、容量性素子の使用によって燃料管内のメタノールガソリン混合を侵略的に測る電子センサーを描いている。
アメリカ合衆国特許第5,266,899号は、誘導非接触によって塩性溶液の導電率を測る侵入的塩分析器を開示する。
アメリカ合衆国特許第5,296,843号は、容器の中で蒸気液体比率を決定するために、容器を通して検出器へ透過させる光ビームを生み出す侵入的探知器を採用している流動的又は蒸気診断装置を示している。
【0007】
導管又は容器内の液体特性を非侵入的に決定するシステムがいくつか提案されている。例えば、アメリカ合衆国特許第5,239,860号は、ガソリンアルコール混合による相互作用の後に、管体を通して送られ検出される光ビームを利用する。周波数伝達特性は管体の中でその時の実際のアルコールガソリン混合を決定する。
【0008】
アメリカ合衆国特許第5,260,665号は、共振空洞を通して液体線の中で泡の存在を決定するために、その中に1対のプローブが配置された非侵入的共振セルを利用する。
その中の液体の電気導電率特性を使って容器の中で液体と協働する成分を非侵入的に同定できる能力がある装置は、医学の分野で顕著な前進であるであろう。
【0009】
【発明が解決しようとする課題】
発明の目的は、供給された容器内で成分を非侵入的に同定する新規かつ有用な装置及び方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明の装置及び方法は、電気的に伝導性でない管体のような容器内で液体に含まれた成分を同定することにおいて特に有用である。装置は容器の外面に隣接して置かれかつ容器の寸法に沿ってお互いから間隔を置かれた位置に配置された少なくとも1対の電極を含んでいる。細長い流れ導管の場合、このような寸法はこのような細長い導管の長さであるであろう。第1の電極は入力された波形を生み出す信号手段に連結する。容器の寸法に沿って間隔を置かれた第2の電極は、容器内での液体に含まれた成分との相互作用の後に、電気信号を外部結合する受信又は獲得用の電極として働く。ある特定の場合、各々が第1又は信号伝搬電極から大きい、そしてより大きい距離において置かれて、容器内での液体に含まれた成分との相互作用の後に、波形を確かめるために、多数の受信電極は、容器に沿って採用されことができる。本質的には、伝搬及び受信電極は、誘電体の容器壁と容器内の液体とで容量性抵抗性回路を形成する。生じた信号は、コンダクタンス、分極率及び誘電体の定数を含めた容器中での液体の電気特性によって変化を受ける。セル又は管体に介入するコンダクタンスは、流動容器に沿って伝搬電極から間隔を置いた受信電極における結果としての信号で見いだされる。ここに「コンダクタンス」が「電気のコンダクタンス」を意味するために使われる。もちろん、受信電極によって獲得された結果として生じている信号も特定のセル形状、即ち、セル及び電極寸法の関数であるセル定数に依存している。さらに、液体の極性又はイオン性の種は、非極性化合物から極性の区別を許す信号変化に導くことができる電荷密度を含み、時間電圧プロットの上に異なった信号曲線で自ら明らかにする。
【0011】
信号手段は、さらに伝搬電極を駆動するために採用されている電気波形発生器としても記載されている。分析手段も、容器中成分での入力波形の相互作用の後に受信電極から出力波形を受信するために使われる。かかる分析手段も時間を合わせる手段(タイミング手段)の使用によって入力及び出力波形を同期させ、タイミング手段は波形発生器に受信電極で受信した信号を同期させるものである。かかるタイミング手段は分析手段を作動するために採用されている。分析手段は、電圧量に変換され得るデータであって、容器内の特定な液体を示すか又は容器内の特定な液体の時間電圧曲線を構成するデータを獲得する。従って、最高点電圧又は時間電圧曲線は、容器の中で確かに液体を識別して、そして数量化する。
【0012】
入力波形を発生させる信号手段は、ステップ関数、即ち、矩形波として知られている励起電圧型とすることができる。それで、ステップ関数の使用は、電圧の時間関数と特性づけられている容器中での液体の特性へ容易に変換する。さらに、受信電極によって獲得された応答電圧が励起、ピーク、減衰時間中に増加するので、種々の化合物がこの基礎の上に見分けられることができる。例えば、異なった水溶液が励起の後に異なった時に最高点電圧に届いて、そして異なった減衰特性を有することが観察された。
【0013】
また、伝搬電極から所定の距離への受信電極又は獲得電極の分離は応答波形を発生させ、これはさらに容器中の液体媒体中成分の同定について決定的である。種々の電極分離で獲得された最大のピークの信号は、かかる容器中の種々の成分見分けることを容易にする。さらに、この構成は、低い導電率の溶液内の場合より大きい距離にわたって伝搬信号が探知可能である高い導電率溶液で、好都合である。
【0014】
誘電体の容器内で液体に含まれた成分を同定する新規かつ有用な装置及び方法が記述されることは、明白である。本発明の目的は、容器中で成分が流れている間に操作できる、誘電体の容器内で液体に含まれた成分を同定する新規かつ有用な装置及び方法を提供することである。
【0015】
もう1つの本発明の目的は、使うことが簡単で、そして正確である、誘電体の容器内で液体に含まれた成分を同定する新規かつ有用な装置を提供することである。もう1つの本発明の目的は、非侵入的で、そして腸管外、腸の成分のような医溶液で容易に採用できる、誘電体の容器内で液体に含まれた成分を同定する新規かつ有用な装置を提供することである。
【0016】
本発明のそれ以上の目的は、誤って医溶液を調合する危険を解消する、誘電体の容器内で液体に含まれた成分を同定する新規かつ有用な装置を提供することである。さらにもう1つの本発明の目的は、静脈容器の充填で有用であって、その中に電解液の最大内容を決定するために採用され得る、誘電体の容器内で液体に含まれた成分を同定する新規かつ有用な装置を提供することである。
【0017】
発明は特に他の目的及び利点を有し、その特定な特性及び特徴に関係する利点は、以下の記載から、明白になるであろう。
【0018】
【発明の実施の形態】
以下に本発明による実施例を図面を参照しつつ説明する。
発明は全体として参照符号10によって図画で示されて、図3で概略的に示される。装置10は管体、大樽、バットなどの誘電体の容器内で流体成分を識別するために採用されている。特に、機構及び本発明の方法は適切な医学溶液の組成物で採用されている腸管外及び腸の成分の検出に特に適用できる。
【0019】
図1に関して、従来技術の誘電体のセル12が示され、そしてセル12の中で溶液14の誘電体定数を測るために通常採用されている。電極16及び18はセル12の外に通常置かれる。電極16及び電極18が共振回路21内でコンデンサーを形成する。回路21の共振周波数は、反対する電極16及び18の静電容量に比例している。共振周波数は溶液14の電気特性、すなわち誘電体定数を決定するために使われる。理想的電極16及び18は、高誘電体液体ための従来の侵入的測定技術を示すべくセル12の壁24のすぐ内部に配置されている。セル12の特性は、固定駆動周波数でRC回路に展開された平均電圧を測ることによって決定される。セル12が高導電率の溶液14の誘電体定数を測ることはできない。この欠点は溶液14の導電率の支配のためであると信じられている。図1に示されるように電極16及び18はお互にセル12にわたって反対側に単に置かれ、距離d1だけ離れた平行平板コンデンサーを形成する。
【0020】
図2は本発明の装置10を示している理論的機械的電子的概略図である。電極Elは波形発生器32から受信した波形(V+)を伝搬する。用語「電極」は電子を発し、集めるか、又はその動きを制御するその要素又は素子としての最も広い意味でここに採用されている。電極ENは、図2で概略的に示した誘電体の容器26の外壁25上の1以上の電極を表す。電極El、Enは、誘電体の容器26中で感じられている材料又は液体28の中へ又はそれから、誘電体の容器26の壁25を通しての波形(V+)を結合し(主に電界によって)又は誘導(主に磁界によって)する。
【0021】
図1のセル12の横切って又はお互いからの正反対よりむしろ、容器26の外壁25に沿って(距離d1)、受信電極Enのどれも置くことによって、容量性効果が最小にされる。受信電極Enは非侵入的に配置され、誘電体の容器26の外壁25に対して横たわるか、又は誘電体の容器26の壁25の中で埋め込まれる。それと対照的に、図1の誘電体のセル12においては、容量性の効果は最大にされる。本発明の装置10では、多数の電極Enは、誘電体の容器26の外壁25に沿って測られた種々の距離において採用されている。加えるに、主要なコンデンサーの容量は、図2で概略的に示すように外部セル壁25をわたりそれぞれの電極El、Enから溶液への電界に関連づけられる。内部の壁30の間のサンプル液体28の電荷集中は、誘電体の容器26の内部壁30に沿った(+)及び(−)シンボルによって示される。サンプルの抵抗は”R”によって示される。また、介入するサンプル28のコンダクタンスは、公式:l/Rで示される。
【0022】
図2は、誘電体の壁部分30間に流動サンプル28のコンダクタンス、分極率、イオン可動性、誘電体定数及び他の電気特性によって修正された電気特性で抵抗性の容量性の回路を表す。V(−)で示される電極Enの上の結果の信号は、介入している液体のコンダクタンス、分極率及び誘電体定数と同様、容器26によって形成された特定のセル形状、に依存していることに注意すべきである。本質的には、図2は、容器26の外面壁25の上で電極を使用することによって、異なった信号曲線が時間電圧変化として得られることを表す。
【0023】
図3に示す実用本位のブロック図のように、装置lOは、シヌソイド、方形波、鋸歯形波などの変形である周期的な信号を発生させる電気波形発生器32を含む。波形発生器32は、波形信号をセル34周り電極Elから伝搬せる。セル34は管体、樽などの容器の形式をとることができる。液体がセル34を通して流れ出ているか、又は静止させることができる。Elが単数形の形で示されるけれども、追加の伝搬電極(図示せず)が採用され得、セル34のセル定数を修正するために追加の電気シールド又は波形の場整形を供給する。収集、獲得又は受信電極E2及びE3は、図3でも示される。受信しているかかる複数の受信電極が本発明の装置10に採用されていることに注意すべきである。収集又は受信電極E2及びE3は、伝搬電極Elから間隔を置かれて、そしてセル34の寸法に沿って配置されている。 セル34が管体である場合、このような特定な寸法はその管体の長さであるであろう、そしてそれは以下に詳細に示されるであろう。
【0024】
セル34中の液体に含まれた成分による修正の後に、電極E2及びE3によって受信した出力波形(電流(I)又は電圧(V))は第1及び第2の増幅手段36及び38へ送られる。増幅手段36及び38の出力は、電圧の信号の形式で分析手段40へ送られる。タイミング手段42は波形発生器32の出力と、増幅手段36及び38から分析手段40への入力と、を同期させる。タイミング手段42は分析手段40も作動させる。タイミング手段信号は図3において”t”で示される。分析手段40は、タイミング信号を処理し、そして第1及び第2の増幅手段36及び38は、伝搬電極E1及びE2又はE3間に容量性のセル34内の液体を表す。それで、セル内の液体の電圧時間曲線が確かにプロットでき、流動サンプル28の特定な成分を識別して、そして数量化することができる。このような同定は医学溶液で特に重要である。
【0025】
図4に示すように、液体が反対の方角で流れ出ることができるけれども、誘電体の管体44が、液体を矢印方向46及び46に案内するよう採用されていることが分かる。伝搬電極El、受信電極E2及びE3は管体44の外壁50に隣接して示される。もちろん、他の受信電極がこの点に関して電極E2及びE3に加え使われることができる。電極E1、E2及びE3はステンレススチールのような一般に金属の材料であって、そして図4に概略的に示された電気導体52の複数を含む。電極E1及びE2が距離dlをおいて管体44に沿ってお互いから離れていることは注意されるべきである。同じく、電極E1及びE3は距離d2によって離されている。この分離の意義は以下に詳細で論じられ、次の例で示される。
【0026】
波形発生器32からの励起電圧の形式は、好ましくは周期的な波であって、そして方形波のような「ステップ」関数である。ステップ関数を源として利用することによって、上記の如くセル34中へ介入する流体の特性が電圧時間関数として記載できることは見いだされた。図5に示すように、この現象は、入力方形波54が図4の電極Elに送られた場合に、実証される。10%アミノ酸注射液、ブドウ糖及び水に対する応答信号は、図5のグラフ56に示される。グラフ56で示された応答電圧が入力信号54による励起中に速く増加するが、ピーク及び減衰時間は図3容量性セル34にある特定な成分に対応した時間にわたって変化する。例えば、アミノ酸注射液、ブドウ糖及び水の値は時点「a」及び「b」において全く異なる。換言すれば、分析手段検出エレクトロニクスは、特定な時点における時間対応答電圧又は時間間隔上の平均応答電圧の振幅を見ている。いずれ事例においても、セル34に存在している化合物は容易に識別可能である。さらに、図5のグラフ56において、アミノ酸注射液は、ブドウ糖溶液の前に約(100)ナノ秒で最大ピーク強度に達した。しかしながら、ブドウ糖が10%アミノ酸注射液よりずっとより遅い信号増加及び減衰を示した。それで、異なった応答信号結果は時点「a」及び「b」において達成される。およそ200キロヘルツにおける方形波入力54が図5の成分(5-10マイクロ秒の応答時間)に応答して相違を特性づけるために十分なスピードを有することが、見いだされた。換言すれば、(10)ナノ秒及び数マイクロ秒の間の入力信号上昇時間は、セル形状によって、たいていの普通の腸管外の栄養、ほんのわずか要素溶液及び種々の電解液での応答を見分けることに十分である。加えるに、方形波入力54のような容量的に結合した周期的信号が長期のイオン移動、並びに電極El、E2及びE3においてかその近くにおける濃度勾配を最小になすことに有効である。それで、時間の上の応答信号の不安定性又はドリフトが大いに最小にされる。波形発生器32によって生み出された他の周期的な波形が図5で示された結果を強めるために採用されていると理解されるべきである。例えば、ランプ波形及びランプ波形の積分などが、この点に関して採用され得る。
【0027】
図6は本発明の装置10を使った信号獲得回路の電気概略図を表現する。ICタイマーU1は入力方形波を発生する。C1、C2及びC3はノイズをバイパスする電源供給フィルターとして働く。集積回路(IC)タイマーU1が発振器66として安定した操作のために配置される。R1、R2及びC4はU1のピン3の上にほぼ50%デューティサイクルの方形波を発生させるよう選ばれる。R3がU1に追加電源駆動能力を提供する。分析すべき成分を含むセル又は管体34は、図4に示すように電極El、E2及びE3によって囲まれる。信号伝搬電極Elは、セル34に見いだされた成分を通して波形を発振器66から送る。獲得電極E2及びE3は、出力信号をアンプU2及びU3に、それぞれ送る。U2はトランスインピーダンスアンプ(電流から電圧への)である。利得及び応答時間はR6及びC5によって決定される。これらの素子のためのRC定数は0.44マイクロ秒である。R4はU2入力に容量的につながれたE2のための高いインピーダンス接地バイアスである。U2の出力はRS232連結によってオシロスコープ68にそしてそこからコンピューター70まで送られる。コンピューター70はニューハンプシャー州(New Hampshire)のセーラム(Salem)にある銀河系産業(Galactic Industries)から得られた、8メガバイトのRAM搭載のアイビーエムピーシー(IBM PC)/486DX2-66とグラムス/386(grams/386)、バージョン3.0lB、レベル12のプログラムとからなるシステムである。電極E3から出力を受取るトランスインピーダンスアンプU3は、入力オシロスコープ68によってU2に関して類似の機能を行う。R5、C6及びR7はアンプU2に関してR4、C5及びR6素子に類似している。
【0028】
次のリストは図6で採用された素子(Item)及び指定,購入元(Designation source)を示す。
【0029】
【表1】
Figure 0003765603
操作において、装置10は、管体44の外面表面50に隣接して第1の電極Elを置くことによって、誘電体の管体44のような容器の中で流れている又は静止している成分の存在を決定する。さらに、電極E2及びE3は、管体44の外面表面50に隣接して固定され、しかしお互い離れ、管体44に沿って電極Elから間隔を置いて配置される。かかる間隔は、管体44の長さのような特定な寸法に沿って起こる。例えば、電極El、E2及びE3は4ミリメートルOD管体に対して典型的に(10-13)ミリメートル長であり、そして10−13ミリメートル間隔で離れている。図6で示されるように、発振器32、66によって波形が生み出されて、そして、図6の電気回路を使って、伝搬電極Elへ供給される。管体44中成分の相互作用の後、電極E2及びE3は信号を獲得して、そしてこれをオシロスコープ68の形式の分析手段40へ、さらにRS232通信によってパーソナルコンピューター70へ送る。オシロスコープ68は単位時間当たり特有な出力信号を示す。時間電圧ポイントはコンピューター70のRS232によって発振器66にコンピューター70によって尋ねられる。コンピューター70でのソフトウェアプログラムは、管体44の中の成分の導電率等の特性を決定する。図6のタイマーU1のようなタイミング手段42は、ある時間期間に沿って獲得された信号の特性についてさらなる判別を引き起こすためのトリガ(同期)信号として使用されるべき信号を発生させる。管体44の中の成分又は材料は、材料の電気特性によって修正されるように、時間及び距離信号両方によって決定された特性又は比較により容易に同定される。
【0030】
前述の如く本発明の実施例は本発明の完全な開示を目的に詳細に述べられているが、本発明の精神及び信条から離れることなく当業者が多数の変更をなすことができることは明白である。
次の例は、具体例の目的のために含まれるが、発明の範囲を制限するように意図されない。
実施例1−侵入的導電率測定
次の手順を使た侵入的な導電率測定は、通常調合させている方法で利用可能な異なった腸管外の栄養を識別するために直接接触導電率測定が使われることができたかどうか確かめるために行われた。マサチューセッツ州(Massachusetts)ボストン(Boston)にあるオリオン(Orion Inc.)社によって生産された変形オリオンプローブ012210を有するオリオンモデル126の導電率メータは、市販調合器を使う調合間に、導電率を測り、異なった腸管外の栄養を同定するために採用された。使用されたプローブは、正確な温度補償の熱電対と、0.69/センチメートルのセル定数でどんな分極化効果でも排除するように設計された4黒鉛電極と、を有した。図7及び8に示すように、プローブ59が容器61を形成するためにPVC管体55を差し込むことによって変形された。PVC管体57及び58が容器61の円筒状の空洞60の中で差し込まれた。分析される溶液は空洞又はチャンバ60を中に通りかつその中で保持され、同心オリオンプローブ電極64が流体に接触できるようになされた。この手順は容器61の体積を減少させ、そして電極64に接触するチャンバ60のナトリウム中でサンプル混合時間を減らした。容器61が0.964のセル定数を有した。このような形状で、熱電対はテストされる液体に接触しなかった。
【0031】
表Iは、この例のデータが示される。USPはアメリカ合衆国薬局方を示す。以下同じ。
【0032】
【表2】
Figure 0003765603
動的テストが市販調合器で行われ、個々の管体が多数の開始溶液ビンに接続されて、そして次に多岐管合流点において1つの管体の中に結合された。蠕動ポンプは管体57によって多岐管を通してそして容器61の中に開始溶液を強制して送った。テストされた溶液は殺菌水、70%ぶどう糖注射液、10%のアミノ酸注射液溶液及び20%脂質乳濁液を含んだ。通常出口PVC管体58は静脈袋に導いたであろう、しかし本実施例では、プローブ64が円筒状空洞60の中で合流点又は調合器の多岐管と、PVC管体58が最終容器(IV袋)に接続したところと、の間に挿入された。導電率メータは手動スケーリングにセットされ、アナログ電圧出力したメートルがつけられたパーソナルコンピューター内のアナログデジタルボードに接続された。結果として生じているカウントは調合時間の関数として記録されて、コンピュータースプレッドシートプログラムに移されて、そしてプロットされた。
【0033】
図9に示すように、区別がアミノ酸及び脂質溶液の間に検出された。低い導電率を持っている水及びブドウ糖は図9のプロットの上に同定可能ではなかった。図9上の測定された導電率に対してプロットされた調合時間は調合器を通して奔流したそれぞれの溶液の体積を含んだ。図10に示すように、微細な導電率スケールが採用されていて、そして殺菌水及び70%のブドウ糖溶液の間に測定可能な区別を示した。図10のプロットの始めの導電率での大きいスパイクは調合器管類58で予め存在していたアミノ酸の追放のためであったと信じられる。図11に示すように、異なったアミノ酸注射液溶液が識別可能であるために示された。管類を通して移っているガス泡が導電率における急激な減少としてプロットされることもわかる。構内の電気の導電率の直接接触測定が調合させている過程の間にそれらを識別するために使われ得ると結論された。
実施例2−非侵入的容量的測定溶液は、約6.35ミリメートル及び約0.9ミリメートルの壁層の外径を持っている、典型的に使われるポリビニル塩化物/PV酢酸塩管類型の市販調合器内に含まれた。静的測定がこれらの管体の上にてなされて、そして確かに流れ条件下にて市販調合器を使っているいくつかの主要な栄養を同定するために使われた。図4がこの例で使用された装置の1部を表現する。伝搬電極El並びに獲得電極E2及びE3は、ミネソタ州(Minnesota)セントポール(St. Paul)のスリーエム社(3M Co.,)から利用可能な伝導性テープから形成された。伝導性テープは12.7ミリメートル及び約0.075ミリメートルの層の幅を持っていた。伝導性テープは図4の管類44のような管類の周りに完全に置かれて、そして13ミリメートル離れて間隔を置かれた。これらのテープは、管類の外面表面に沿った形に加工されたアルミニウムホルダに納められた。方形波信号が次の測定のために約220kHzの周波数で生み出された。この周波数は、他の周波数が同様に使われたけれども、テストされた化合物の間の良い区別が得られたから、選択された。サンプリングホールド手段と平均手段とは、電子の回路図即ち図6の分析手段40において採用された。伝導性テープで形成された獲得電極によって受信した応答信号がアナログデジタル(A/D)変換器へ送られ、順にパーソナルコンピューターのパラレルポートへと接続された。コンピュータープログラムは、A/D変換器から信号を獲得し、その値を表示して、そして調合器から出口管体に見いだされた特定な化学的な実存を同定するために書かれた。このようなコンピュータープログラムはここに付録として含まれる。表IIは上記の方法及び機構によって決定されたある特定の腸管外の栄養のために値を示す。表IIにおいて(A/D)カウント毎に2.44ミリボルトあることは注意すべきである。分かるように、得られた値は個々の化合物が容易に見分けられることを表す。さらに、管体中の液体の化合物の不存在が同じく空の管体と比較して検出できたことが分かった。70%ブドウ糖が260のテスト計算と結び付けられ、殺菌水が130のテスト計算と結び付けられる。この相違は、35%ブドウ糖のような他のブドウ糖溶液が容易に殺菌水からも見分けがつくはずであることを表す。調合器の上に間違って水とブドウ糖管体を取り替える間違いが示された発明によって、すぐに同定されるはずであることを示している。図2-4が本実施例で採用された装置の機械的、電子的概略図を表現する。
【0034】
【表3】
II
調合物 カウント
━━━━━━━━━━━━━━━━━━━━━━━━━━━
管体なし 0
空の管体 10
殺菌水 130
70%ブドウ糖注射液 260
10%アミノ酸注射液 350
20%脂質乳濁液 680
実施例3−全ピーク曲線及び多獲得電極使用の非浸入的容量測定
図4で示されたような電極に電極E2と全く同じ電極E4及びE5(図示されない)を加えた電極は、図6で示された回路で採用された。修正された方形波入力信号は、タイマー集積回路U1を通して電極E1に送った波形として使われた。入力信号は220kHzの近くの期間を持った。電極E2は静脈袋と接続した内部直径(3)ミリメートルのポリビニル塩化物(PVC)管体に沿って0.5(12.7ミリメートル)インチ間隔において続いて配置された。このような配置はE2、E3、E4及びE5として示される。電極は適宜ポリビニル塩化物管体の外面表面にはめられた。それぞれの電極E1及びE2は幅0.5インチであって、そして図6で示された回路に接続された。方形の波形入力は発生されて、555の発振器から管体通し管体内の溶液を通し、電極E2-E5、獲得電極に伝達された。応答波形は増幅され、獲得され、オシロスコープのスコープメータ(Scopemeter)97(ワシントン州(Washington)のエベレット(Everett)のフルーク社(Fluke Inc.)によって生産されたもの)によって測定され、トリガされ、入力波形に同期された。獲得された信号は、コンピューターのシリアルポートに供給され、セーラム(Salem)にある銀河系産業(Galactic Industries)によって生産されたグラムス/386(grams/386)、バージョン3.0lB、レベル12のソフトウェアプログラムを使って分析のために集計された。入力と出力又は応答波形がオシロスコープから集計された。腸管外の栄養のための市販調合器はイリノイ州(Illinois)のディアフィールド(Deerfield)のトレードマークのAutomix 3-3の下でクリンテック栄養社(Clintec Nutrition Company)によって生産された調合器であり、これはポリビニル塩化物管体によって源容器から静脈袋まで約60ミリリットル溶液を移すために使われた。波形がポンプサイクル間に集められた。図12は普通の腸管外の栄養のためのlO%トラバソル、リホライト(Lypholyte)及び30%ブドウ糖の3つの特有な応答波形を表現する。図12で示されたそれぞれの栄養のための応答波形は約2.2マイクロ秒に及ぶ。垂直軸はボルトで信号電圧を意味する。3つの栄養のそれぞれが速く最大の信号に達して、そして時間後に減衰する特有な応答曲線を持つことが分かった。図12のグラフの上に示される距離は波形伝搬電極El及び単一電極E2の間に電極分離を表す。より広い最大限電圧を示した3O%ブドウ糖注射溶液が10%トラバソル又はリホライトの最高点測定より遅れて、このような最大限電圧に届いて、そして時間上に一層ゆっくりと減衰する。10%トラバソル注射溶液はブドウ糖溶液によって達したピークより以前の時においてもっと狭いピークを示した。加えるに、lO%トラバソルが、ブドウ糖より一層速く、減衰した。さらに、10%トラバソルが最高点電圧についてE1-E2距離の変更のためにブドウ糖より少ない変化を示した。電解液の混合であるリホライトは10%トラバソルに類似の応答を示したが、より低い最大の信号でかつEl-E2電極距離の変更で極めて少ししかピークの電圧変化を見せなかった。図13は、異なった距離間隔ElからE2を示す伝搬電極及び獲得電極El、E2並びに指定E3、E4及びE5を使用して、図12でプロットされる栄養の最大ピーク信号の変更を示す。それで、10%トラバソル及びリホライトは図12及び13の結果を結合することによって識別できる。第2のすなわちいくつかの受信すなわちE2のような信号獲得電極を加えることは、ポリビニル塩化物管体を通過する溶液を見分け得ると結論された。
【0035】
種々の変更及びここに記述された望ましい実施例への修正が当業者に明白であるであろうと理解されるべきである。かかる変化及び修正が本発明の範囲精神とから外れることなしで、そしてその付随している利点を減らすことなしでなされる。かかる変化及び修正が従属請求項によって包含されることが意図される。
【図面の簡単な説明】
【図1】 従来技術の誘電体セル測定システムの概略側面図。
【図2】 本発明の理論的なシステムの機械的電気的に示す概略平面図。
【図3】 本発明の全体装置及び方法の概略ブロック図。
【図4】 誘電体導管上の単一波形伝搬電極及び多数の受信電極を用いている本発明の部分的な機械の実施例の斜視図。
【図5】 本発明が図2、3、4、6及び7で示した本発明の装置及び方法で得られた模範的な非侵入的導電率値を示している電気時間のグラフ。
【図6】 本発明で使用された電気回路の図。
【図7】 実施例1で詳細にデータによって記述された得る修正された導電率プローブの部分断面図。
【図8】 図7の線B−Bに沿ってとられた部分断面図。
【図9】 図7及び図5のプローブを利用した実施例1で詳細で記述されて行われた量的分析のグラフ。
【図10】 図7及び図5のプローブを利用した実施例1で詳細で記述されて行われた量的分析のグラフ。
【図11】 図7及び図5のプローブを利用した実施例1で詳細で記述されて行われた量的分析のグラフ。
【図12】 実施例3の分析的な成果の曲線を示すグラフ。
【図13】 実施例3の分析的な成果の曲線を示すグラフ。
【符号の説明】
lO 導電率利用容器成分同定装置
En 電極
26 容器
25 容器外面壁
28 流動サンプル
30 誘電体の壁部分
32 電気波形発生器
34 セル
36、38 増幅手段
40 分析手段
42 タイミング手段
44 誘電体の管体
El 伝搬電極
E2、E3 受信電極
50 管体外壁
52 電気導体
55、57、58 PVC 管体
59 プローブ
60 円筒状空洞
61 容器
66 発振器
68 オシロスコープ
70 パーソナルコンピューター

Claims (13)

  1. 誘電体容器内で液体に含まれた成分を同定する装置であって、
    a.誘電体容器において液体の接触から離れて配置された第1電極と、
    b.誘電体容器において液体の接触から離れてかつ誘電体容器に沿って前記第1電極からの間隔を置いて配置された第2電極と、
    c.入力波形を発生しかつ前記第1電極に電気的に接続された信号手段と、
    d.誘電体容器内の前記成分との前記入力波形の相互作用の後の前記第2電極から出力波形を受信する分析手段からなり、
    さらに、前記信号手段及び前記分析手段に接続されかつ前記信号手段による前記入力波形の発生と前記分析手段による前記出力波形の受信とを同期させるタイミング手段を含み、
    前記分析手段は、誘電体容器内の前記成分の導電率に応じて前記出力波形を誘電体容器内の特定成分の存在に関連させる指示手段を含むことを特徴とする装置。
  2. 前記入力波形は周期波形であることを特徴とする請求項1記載の装置。
  3. 前記入力波形は方形波形であることを特徴とする請求項1記載の装置。
  4. 前記入力波形は方形波形であり、前記方形波形により前記第1電極で発生した波形は上昇及び下降特性が修正された波形となることを特徴とする請求項1記載の装置。
  5. さらに液体の接触から離れた第3電極を有し、前記第3電極は誘電体容器の特定寸法に沿って前記第1電極から前記第2電極までの前記距離よりも大なる距離で前記第1電極からの間隔を置いて配置され、前記分析手段は誘電体容器内の前記成分との前記入力波形の相互作用の後の前記第3電極から出力波形を受け、前記指示手段は前記第3電極からの前記出力波形を誘電体容器内の特定成分の存在に関連させることを特徴とする請求項1記載の装置。
  6. 前記第1及び第2電極の各々は誘電体容器を少なくとも部分的に囲むように配置されたことを特徴とする請求項1記載の装置。
  7. 前記第1、第2及び第3電極の各々は誘電体容器を少なくとも部分的に囲むように配置されたことを特徴とする請求項5記載の装置。
  8. 前記入力波形は周期波形であり、前記第1及び第2電極の各々は誘電体容器を少なくとも部分的に囲むように配置されたことを特徴とする請求項1記載の装置。
  9. 誘電体容器内で液体に含まれた成分の存在を検出する方法であって、
    a.第1電極を誘電体容器外面近傍に配置する行程と、
    b.1つの第2電極を誘電体容器外面近傍にて誘電体容器の特定寸法に沿って前記第1電極から離れた位置に配置する行程と、
    c.信号手段により入力波形を発生しかつ前記入力波形を前記第1電極へ供給する行程と、
    d.誘電体容器内の前記成分との前記入力波形の相互作用の後の第2電極からの出力波形を分析手段により受信して誘電体容器内の特定成分の存在を示す電気特性を検出して分析する行程とを含み、
    前記分析する行程において、前記信号手段及び分析手段に接続されたタイミング手段により前記信号手段による前記入力波形の発生と前記分析手段による前記出力波形の受信とを同期させることを特徴とする方法。
  10. 第3電極を誘電体容器外面近傍にて誘電体容器の特定寸法に沿って前記第1電極から前記第2電極までの前記距離よりも大なる距離で前記第1電極からの間隔を置いて配置する行程を含み、誘電体容器内の前記成分との前記入力波形の相互作用の後の第3電極からの出力波形を分析して前記電気特性を検出することを含むことを特徴とする請求項9記載の方法。
  11. さらに前記第2及び第3電極の出力波形を比較する行程を含むことを特徴とする請求項10記載の方法。
  12. 移送管体内で液体に含まれた成分の存在を検出する装置であって、
    a.移送管体外面近傍に配置された第1電極と、
    b.移送管体外面近傍にて移送管体に沿って前記第1電極から間隔を置いて配置された第2電極と、
    c.入力波形を発生しかつ前記第1電極に電気的に接続された信号手段と、
    d.移送管体内の前記成分との前記入力波形の相互作用の後前記第2電極から出力波形を受信し前記入力及び出力波形を比較する分析手段からなり、
    さらに、前記信号手段及び前記分析手段に接続されかつ前記信号手段による前記入力波形の発生と前記分析手段による前記出力波形の受信とを同期させるタイミング手段を含み、
    前記分析手段は、前記出力波形を移送管体内の特定成分の存在に関連させる指示手段を含むことを特徴とする装置。
  13. 前記液体に含まれた成分は腸外及び腸栄養物であることを特徴とする請求項12記載の装置。
JP34293195A 1994-12-28 1995-12-28 導電率利用容器成分同定装置 Expired - Fee Related JP3765603B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/365,908 1994-12-28
US08/365,908 US5612622A (en) 1994-12-28 1994-12-28 Apparatus for identifying particular entities in a liquid using electrical conductivity characteristics

Publications (2)

Publication Number Publication Date
JPH08254513A JPH08254513A (ja) 1996-10-01
JP3765603B2 true JP3765603B2 (ja) 2006-04-12

Family

ID=23440884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34293195A Expired - Fee Related JP3765603B2 (ja) 1994-12-28 1995-12-28 導電率利用容器成分同定装置

Country Status (8)

Country Link
US (1) US5612622A (ja)
EP (1) EP0721103B1 (ja)
JP (1) JP3765603B2 (ja)
AT (1) ATE276514T1 (ja)
AU (2) AU692939B2 (ja)
CA (1) CA2162303C (ja)
DE (1) DE69533503T2 (ja)
DK (1) DK0721103T3 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849855A (ja) * 1994-08-03 1996-02-20 Tokai Corp カセット式ガスボンベの残量検知方法およびその装置
US5927349A (en) * 1996-12-09 1999-07-27 Baxter International Inc. Compounding assembly for nutritional fluids
AU5798698A (en) 1996-12-20 1998-07-17 Molten Metal Technology, Inc. Method and apparatus for monitoring physical integrity of a wall in a vessel
WO1998046985A1 (en) * 1997-04-16 1998-10-22 Kaiku Limited Assessing the composition of liquids
US6199603B1 (en) 1998-08-14 2001-03-13 Baxter International Inc. Compounding assembly for nutritional fluids
US6586950B1 (en) 1998-12-04 2003-07-01 John S. Sargent Volume charge density measuring system
US6351132B1 (en) * 1999-09-03 2002-02-26 Kavlico Corporation Miscible liquid capacitive sensing system
US6975924B2 (en) 1999-12-03 2005-12-13 Baxter International Inc. Method and apparatus for controlling the strategy of compounding pharmaceutical admixtures
US6586949B1 (en) * 1999-12-03 2003-07-01 John S. Sargent Volume charge density measuring system
GB0019132D0 (en) * 2000-08-04 2000-09-27 Aurora Technical Trading Ltd A solution monitor
US6842017B2 (en) * 2001-05-17 2005-01-11 Siemens Vdo Automotive Corporation Fuel cell mixture sensor
US6664793B1 (en) * 2002-03-01 2003-12-16 Allen R. Sampson Fluid presence and qualitative measurements by transient immitivity response
US7405572B2 (en) * 2005-05-02 2008-07-29 Invensys Systems, Inc. Non-metallic flow-through electrodeless conductivity sensor and leak detector
US7279903B2 (en) 2005-05-02 2007-10-09 Invensys Systems, Inc. Non-metallic flow-through electrodeless conductivity sensor with leak and temperature detection
US20080047881A1 (en) * 2006-09-29 2008-02-28 Buck Andy Andrew F Automatic Brine Tank Level Sensor Incorporating a Capacitive Oscillator
US20080094070A1 (en) * 2006-10-23 2008-04-24 Madison Company Branford, Ct Linear analog sensor for in line measurement of the conductivity of beer and similar liquids
US8728025B2 (en) * 2008-03-10 2014-05-20 S.E.A. Medical Systems, Inc. Intravenous fluid monitoring
CN101629923B (zh) * 2008-07-14 2013-05-15 梅特勒-托利多仪器(上海)有限公司 电磁式溶液电导率的测量方法及装置
GR20080100507A (el) 2008-07-30 2010-02-24 Νικολαος Γρηγοριου Παντελελης Συστημα παρακολουθησης της διαδικασιας μορφοποιησης αντιδρωντων μιγματων
CN102460137A (zh) * 2009-06-08 2012-05-16 S.E.A.医疗系统公司 用于使用导纳谱法鉴定医用流体中的化合物的系统和方法
US9052276B2 (en) 2009-06-08 2015-06-09 S.E.A. Medical Systems, Inc. Systems and methods for the identification of compounds using admittance spectroscopy
JP2013542414A (ja) 2010-09-09 2013-11-21 エス.イー.エイ. メディカル システムズ インコーポレイテッド イミタンス分光法を使用する静注薬物管理のためのシステム及び方法
JP2012103219A (ja) * 2010-11-13 2012-05-31 Nichiri Kogyo Kk 非接触型インピーダンスモニター
US9116099B2 (en) * 2012-12-27 2015-08-25 General Electric Company Wide dynamic range conductivity measurements in water
CH709489B1 (de) * 2014-04-14 2021-04-30 Tecan Trading Ag Verfahren zur Durchführung einer kapazitiven Flüssigniveaumessung.
DE102017202777A1 (de) 2017-02-21 2018-08-23 BSH Hausgeräte GmbH Wasserführendes Haushaltsgerät und Verfahren zum Betreiben eines wasserführenden Haushaltsgeräts
US20200368429A1 (en) * 2017-08-17 2020-11-26 SFC Fluidics, Inc. The Use of Characteristic Electrochemical Signals for Fluid Identification
EP3781934A1 (en) * 2018-04-18 2021-02-24 Universiteit Twente System and method for measuring conductivity
CN112236672A (zh) * 2018-05-09 2021-01-15 艾姆克微型模块技术有限责任公司 用于确定介电常数的tdr测量装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3233173A (en) * 1958-04-28 1966-02-01 United Res Inc Method of determining the volume of particles in a mixture
US3155898A (en) * 1960-07-11 1964-11-03 Industrial Nucleonics Corp Method and apparatus for measuring multiple properties of material by applying electric fields at multiple frequencies and combining detection signals
US3774238A (en) * 1971-12-09 1973-11-20 Spearhead Inc Three-terminal capacitive apparatus for remotely responding to a condition or dielectric properties of a material
US4063153A (en) * 1976-08-31 1977-12-13 Auburn International, Inc. Vapor liquid fraction determination
DE2837102A1 (de) * 1977-08-27 1979-03-01 Malcom Ellis Liverpool Messzelle zum messen und ueberwachen der elektrischen leitfaehigkeit einer fluessigkeit
US4590431A (en) * 1983-12-21 1986-05-20 The United States Of America As Represented By The Department Of Energy Induction voidmeter
GB8408529D0 (en) * 1984-04-03 1984-05-16 Health Lab Service Board Concentration of biological particles
US4935207A (en) * 1986-04-01 1990-06-19 The Johns Hopkins University Capacitive chemical sensor using an ion exchange surface
GB2191293B (en) * 1986-05-30 1990-10-17 Cobe Lab Remote conductivity sensor
US4899101A (en) * 1988-01-21 1990-02-06 The United States Of America As Represented By The United States Department Of Energy Online capacitive densitometer
JPH01204675A (ja) * 1988-02-10 1989-08-17 Takeo Suzuki 点滴容器内の液残量報知方法
DE3822344C2 (de) * 1988-07-01 1997-04-24 Captron Electronic Fertigungs Vorrichtung zum Messen von das dielektrische Verhalten beeinflussenden Eigenschaften einer Flüssigkeit
JPH0238988A (ja) * 1988-07-29 1990-02-08 Murata Mfg Co Ltd 液体センサ
GB8829617D0 (en) * 1988-12-20 1989-02-15 Loma Group Ltd Method and apparatus using a varying electromagnetic field for determining the nature,or a property of a material
US4924702A (en) * 1989-03-10 1990-05-15 Kavlico Corporation Liquid level sensor
US4928065A (en) * 1989-03-31 1990-05-22 E. I. Du Pont De Nemours And Company Voltammetry in low-permitivity suspensions
US5208544A (en) * 1990-09-26 1993-05-04 E. I. Du Pont De Nemours And Company Noninvasive dielectric sensor and technique for measuring polymer properties
US5296843A (en) * 1991-03-28 1994-03-22 Sd Laboratories, Inc. Fluid or vapor diagnostic device
US5260665A (en) * 1991-04-30 1993-11-09 Ivac Corporation In-line fluid monitor system and method
US5239860A (en) * 1991-05-13 1993-08-31 General Motors Corporation Sensor for measuring alcohol content of alcohol/gasoline fuel mixtures
US5255656A (en) * 1991-06-27 1993-10-26 Borg-Warner Automotive, Inc. Alcohol concentration sensor for automotive fuels
US5289132A (en) * 1991-12-04 1994-02-22 Oksman Henry C Voltage characteristic comparator for discriminating solutions
US5266899A (en) * 1992-01-31 1993-11-30 Akzo N.V. Salt analyzer switchably capable of employing contact and non-contact conductivity probes

Also Published As

Publication number Publication date
CA2162303C (en) 2005-09-20
JPH08254513A (ja) 1996-10-01
AU692939B2 (en) 1998-06-18
ATE276514T1 (de) 2004-10-15
EP0721103A1 (en) 1996-07-10
EP0721103B1 (en) 2004-09-15
US5612622A (en) 1997-03-18
DE69533503T2 (de) 2005-08-18
DE69533503D1 (de) 2004-10-21
DK0721103T3 (da) 2004-11-08
AU6356698A (en) 1998-07-09
AU708350B2 (en) 1999-08-05
CA2162303A1 (en) 1996-06-29
AU3791995A (en) 1996-07-04

Similar Documents

Publication Publication Date Title
JP3765603B2 (ja) 導電率利用容器成分同定装置
AU728256B2 (en) Method and apparatus for detecting a magnetically responsive substance
US7315767B2 (en) Impedance spectroscopy based systems and methods
CN102014743B (zh) 用于监测母乳喂养的方法及装置
EP0236434B1 (en) Wave shape chemical analysis apparatus and method
US3735247A (en) Method and apparatus for measuring fat content in animal tissue either in vivo or in slaughtered and prepared form
US20040087860A1 (en) Density/solute monitor of multi-modalities and signal processing scheme
CN102973267A (zh) 利用多种测量技术识别组织类别的装置
Gawne et al. Estimating left ventricular offset volume using dual-frequency conductance catheters
CN105181780A (zh) 基于新型印迹识别的甲硝唑电化学传感器及制备方法与应用
WO2000045697A1 (en) Method and apparatus for detecting a magnetically responsive substance
Blake et al. Determination of magnetic moments in solution by nuclear magnetic resonance spectrometry
CN110954577B (zh) 一种快速无损注射液质量检测系统及检测方法
Hudson et al. 993. The mechanism of hydrolysis of acid chlorides. Part IX. Acetyl chloride
EP3833969B1 (en) Apparatus and method for analysing biomass
CN105866185B (zh) 一种盐酸环丙沙星含量的检测方法
KR101292762B1 (ko) 전기전도도 측정 셀을 이용한 생리 유체의 분석물 농도 측정방법 및 측정장치
Liu et al. Study on the urease activity in different plant seeds and clinical analysis of urea in human body fluids by a surface acoustic wave enzyme sensor system
Gundersen et al. Low‐voltage ELF electric field measurements in ionic media
SU813230A1 (ru) Кондуктометрический датчик
Krog Thermistor hypodermic needle for subcutaneous temperature measurement
JPH10206368A (ja) 水生動物量測定装置及び測定方法
RU94834U1 (ru) Реографическая установка для исследования гидродинамических свойств биологических жидкостей
Cannistraro Simple system for high‐pressure EPR measurements on aqueous samples
LV15278B (lv) Estrālo ciklu noteikšanas detektors

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050608

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050901

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees