JP3765085B2 - Liquid flow regulation member - Google Patents

Liquid flow regulation member Download PDF

Info

Publication number
JP3765085B2
JP3765085B2 JP33390995A JP33390995A JP3765085B2 JP 3765085 B2 JP3765085 B2 JP 3765085B2 JP 33390995 A JP33390995 A JP 33390995A JP 33390995 A JP33390995 A JP 33390995A JP 3765085 B2 JP3765085 B2 JP 3765085B2
Authority
JP
Japan
Prior art keywords
flow path
liquid
flow
snow
main flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33390995A
Other languages
Japanese (ja)
Other versions
JPH08261569A (en
Inventor
敬 高橋
Original Assignee
敬 高橋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敬 高橋 filed Critical 敬 高橋
Priority to JP33390995A priority Critical patent/JP3765085B2/en
Priority to US08/580,168 priority patent/US5724479A/en
Publication of JPH08261569A publication Critical patent/JPH08261569A/en
Application granted granted Critical
Publication of JP3765085B2 publication Critical patent/JP3765085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Woven Fabrics (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、融雪/冷却/集熱/放熱等の目的で使用する、熱媒体を管理された状態で規正流下させるための流下規正部材、蒸発濃縮される排液、海水等の液体の拡散を促進させる流下規正部材、保温液を兼ねる水耕栽培溶液を適正に分布させる拡散供給用の流下規正部材に関係している。
本発明は、とりわけ、鉄板製の屋根や壁面、熱交換金属ボードや金属バックアップ樹脂膜構造体の表面にはり付けて使用する液体の流下規正部材に関係している。鉄板屋根にこの液体の流下規正部材を使用する場合、液体の流下規正部材に沿って温水を流せば冬期には屋根の除雪または融雪を行うことができ、夏期には太陽熱の集熱を行うことができ、また冷水を流せば屋根や壁面を冷却することができる。
【0002】
【従来の技術】
部材の表面に疎液性部分と親液性部分をすじ状に交互に設けて液体の流れを規正する流下経路並列一体構造の流下規正部材は周知となっている。本件出願人はこうした流下規正部材をストリップ状に細分化し、必要とする被接着面に簡単にはり付けて使用できる簡易接着部材につき検討を加え、各種のものを試作し評価してきた経緯がある。
【0003】
こうした接着部材の課題は、第1に、過酷な条件下での使用および特殊な使用条件の要求される場合を含めて、如何にして耐久性に優れた信頼性ある商品を製造するか、第2に、被接着面の傾斜精度および部材そのものの姿勢の良否により液体の拘束性能が大きく影響されることである。第3に、屋外で使用する場合、例えば、融雪部材として使用するケースでは、風の影響を受けて液体が部材からそれてしまうことが挙げられる。本発明の技術問題解決の対象は、前述した第2と第3の課題に対してのものである。
【0004】
【発明が解決しようとする課題】
例えば、部材を瓦棒鉄板屋根にはり付ける場合、鉄板の屋根面そのものに凹凸があり、下地に断熱層を付設したものでは、工事に伴う作業者の歩行により、屋根面の凹凸状態は断熱層のないものに比べて顕著に認められる。従って、こうした平面精度に劣る屋根に部材をはり付けた場合、部材の液体に対する拘束性能が低下し、流下する液体の勢いにより局部的な短絡が起きて規正効果が失われる。実験段階では通常見られる程度の凹凸面に対しては流下規正状態は良好であったが、実際の既設屋根の塗装面は相当に劣化の進行したものも多く見受けられるため、現場での部材付設工事には厳重な品質管理が要求される。さらに、屋根への接着部材は風の影響を受け易く、強風に晒された場合には液体は流下経路から外れて流れる傾向を見せるようになる。外気温が低い場合、経路から大きく外れた液体は比較的簡単に凍結してしまう。
本発明の目的は、被接着面の状態の良否および風の影響により性能が大幅に低下したり使用が制約されることがなく、常に安定した拘束流下を実現できる信頼性の高い液体の流下規正部材を提供することにある。
【0005】
【課題を解決するための手段】
本発明によれば、防水層を形成する底基材と、この底基材の上部に設置された吸液素材からなり、当該吸液素材は、液体含有保有量が少なく、流下する液体の一部を吸収し残りの部分が表面を滑る露出した液体の流れを形成する任意の幅の主要流下経路と、前記底基材の上部にあって、この主要流下経路の側部に位置し、主要流下経路に比べて液体含浸保有量の大きな副流下経路とを有し、前記主要流下経路の上側表面が副流下経路の上側表面に比べて低く設定され、主要流下経路が窪んでいる液体の流下規正部材が得られる。
【0006】
【作用】
吸液素材は任意の幅の流下経路を形成している。この任意の幅の流下経路に沿って液体は流下していく。吸液素材は液体含浸保有量の少ない主要流下経路と、この主要流下経路の側部に位置し液体含浸保有量の大きな副流下経路からなり、これら主要流下経路と副流下経路は段差状の溝と土手の形態に配置されている。従って、主要流下経路を流下する熱媒体の主流の側部に副流が配置され、吸液素材の全幅にわたり密集したままの状態で液体は流れていく。
【0007】
主要流下経路は液体含浸保有量が少ないため、吸液素材の流下方向に沿って経路表面を滑る露出した主流を形成し、また液体含浸保有量が大きい(または流下抵抗の大きな液体吸収性に富む)副流下経路により、主流の側部に主流よりも流速の遅い緩慢な流れの副流が形成される。従って、被接着面の凹凸に遭遇しても、片寄る主流の流れは副流下経路が緩衝吸収し、主流の流れが部材から多量に漏出するのを阻止することができる。風の力により主流の流れが側方に押しやられた場合にも、副流下経路は同様の機能を果たす。
【0008】
また、通常時には、主要流下経路の方が副流下経路に比べて流下速度が速いため吸液素材外側へのチャネリングが発生しにくい。従って、凍結も起こりにくい。液体が熱媒体の場合、吸液素材に付着した熱媒体は平面的に均等に広がり、吸液素材の境界域内に所望の熱量を保有する平面放熱体が形成される。
【0009】
流下規正部材を融雪部材として使用すれば、前述した主要流下経路により多量の熱媒体を流下させることができ、長尺の屋根であっても屋根全面に充分な量の熱を供給することができる。
なお、吸液素材はその全面に主流と副流が存在するため比較的幅の広い吸液素材を使用でき、側部に疎水性境界層を設けた部材に比べて大幅に有効融雪面を広げることができる。
【0010】
【実施例】
以下、添付図面に沿って本発明に係る流下規正部材の実施例につき、この部材を融雪部材として利用した場合を想定して詳細に説明する。
図1および図3は、この部材を瓦棒屋根の積雪面1にはり付けた状態を示している。
部材は底基材2aとこの底基材の上部に設置された吸液素材2から構成されている。底基材2aは、感圧接着剤の層、合成樹脂部材、合成樹脂フィルムと金属ホイルまたは金属蒸着層の複合層材料、プラスチック製またはゴム製の磁石部材、金属薄板、合成樹脂板、側部に縁を備えた金属製またはプラスチック製のトレイから構成することができる。
【0011】
また、底基材2aは、第8図に示す如く、吸液素材2よりも幅を広く設定し、底基材の側縁部2cが吸液素材の側縁部の外へ広がるように構成することができる。このような外縁構成を取り入れれば、撥水性能の低下した屋根面と吸液素材外縁との間に撥水性能に優れた防水底基材が介在することになる。液体は屋根面に直接接触することはないため、屋根鉄板腐食防止の観点から都合がよい。また、露出した底基材表面の撥水性により部材の持つ流下拘束性能はさらに高まることになる。
あるいは、前記底基材2aは、側部に縁を備えた金属製またはプラスチック製のトレイから構成することも可能である。
【0012】
積雪面1は連続する細長い吸液素材2で覆われる。この吸液素材2は間隔を置いて配置され、吸液素材に沿って熱媒体が流される。この熱媒体は融雪の呼び水となる性質を備えた液体、例えば、地下水等の温水である。吸液素材に沿って流下する熱媒体は降雪粒子が吸収する。降雪粒子に吸液素材から流下する熱媒体の一部を吸収させれば雪の白色は消え、透明なシャーベットが形成される。シャーベットの比重は1よりも小さいため、熱媒体に浮揚するシャーベットがあれば、この浮遊状態のシャーベットは熱媒体の流速により流下経路に沿って流下し易くなる。
吸液素材の配列間隔、幅および厚み、熱媒体の温度および流量は選択事項である。
【0013】
熱媒体の熱により生じた融雪水は吸液素材2が保持し、流下熱媒体と融雪水を含浸する平面蓄熱体が形成される。融雪水は低温ではあるが所定の熱量を所有しており、この熱も有効利用される。こうして、吸液素材の流下経路は平面放熱体を形成し、この流下経路の上方に位置する雪を他の部分の雪に先行して融雪させることができる。
【0014】
図2および図4は、流下経路の上方に雪が積もっていない状態、すなわち、降雪粒子を熱媒体が速やかに融雪して流下経路上に積雪のない状態か、または降雪が止んだ後も継続して熱媒体を流下させることで流下経路を中心として融雪が進行した状態を示している。なお、図中にて参照番号Sは残雪を示している。
【0015】
降雪量が多く、吸液素材2の流下経路を流れる熱媒体の保有熱量が即時の融雪に必要な熱量よりも少なければ雪は堆積していく。この堆積した雪は、流下経路が平面蓄熱放熱体として機能するため、この流下経路の上方に位置する雪を他の部分の雪に先行して融雪させることにより積雪表面に顕著な凹凸面を形成し、この凹凸面の出現により積雪表層の露出表面積を拡大して外気温または直達日射により、また吸液素材から積雪面に伝達される熱により融雪を促進することができる。
【0016】
前記熱媒体は連続的または間欠的に供給される。間欠的に供給する場合、流下経路に沿って流下する熱媒体にパルス波動を生じさせるように供給圧を変動させることも可能である。こうした間欠的供給によれば、シャーベットの運搬能率が高まることがある。
【0017】
図5は、図1に使用した吸液素材の具体例を示す斜視説明図である。図示の吸液素材2は、液体含浸保有量の少ない主要流下経路4と、この主要流下経路4の両側に位置する液体含浸保有量の大きな副流下経路5とを備えている。両方の経路部分の間には図示の様な段差が設けられ、溝9を形成している。
主要流下経路4は厚みが薄く、含浸保有しきれない多くの熱媒体が経路表面上を露出した状態で滑りながら流下する主流を形成する。主流の両側に配置された液体含浸保有量の大きな副流下経路は主要流下経路よりも多くの熱媒体を含有し、この副流下経路に沿って比較的流量の少ない流速の遅い副流が形成され、これら熱媒体の主流と副流は互いに隣接して位置し、吸液素材の全面に沿って流下していく。
【0018】
図6は、図3に使用した吸液素材の具体例を示す斜視説明図である。図示の吸液素材2は、液体含浸保有量の少ない主要流下経路4と、この主要流下経路4の側部に位置する液体含浸保有量の大きな副流下経路5とを備えている。従って、主要流下経路4は吸液素材の流下方向に沿って熱媒体の主流を形成し、主流の片側に主流よりも比較的流量の少ない緩慢な流速の副流が形成される。これら熱媒体の主流と副流は互いに隣接して位置し、吸液素材の全面に沿って規正された状態で流下していく。
前述の流下経路には、補助加熱手段として、電気発熱体あるいは熱媒体の循環する閉路配管を予め包み込んでおくことも可能である。
【0019】
前記吸液素材の流下経路の少なくとも一部は、熱媒体の移動方向に沿って疎水素材3で覆い保温することができる。疎水素材で覆われた部分には、中空な配管通路部分を設け、吸液素材が凍結してもこの配管通路部に流す熱媒体により解氷することができる。
【0020】
前記吸液素材は、吸液表面層と基材層から構成することができる。吸液素材はこの基材層の表面に塗布される接着剤により積雪面に貼り付けることができる。また、この基材層は、透磁率の大きな磁性材料からなる被接着面に対して磁力作用により貼り付くように、少なくとも一部分を、例えば、多量の鉄粉を含む熱伝導性に優れたプラスチック製またはゴム製の磁石から構成することができる。なお、吸水素材は任意の固定手段を用いて積雪面に対しずれないように固定してもよい。
【0021】
流下経路は、図1に示すような間隔を置いて配列された各々が独立する部材ストリップに構成することができ、また互いに隣接するもの同士は任意の素材により接続することができる。
【0022】
前記吸液素材には、主要流下経路を親液性繊維、例えば、ビニロンのような吸水繊維またはビニロンとポリエステルからなる複合繊維を用いて構成し、また副流下経路をポリエステルのような疎液性繊維を用いて構成した織布、不織布または編布を使用することができる。また、主要流下経路は平織りとし、副流下経路は繊維使用量の多い綾織りとする等、任意の織り方を採用できる。液体吸収性に劣る流下経路とは、必ずしも疎液性繊維を使用した部分であるというわけではなく、親液性繊維を使用した液体吸収性に劣る流下経路も含まれる。親液性繊維を使用していたとしても、疎液性繊維の部分に比べてスポット吸収性に劣るならば液体吸収性に劣る流下経路であると言える。液体吸収性については、繊維の張力を変えることである程度調節することが可能である。
【0023】
前記織布は疎液性の縦糸と横糸を使用して織られた織布生地からなり、この織布生地の縦糸に加えて親液性の縦糸の密集した部分をすじ状に織り込み、疎液性の織布生地の部分に隣接して親液性の縦糸の密集した主要流下経路となる部分を設けて構成することができる。
【0024】
また、前記不織布は、主要流下経路となる親液性繊維の密集した部分の側部に副流下経路となる疎液性繊維の密集した部分を隣接して設けることができる。
【0025】
また前記織布は、親液性の縦糸と横糸を使用して織られた織布生地から構成し、この織布生地の縦糸に加えて側部に副流下経路となる疎液性の縦糸の密集した部分を織り込み、親液性の織布生地の部分と疎液性の縦糸の密集した部分を隣接して設けてもよい。
【0026】
あるいは、前記織布を親液性の縦糸を使用して織られた織布生地から構成し、織布生地の縦糸に加えてこの生地縦糸よりもさらに液体吸収性に富む保液性の縦糸の密集した部分をすじ状に織り込み、副流下経路となる前記親液性の織布生地の部分と主要流下経路となる前記保液性の縦糸の密集した部分を隣接して設けることもできる。
【0027】
さらに、前記織布は親液性の縦糸を使用して織られた織布生地から構成し、織布生地の縦糸に加えてこの生地縦糸よりも太い径の親液性の縦糸の密集した部分をすじ状に織り込み、副流下経路となる前記親液性の織布生地の部分と主要流下経路となる前記太い径の親液性の縦糸の密集した部分を隣接して設けるようにもできる。
【0028】
前記織布は疎液性の縦糸を使用して織られた織布生地から構成し、織布生地の縦糸に加えてこの生地縦糸よりも太い径の疎液性の縦糸の密集した部分をすじ状に織り込み、副流下経路となる前記疎液性の織布生地の部分に隣接して前記太い径の疎液性の縦糸の密集した主要流下経路を形成することも可能である。
【0029】
前述の構造とは異なり、前記吸液素材は、基材層とこの基材層に接着した液体吸収性に富むその他の任意の材料、例えば、粉体塗装層の主要流下経路と、この主要流下経路の側部に配置された液体吸収性に劣る粉体塗装層から構成することができる。
【0030】
また、前記吸液素材は、屋根表面に接着した溶射粉体塗装層から構成することができる。
【0031】
この方法とは別に、吸液素材は、液体吸収性に劣る基材層とこの基材層表面を加工して形成された液体吸収性に富む荒い細かい凹凸表面の部分から構成し、液体吸収性に劣る基材層表面の部分が副流下経路を形成し、液体吸収性に富む凹凸表面の部分が主要流下経路を形成するようにもできる。
【0032】
あるいは、前記吸液素材は親液性繊維と疎液性繊維の両方の繊維を混合したものからなり、主要流下経路に相当する部分がこれに隣接する副流下経路に相当する部分よりも親液性繊維の比率が高くなるようにして構成することもできる。
【0033】
図7は、織布を用いて構成した融雪部材の一例を示している。図中にて、参照番号6は主要流下経路4を構成する縦糸である。この縦糸は、例えば、十番手(綿糸換算)相当のポリエステル(芯材)/ビニロン(周囲螺旋巻付け)の複合糸を3本撚り合わせたものを2本引き揃えて構成されている。また側部の副流下経路5は、太いポリエステル撚り糸を縦糸7に用いた綾織り部分であり、前記主要流下経路4と副流下経路5を構成する横糸8は、十八番手のポリエステル糸4本の撚り糸から構成されている。
【0034】
図示の織布構造によれば、ポリエステル/ビニロン複合縦糸のうちビニロンの部分が優れた吸液性を示す。このビニロンの繊維部分は収縮傾向を示すがポリエステルに沿って動き、織布そのものに影響はない。また、この複合縦糸は2本づつ引き揃えて配置したため、熱媒体はこの縦糸に沿って移動しようとする傾向を示す。
【0035】
前述の織布構造の流下規正部材を融雪シートとして使用する実験を行った。融雪シートは鉄板屋根に張り付けて使用した。シートの長さは3800mm、幅は390mmであった。このシートには、4つの主要流下経路(各主要流下経路の幅は75mm)と3つの副流下経路(30mm)が隣接して配置されている。主要流下経路の各々には、約12℃の地下水が毎分当たり180cc供給された。シートは全部で4枚使用され、各々のシートは約50mmの間隔に配置された。実験の結果、外気温が0℃の付近にあって、どのような降雪状態の下でも3cm以上の積雪は認められなかった。シートの持つ平面放熱体としての性能がシート全面に渡って均一に作用しており、この作用は熱媒体の流下が精度よく規正されていることの証明である。
【0036】
吸液素材を繊維質のものから構成する場合、繊維の種類は、別段、前述したものに限定されない。流下経路を構成する材料の全部または一部を、炭素繊維のような難燃性繊維またはガラス繊維のような不燃性繊維から構成し、火災に対し予め配慮しておくとよい。尚、こうした繊維の表面性状は液体との馴染みを考慮して適宜、調整しておかれる。
【0037】
前記主要流下経路と副流下経路の数、幅寸法、経路長さは選択事項である。第9図の主要流下経路と副流下経路は横に隣接して配置されている。
含水量の少ない比較的ドライな雪に比べて、ウエットな雪の場合、流下経路の上部に雪のブリッジができやすいため、流下経路の幅または本数を大きく設定しておくのがよい。
【図面の簡単な説明】
【図1】融雪部材として使用した例を示す斜視説明図。
【図2】除雪状態を示す斜視説明図。
【図3】融雪部材として使用した例を示す斜視説明図。
【図4】除雪状態を示す斜視説明図。
【図5】流下経路の一例を示す斜視説明図。
【図6】流下経路の他の例を示す斜視説明図。
【図7】織布から構成した融雪部材の一例を示す模式説明図。
【図8】底基材の幅が吸液素材の幅よりも広い形態の流下規正部材を示す説明図。
【図9】流下経路が隣接する形態の流下規正部材を示す説明図。
【符号の説明】
1 積雪面
2 吸液素材
2a 底基材
2c 底基材の側縁部
3 疎水素材
4 主要流下経路
5 副流下経路
6 主要流下経路の縦糸
7 副流下経路の縦糸
8 織布の横糸
9 主要流下経路の溝
[0001]
[Industrial application fields]
The present invention is used for the purpose of snowmelt / cooling / heat collection / heat radiation, etc., a flow regulating member for regulating the flow of the heat medium in a controlled state, the diffusion of liquids such as seawater, etc. It relates to a flow-down regulating member for diffusion supply that appropriately distributes a flow-down regulating member that promotes and a hydroponics solution that also serves as a heat retaining liquid.
The present invention particularly relates to a liquid flow regulating member used by being attached to the surface of a roof or wall surface made of iron plate, a heat exchange metal board or a metal backup resin membrane structure. When this liquid flow regulation member is used on the iron plate roof, if the warm water is run along the liquid flow regulation member, the snow can be removed from the roof or melted in the winter, and solar heat can be collected in the summer. It is possible to cool the roof and walls by flowing cold water.
[0002]
[Prior art]
A flow regulating member having a flow path parallel integrated structure in which a liquid-phobic portion and a lyophilic portion are alternately provided on the surface of a member to regulate the flow of the liquid is well known. The applicant of the present application has subdivided the flow regulation member into a strip shape, studied a simple adhesive member that can be used by simply sticking to the required adherend surface, and has made various types of prototypes and evaluated them.
[0003]
The first problem with such adhesive members is how to manufacture reliable products with excellent durability, including use under severe conditions and when special use conditions are required. Second, the liquid restraining performance is greatly influenced by the inclination accuracy of the adherend surface and the posture of the member itself. Thirdly, when used outdoors, for example, in a case where it is used as a snow melting member, the liquid may deviate from the member due to the influence of wind. The object of the technical problem solution of the present invention is for the second and third problems described above.
[0004]
[Problems to be solved by the invention]
For example, when a member is attached to the roof of a steel bar iron plate, the roof surface of the iron plate itself is uneven, and if the base is provided with a heat insulation layer, the roof surface is uneven due to the walking of the worker accompanying the work. Remarkably recognized compared to those without. Therefore, when a member is attached to the roof having such poor planar accuracy, the restraining performance of the member on the liquid is lowered, and a local short circuit occurs due to the force of the flowing liquid, so that the regulation effect is lost. In the experimental stage, the flow regulation was good for uneven surfaces that are normally seen, but the actual painted surface of the existing roof is often seen to have deteriorated considerably, so there is no need to install parts on site. Strict quality control is required for construction. Further, the adhesive member to the roof is easily affected by wind, and when exposed to strong wind, the liquid tends to flow out of the flow path. When the outside air temperature is low, the liquid greatly deviating from the path freezes relatively easily.
It is an object of the present invention to provide a highly reliable liquid flow regulation that can always realize a stable restrained flow without significantly degrading performance or use due to the condition of the surface to be bonded and the influence of wind. It is to provide a member.
[0005]
[Means for Solving the Problems]
According to the present invention, it comprises a bottom base material that forms a waterproof layer and a liquid absorbent material installed on the bottom base, and the liquid absorbent material has a small liquid content and is one of the flowing liquid. A main flow path of any width that forms an exposed liquid flow that absorbs the rest and the rest slides on the surface, and is located on the side of the main flow path at the top of the bottom substrate, A sub-flow path having a large liquid impregnation holding amount compared with the flow-down path, the upper surface of the main flow path is set lower than the upper surface of the sub-flow path, and the liquid flow in which the main flow path is depressed A setting member is obtained.
[0006]
[Action]
The liquid-absorbing material forms a flow path with an arbitrary width. The liquid flows down along the flow path of this arbitrary width. The liquid-absorbing material is composed of a main flow path with a small amount of liquid impregnation and a sub-flow path with a large amount of liquid impregnation that is located on the side of the main flow path. The main flow path and the sub-flow path are stepped grooves. And is arranged in the form of a bank. Accordingly, the side flow is arranged on the side of the main flow of the heat medium flowing down the main flow path, and the liquid flows in a state where the liquid absorption material remains dense over the entire width.
[0007]
Since the main flow path has a small amount of liquid impregnation, it forms an exposed main flow that slides along the flow surface along the flow direction of the liquid-absorbing material, and also has a large liquid impregnation capacity (or high liquid absorption with high flow resistance). ) Due to the sub-flow downstream path, a slow flow sub-flow having a slower flow velocity than the main flow is formed on the side of the main flow. Therefore, even if the unevenness of the adherend surface is encountered, the mainstream flow that is offset can be absorbed and absorbed by the subflow path, and a large amount of the mainstream flow can be prevented from leaking from the member. Even when the main flow is pushed to the side by the force of the wind, the secondary flow path performs the same function.
[0008]
In addition, during normal times, the main flow path has a higher flow speed than the sub flow path, and therefore channeling to the outside of the liquid absorbent material hardly occurs. Therefore, freezing hardly occurs. When the liquid is a heat medium, the heat medium adhering to the liquid absorbing material spreads evenly in a plane, and a planar heat radiator having a desired amount of heat is formed in the boundary region of the liquid absorbing material.
[0009]
If the flow regulation member is used as a snow melting member, a large amount of heat medium can be caused to flow through the main flow path described above, and a sufficient amount of heat can be supplied to the entire roof surface even on a long roof. .
The liquid absorption material has a main flow and a side flow on the entire surface, so a relatively wide liquid absorption material can be used, and the effective snow melting surface is greatly expanded compared to a member having a hydrophobic boundary layer on the side. be able to.
[0010]
【Example】
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a flow regulating member according to the present invention will be described below in detail with reference to the accompanying drawings, assuming that this member is used as a snow melting member.
1 and 3 show a state in which this member is attached to the snow cover surface 1 of the roof tile roof.
The member is composed of a bottom substrate 2a and a liquid-absorbing material 2 installed on the bottom substrate. The bottom substrate 2a is composed of a pressure-sensitive adhesive layer, a synthetic resin member, a composite layer material of a synthetic resin film and a metal foil or a metal deposition layer, a plastic or rubber magnet member, a metal thin plate, a synthetic resin plate, a side portion It can consist of a metal or plastic tray with an edge.
[0011]
Further, as shown in FIG. 8, the bottom base material 2a is set to be wider than the liquid absorbent material 2, and the side edge portion 2c of the bottom base material extends outside the side edge portion of the liquid absorbent material. can do. By adopting such an outer edge configuration, a waterproof bottom base material having excellent water repellency performance is interposed between the roof surface having reduced water repellency performance and the outer edge of the liquid-absorbing material. Since the liquid does not directly contact the roof surface, it is convenient from the viewpoint of preventing corrosion of the roof iron plate. Further, the flow restricting performance of the member is further enhanced by the water repellency of the exposed bottom base material surface.
Alternatively, the bottom substrate 2a can be constituted by a metal or plastic tray having a side edge.
[0012]
The snow-covering surface 1 is covered with a continuous elongated liquid absorbing material 2. The liquid absorbing material 2 is arranged at intervals, and a heat medium is caused to flow along the liquid absorbing material. This heat medium is a liquid having a property to serve as a priming water for melting snow, for example, warm water such as groundwater. Snow particles absorb the heat medium flowing down along the liquid-absorbing material. If the snow particles absorb a part of the heat medium flowing down from the liquid absorbing material, the white color of the snow disappears and a transparent sherbet is formed. Since the specific gravity of the sherbet is less than 1, if there is a sherbet that floats on the heat medium, the sherbet in the floating state can easily flow along the flow path due to the flow velocity of the heat medium.
The arrangement interval, width and thickness of the liquid-absorbing material, the temperature and flow rate of the heat medium are selection items.
[0013]
The snow-melting water generated by the heat of the heat medium is held by the liquid-absorbing material 2, and a flat heat storage body that impregnates the falling heat medium and the snow-melting water is formed. Although the snowmelt water has a low temperature but possesses a predetermined amount of heat, this heat is also effectively used. In this way, the flow path of the liquid absorbing material forms a flat radiator, and the snow located above the flow path can be melted prior to other parts of the snow.
[0014]
2 and 4 continue in a state in which no snow is accumulated above the flow path, that is, in a state where the heat medium quickly melts snow particles and there is no snow on the flow path, or after the snow has stopped. The figure shows a state where snow melting has progressed around the flow path by flowing down the heat medium. In the figure, reference numeral S indicates remaining snow.
[0015]
If the amount of snowfall is large and the amount of heat held by the heat medium flowing through the flow path of the liquid-absorbing material 2 is less than the amount of heat necessary for immediate snow melting, the snow accumulates. The accumulated snow has a concavity and convexity on the snow surface by melting the snow located above the flow path prior to the snow in the other part because the flow path functions as a flat heat storage heat radiator. Then, the appearance of the uneven surface can increase the exposed surface area of the snow cover layer and promote snow melting by the outside air temperature or direct solar radiation and by the heat transferred from the liquid absorbing material to the snow cover surface.
[0016]
The heat medium is supplied continuously or intermittently. In the case of intermittent supply, it is possible to vary the supply pressure so that a pulse wave is generated in the heat medium flowing down along the flow path. Such intermittent supply may increase the efficiency of sherbet transport.
[0017]
FIG. 5 is a perspective explanatory view showing a specific example of the liquid-absorbing material used in FIG. The liquid-absorbing material 2 shown in the figure includes a main flow path 4 with a small liquid impregnation holding amount and a sub-flow path 5 with a large liquid impregnation holding amount located on both sides of the main flow path 4. A step as shown in the figure is provided between both path portions, and a groove 9 is formed.
The main flow path 4 is thin, and forms a main flow in which a large amount of heat medium that cannot be fully impregnated flows down while sliding on the surface of the path. The sub-flow path with a large liquid impregnation holding amount disposed on both sides of the main flow contains more heat medium than the main flow path, and a slow sub-flow with a relatively low flow rate is formed along this sub-flow path. The main flow and the sub flow of the heat medium are located adjacent to each other and flow down along the entire surface of the liquid absorbing material.
[0018]
FIG. 6 is a perspective explanatory view showing a specific example of the liquid-absorbing material used in FIG. The liquid-absorbing material 2 shown in the figure includes a main flow path 4 with a small liquid impregnation holding amount and a sub-flow path 5 with a large liquid impregnation holding amount located at the side of the main flow path 4. Accordingly, the main flow path 4 forms the main flow of the heat medium along the flow direction of the liquid-absorbing material, and a slow flow with a relatively low flow rate than the main flow is formed on one side of the main flow. The main flow and the sub flow of the heat medium are located adjacent to each other and flow down in a regulated state along the entire surface of the liquid absorbing material.
It is also possible to enclose an electric heating element or a closed pipe in which a heat medium circulates in advance as auxiliary heating means in the flow-down path described above.
[0019]
At least a part of the flow path of the liquid absorbing material can be covered and kept warm by the hydrophobic material 3 along the moving direction of the heat medium. A hollow pipe passage portion is provided in the portion covered with the hydrophobic material, and even if the liquid absorbing material is frozen, the ice can be defrosted by the heat medium flowing through the pipe passage portion.
[0020]
The liquid-absorbing material can be composed of a liquid-absorbing surface layer and a base material layer. The liquid-absorbing material can be attached to the snow-covered surface with an adhesive applied to the surface of the base material layer. In addition, this base material layer is made of a plastic having excellent thermal conductivity including a large amount of iron powder, for example, so that it adheres to an adherend surface made of a magnetic material having a high magnetic permeability by a magnetic action. Or it can comprise a rubber magnet. In addition, you may fix a water absorption raw material so that it may not slip | deviate with respect to a snowy surface using arbitrary fixing means.
[0021]
The flow-down paths can be configured as independent member strips arranged at intervals as shown in FIG. 1, and those adjacent to each other can be connected by an arbitrary material.
[0022]
The liquid-absorbing material comprises a main flow path using a lyophilic fiber, for example, a water-absorbing fiber such as vinylon, or a composite fiber composed of vinylon and polyester, and a secondary flow path is lyophobic such as polyester. A woven fabric, a non-woven fabric, or a knitted fabric formed using fibers can be used. In addition, an arbitrary weaving method can be employed, such as a plain weaving path for the main flow path and a twill weaving with a large amount of fiber used for the sub-flow path. The flow path inferior in liquid absorbency is not necessarily a portion using lyophobic fibers, and includes a flow path inferior in liquid absorbency using lyophilic fibers. Even if lyophilic fibers are used, it can be said that the flow path is inferior in liquid absorbency if the spot absorbability is inferior to that of the lyophobic fiber. The liquid absorbability can be adjusted to some extent by changing the tension of the fiber.
[0023]
The woven fabric is composed of a woven fabric woven using lyophobic warp and weft. In addition to the warp of the woven fabric, a dense portion of the lyophilic warp is woven in a streak shape to make the lyophobic A portion which becomes a main main flow path where lyophilic warp yarns are densely adjacent can be provided adjacent to the portion of the woven fabric material.
[0024]
In addition, the non-woven fabric can be provided with a dense portion of lyophobic fibers serving as a secondary flow path adjacent to a side portion of a dense portion of lyophilic fibers serving as a primary flow path.
[0025]
Further, the woven fabric is composed of a woven fabric woven using lyophilic warp and weft, and in addition to the warp of this woven fabric, a lyophobic warp of a lyophobic warp that forms a secondary flow path on the side. A dense portion may be woven, and a lyophilic woven fabric portion and a lyophobic warp dense portion may be provided adjacent to each other.
[0026]
Alternatively, the woven fabric is composed of a woven fabric woven using lyophilic warp, and in addition to the warp of the woven fabric, a liquid-retaining warp having a higher liquid absorbency than the fabric warp. The dense portions can be woven in a streak shape, and the portion of the lyophilic woven fabric that becomes the secondary flow path and the dense portion of the liquid-retaining warp that becomes the primary flow path can be provided adjacent to each other.
[0027]
Further, the woven fabric is composed of a woven fabric woven using lyophilic warp, and in addition to the warp of the woven fabric, a dense part of the lyophilic warp having a diameter larger than that of the fabric warp. The portion of the lyophilic woven fabric that becomes the secondary flow path and the dense portion of the lyophilic warp of the large diameter that becomes the main flow path can be provided adjacent to each other.
[0028]
The woven fabric is composed of a woven fabric woven using lyophobic warp, and in addition to the warp of the woven fabric, the dense portion of the lyophobic warp having a diameter larger than the fabric warp is streaked. It is also possible to form a dense main flow path of the lyophobic warp yarns having a large diameter adjacent to the portion of the lyophobic woven fabric that is woven into a shape and forms a secondary flow path.
[0029]
Unlike the above-described structure, the liquid-absorbing material is composed of a base layer and any other liquid-absorbing material adhered to the base layer, for example, the main flow path of the powder coating layer and the main flow path. It can be comprised from the powder coating layer inferior to the liquid absorptivity arrange | positioned at the side part of the path | route.
[0030]
The liquid-absorbing material can be composed of a sprayed powder coating layer adhered to the roof surface.
[0031]
Apart from this method, the liquid-absorbing material is composed of a base layer that is poor in liquid absorbability and a rough fine irregular surface portion rich in liquid absorbency formed by processing the surface of this base layer. The part of the surface of the base material layer that is inferior to the above forms a sub-flow path, and the part of the uneven surface rich in liquid absorbency can form the main flow path.
[0032]
Alternatively, the liquid-absorbing material is a mixture of both lyophilic fibers and lyophobic fibers, and the portion corresponding to the main flow path is more lyophilic than the portion corresponding to the sub-flow path adjacent thereto. It can also be configured such that the ratio of the conductive fibers is increased.
[0033]
FIG. 7 shows an example of a snow melting member formed using a woven fabric. In the figure, reference numeral 6 is a warp yarn constituting the main flow path 4. This warp yarn is constituted, for example, by pulling together two twisted composite yarns of polyester (core material) / vinylon (around spiral winding) equivalent to tenth count (cotton yarn equivalent). The side sub-flow path 5 is a twilled portion using a thick polyester twisted yarn as the warp thread 7, and the weft 8 constituting the main flow path 4 and the sub-flow path 5 is eighteenth polyester threads. It is composed of twisted yarn.
[0034]
According to the illustrated woven fabric structure, the vinylon portion of the polyester / vinylon composite warp exhibits excellent liquid absorbency. Although the fiber part of this vinylon shows a shrinking tendency, it moves along polyester and does not affect the woven fabric itself. Further, since the composite warp yarns are arranged so as to be aligned two by two, the heat medium tends to move along the warp yarns.
[0035]
An experiment was conducted in which the above-mentioned flow regulating member having a woven fabric structure was used as a snow melting sheet. The snow melting sheet was used by attaching it to the iron plate roof. The length of the sheet was 3800 mm and the width was 390 mm. In this sheet, four main flow paths (the width of each main flow path is 75 mm) and three sub-flow paths (30 mm) are arranged adjacent to each other. Each of the main flow paths was supplied with 180 cc of ground water at about 12 ° C. per minute. A total of four sheets were used, and each sheet was placed at a spacing of about 50 mm. As a result of the experiment, it was found that the outside air temperature was around 0 ° C, and no snowfall of 3 cm or more was observed under any snowfall condition. The performance of the sheet as a flat radiator is uniformly acting over the entire sheet surface, and this action is a proof that the flow of the heat medium is accurately regulated.
[0036]
When the liquid-absorbing material is composed of a fibrous material, the type of fiber is not limited to that described above. All or part of the material constituting the flow-down path may be made of flame-retardant fiber such as carbon fiber or non-flammable fiber such as glass fiber, and it is preferable to give consideration to fire in advance. The surface properties of such fibers are appropriately adjusted in consideration of the familiarity with the liquid.
[0037]
The number, width dimension, and path length of the main and sub-flow paths are selections. The main flow path and the sub-flow path in FIG. 9 are arranged side by side.
Compared to relatively dry snow with a low water content, in the case of wet snow, it is easy to form a snow bridge on the upper part of the flow path, so the width or number of flow paths should be set large.
[Brief description of the drawings]
FIG. 1 is a perspective explanatory view showing an example used as a snow melting member.
FIG. 2 is a perspective explanatory view showing a snow removal state.
FIG. 3 is an explanatory perspective view showing an example of use as a snow melting member.
FIG. 4 is a perspective explanatory view showing a snow removal state.
FIG. 5 is an explanatory perspective view showing an example of a flow path.
FIG. 6 is a perspective explanatory view showing another example of the flow path.
FIG. 7 is a schematic explanatory view showing an example of a snow melting member made of a woven fabric.
FIG. 8 is an explanatory view showing a flow regulating member in a form in which the width of the bottom substrate is wider than the width of the liquid absorbing material.
FIG. 9 is an explanatory view showing a flow regulating member in a form in which a flow path is adjacent.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Snow cover surface 2 Liquid absorption material 2a Bottom base material 2c Side edge part 3 of bottom base material Hydrophobic material 4 Main flow path 5 Subflow path 6 Main flow path warp 7 Secondary flow path warp 8 Woven fabric weft 9 Main flow Pathway groove

Claims (1)

液体含有保有量が少なく、流下する熱媒体の一部を吸収し残りの部分が表面を滑る露出した速い流れの熱媒体の主流を形成する任意の幅の主要流下経路と、この主要流下経路の側部に位置し、前記主流よりも流速の遅い副流を形成する、主要流下経路に比べて液体含浸保有量の大きな副流下経路とを有する吸液素材から構成され、前記主要流下経路と副流下経路は横に隣接して繰り返し配置されている融雪シート。  A main flow path of arbitrary width that forms a main stream of an exposed fast flow heat medium that has a low liquid content and absorbs part of the flowing heat medium and the remaining part slides on the surface; It is composed of a liquid-absorbing material located on the side and having a sub-flow path that has a larger liquid impregnation amount than the main flow path and forms a sub-flow having a slower flow velocity than the main flow, and the main flow path and the sub-flow path The snow-melting sheet is arranged repeatedly next to the flow path.
JP33390995A 1994-12-28 1995-11-27 Liquid flow regulation member Expired - Lifetime JP3765085B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33390995A JP3765085B2 (en) 1994-12-30 1995-11-27 Liquid flow regulation member
US08/580,168 US5724479A (en) 1994-12-28 1995-12-28 Fluid flow controlling member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-339259 1994-12-30
JP33925994 1994-12-30
JP33390995A JP3765085B2 (en) 1994-12-30 1995-11-27 Liquid flow regulation member

Publications (2)

Publication Number Publication Date
JPH08261569A JPH08261569A (en) 1996-10-11
JP3765085B2 true JP3765085B2 (en) 2006-04-12

Family

ID=26574671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33390995A Expired - Lifetime JP3765085B2 (en) 1994-12-28 1995-11-27 Liquid flow regulation member

Country Status (1)

Country Link
JP (1) JP3765085B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954129A (en) * 1996-02-14 1999-09-21 Takahashi; Kei Flow control unit
JP3665975B2 (en) * 1996-02-16 2005-06-29 敬 高橋 Fluid regulation conveying means
JP4529040B2 (en) * 2004-02-01 2010-08-25 敬 高橋 Bottom plate surface structure of tiled bar thatched roof
JP4853640B2 (en) * 2005-10-18 2012-01-11 敬 高橋 Sprinkling heat exchange method for gently-splitting folded roof
JP4780388B2 (en) * 2005-11-14 2011-09-28 敬 高橋 Sprinkling heat exchange method for gently-splitting folded roof
JP4834888B2 (en) * 2005-11-17 2011-12-14 敬 高橋 Sprinkling heat exchange method for gently-splitting folded roof
KR101658262B1 (en) 2009-05-12 2016-09-22 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Masking article for producing precise paint lines and method of improving paint line performance of masking articles

Also Published As

Publication number Publication date
JPH08261569A (en) 1996-10-11

Similar Documents

Publication Publication Date Title
JP3765085B2 (en) Liquid flow regulation member
US5724479A (en) Fluid flow controlling member
KR101234167B1 (en) Heat exchange laminate
JP3557560B2 (en) Snow melting sheet
JP3665975B2 (en) Fluid regulation conveying means
JP3443751B2 (en) Roof snow removal method
JP3840568B2 (en) Snow melting floor
US9677786B2 (en) Open-flow solar collector
JP3704591B2 (en) Snow melting / snow removal method on snowy surface
JPH08246708A (en) Liquid flow-down guide member
JP3569903B2 (en) Roof melting method
JP3516176B2 (en) Snow removal equipment
JP3588780B2 (en) How to melt snow on the snow surface
JP3458219B2 (en) How to melt snow on the snow surface
JP3747380B2 (en) Heat exchange adhesive sheet for snow removal / heat collection or heating / cooling with flow regulation function
JP4665236B2 (en) Sprinkling heat exchange method for gently-splitting folded roof
JPH08177175A (en) Method of adjusting for liquid to flow under
JP3600921B2 (en) Snow removal method
JP4035624B2 (en) Heat exchanger
JP4984223B2 (en) Sprinkling heat exchange method for folding roof
JPH07324890A (en) Heat exchanging adhering sheet for removing snow/ collecting heat or heating/cooling having function to restrict flow-down
JP3711461B2 (en) Heat exchange adhesive sheet for snow removal / heat collection or heating / cooling with flow regulation function
JP3817642B2 (en) Flat piping for fluid regulation transfer
JPH0135893Y2 (en)
JP3239174B2 (en) Fluid transfer sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term