JP3765046B2 - Photobissilylation of unsaturated compounds using fullerenes as photosensitizers, organosilicon compounds obtained by the reactions - Google Patents

Photobissilylation of unsaturated compounds using fullerenes as photosensitizers, organosilicon compounds obtained by the reactions Download PDF

Info

Publication number
JP3765046B2
JP3765046B2 JP33046798A JP33046798A JP3765046B2 JP 3765046 B2 JP3765046 B2 JP 3765046B2 JP 33046798 A JP33046798 A JP 33046798A JP 33046798 A JP33046798 A JP 33046798A JP 3765046 B2 JP3765046 B2 JP 3765046B2
Authority
JP
Japan
Prior art keywords
compound
fullerenes
reaction
group
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33046798A
Other languages
Japanese (ja)
Other versions
JP2000154191A (en
Inventor
健 赤阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP33046798A priority Critical patent/JP3765046B2/en
Publication of JP2000154191A publication Critical patent/JP2000154191A/en
Application granted granted Critical
Publication of JP3765046B2 publication Critical patent/JP3765046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ジシリラン骨格を有するケイ素化合物と不飽和有機化合物、例えばC≡N結合を有する化合物やC=O結合を持つアルデヒド類、ケトン類等とを触媒量のフラーレン類の存在する極性溶媒中で光照射(波長400nm以上)してビスシリル化反応させて、前記不飽和有機化合物に前記ケイ素化合物が付加した有機ケイ素化合物を製造する方法、及び前記ビシリル化反応によって得られる新規な有機ケイ素化合物に関する。
特に、電気・電子材料分野において利用される機能性有機ケイ素化合物の製造に関する。
【0002】
【従来技術】
従来から不飽和有機化合物のビシリル化反応による有機ケイ素化合物の合成は、2つのケイ素−炭素結合が一度に形成されることから多くの関心が寄せられてきた。
そしてそのような反応を促進する触媒化合物として、パラジュウム錯体のような金属化合物を使用したビシリル化反応方法が開発されてきた(M.Murakami,M.Suginome,and Y.Ito,J.Synth.Org.Chem.53,47(1995))(特公平7−21059号公報)。
これに対して、ケイ素などの14族グループの有機金属化合物は、電子豊富な化合物群であり、光化学的に、電子欠損型の分子へ電子を供与しやすく、イオンラジカルを形成した後、種々の付加体を生成したり、あるいは伝導性を向上させたりするなどの特性を有することから、近年前記14族グループの有機金属化合物の光誘起電子移動反応が、前記ビシリル化反応に関連して注目されている(Y.Nakadaira,S.Kyushin,and M.Ohashi,J.Synth.Org.Chem.48,331(1990))。
Si−Siシグマ結合は、光励起9,10−ジシアノアントラセン(DCA)のような電子受容体の存在下において優れた電子供与体として機能することが良く知られている。
ジシランやポリシランの光誘起電子移動反応において生成するカチオンラジカル中間体は、アルコール及び四塩化炭素に効率的に捕らえられ、種々の有機ケイ素化合物が合成されている。
【0003】
一方、C60は、その低い最低空軌道により優れた電子受容体としてふるまうが、光励起C60は基底状態のC60よりさらに強い電子受容体である。このような状況の中で、本発明者は、トルエン中におけるジシリラン1とC60との光化学的付加反応についてすでに報告している(T.Akasaka,W.Ando,K.Kobayashi,andS.Nagase,J.Am.Chem.Soc.,115,10366(1993))。
また、金属内包フラーレンの誘導体として、金属内包フラーレンの二重結合にジシリランが付加した有機ケイ素誘導体の合成方法に関する報告もある(Nature 1995,374,600、J.Chem.Soc.Commun.1995,1343、特開平9−87286号公報第4欄)(図A参照、但し、Mesは、メシチル基、すなわち2,4,6−トリメチルフェニル基を表す。)。
ところで、有機ケイ素化合物は、シリコーンをはじめとして、半導体レジストの中間体等の電子材料やニューセラミックスとして使用されている。新規な有機ケイ素化合物の合成やその物性に関する研究も盛んであり、これらの成果は、新規機能材料設計の宝庫ともなっている。
【0004】
【発明が解決しようとする課題】
このような技術的な展開の中で、電子材料としての有機ケイ素化合物としては、金属元素が含まれると不都合な場合がある、また、金属元素を有機ケイ素化合物から完全に取り除くのは難しいし、金属類が環境に排出された場合は色々な不都合を引き起こす原因ともなるなどの問題があった。
従って、金属を含まない光誘起触媒を用いた有機ケイ素化合物類の合成法が望まれている。よって、本発明の課題は、前記問題のない有機ケイ素化合物類の合成法を見出すことにある。
【0005】
【課題を解決するための手段】
本発明の要旨の第1は、一般式(1)ジシリラン
【化4】

Figure 0003765046
(式中Rは、非置換又は炭化水素基置換アリール基、例えば、キシリル、メシチル基、ジエチルフェニル基、ジイソプロピルフェニル基等であり、全てのRは同じでも良い、Xは、アルキレン基、例えばメチレン基又はOである。)と不飽和有機化合物とを触媒量のフラーレン類の存在する極性溶媒中で波長400nm以上の光を照射してビスシリル化して前記ケイ素化合物と不飽和化合物との付加化合物を製造する方法であり、具体的には、前記有機不飽和化合物として一般式(2)で表される化合物を用いた前記付加化合物を製造する方法であり
【化5】
R1C≡N (2)
(式中R1は、アリール基、アルキル基である。)
、更に具体的にはフラーレン類がC60、C70、高次フラーレン類、及び金属内包フラーレンから選択されることを特徴とする前記付加化合物を製造する方法である。
また、本発明の要旨の第2は、前記ビスシリル化で得られる一般式(3)で表される有機ケイ素化合物
【化6】
Figure 0003765046
(式中X、R及びR1は前記と同じ。)である。
本発明者は、紫外領域の光を含まないという比較的温和な条件において、有機ケイ素化合物類の合成反応を進行させることができることを見出すことにより、前記課題を解決したものである。
【0006】
【本発明の態様】
本発明において、光誘起触媒として使用されるフラーレン類としては、C60、C70、高次フラーレン類、及び金属内包フラーレンなどを挙げることができる。
また、極性溶媒としては、ベンゾニトリル、アルデヒド、ケトン類などを挙げることができる。
前記フラーレン類の光増感剤の反応系への配合量は、触媒量である。
この反応は、ジシリラン化合物(D.S)が、光照射(hv)により励起状態になったフラーレン類(C60)に電子を渡して反応中間体となり、これと不飽和化合物が反応することにより、付加化合物(A.D)が生成される(図1参照)。
本発明のビスシリル化反応は、遷移金属等による金属触媒を用いることなく、フラーレン類を光増感剤として用いて自然光下の温和な条件で進行させることができる。
従って、本発明のビシリル化反応は、簡便かつクリーンに有機ケイ素化合物を合成できる技術として、新機能材料の創出に資するものと期待される。
【0007】
【実施例】
実施例1
ジシリラン1(式中Mesは、メシチル基を表す。)及びC60フラーレンをベンゾニトリル(BN=PhCN/トルエン=PhMe)に溶解し、該溶液をハロゲンランプを使用して光照射する。その際、波長400nmより短い波長をカットして光照射する。
その結果、BNと前記ジシりランとが1:1の付加化合物3と1:2の付加化合物4とが生成していた。付加化合物3の生成率は51%であり、付加化合物4の生成率は18%であった。
その反応を図2に示す。
付加化合物3の分析値。
4451NSi2
1H−NMR(CD2Cl2
δ 7.24(m.H),7.15(brs,2H),7.14(brs,2H),6.55(s,4H),6.50(s,4H),2.23(s,12H),2.17(s,6H),2.16(s,6H),2.05(s,12H),1.61(s,2H),
13C−NMR(CD2Cl2
δ 201.18,143.60,143.46,143,03,138.45,137.33,134.73,131.51,129.14*,128.65,127.64,125.89,24.70,23.37,20.31,20.29.11.12
*2つのピークが重なっており、ghmqcにより検出した。
29Si−NMR(CD2Cl2
δ -0.21,-8.25
FT−IR(neat) 1604cm-1
UV−Vis(λmax,hexane) 215,219,225,272nm
FAB MS,m/z 648-654
付加化合物4の分析値
51562Si2
mp 266℃
1H−NMR(C66
δ 7.69(d,J=7.0Hz,4H),6.86(s,4H)6.84(d,J=7.0Hz,2H),6.76(t.J=7.0Hz,4H),6.21(s.4H),2.96(s.12H),2.53(s.12H),2,75(s.6H),2.13(s.6H),2.12(s.2H)
13C−NMR(C66
δ 178.78,144.74,144.26,139.09,138.70,138.64,135.28,133.56,130.88,130.27,129.88,129,04,127.99,25.30,24.72,21.46,21.18,14,94
1つのピークは,C66と重なっており、ghmqcにより検出した。
29Si−NMR(C66
δ -15.98
FT−IR(neat) 1604cm-1
UV−Vis(λmax,hexane) 222,261,416nm
FAB MS,m/z 751-755
得られた化合物は、含ケイ素高分子などの原材料としてとして有用である。
【0008】
実施例2
オキサジシリラン5(Depは、ジエチルフェニル基を表す。)及びC60フラーレンを実施例1と同様にベンゾニトリル(BN)に溶解し、実施例1と同様な条件下で反応させてると、オキサジシリラン5:BNが1:1の付加物7が得られた。収率は62%である。
その反応を図3に示す。
付加化合物5の分析値。
51562Si2
mp 211℃
1H−NMR(CD2Cl2
δ 7.60(d,J=6.5Hz,2H),7.36(t,J=7.5Hz,H)7.30(t,J=7.5Hz,2H), 7.26(t,J=7.8Hz,2H),7.25(t,J=7.8Hz,2H),7.00(d,J=8.0Hz,4H), 6.99(d,J=7.5Hz,4H),3.07(q,J=7.3Hz,4H),2.68(q,J=7.0Hz,4H), 2.62(q,J=7.3Hz,4H),2.43(q,J=7.3Hz,4H),0.77(t,J=7.3Hz,12H), 0.61(q,J=7.5Hz,12H)
13C−NMR(CD2Cl2
δ 201.71,150.08,149.13,145.13,135.45,133,08,129.62,129.61,129.03, 127.47,127.15,125.93,125.72,29.93,28.32,15.13,14.31
29Si−NMR(CD2Cl2
δ -6.38,-19.47
FT−IR(neat) 1587cm-1
UV−Vis(λmax,hexane) 213,239,253nm
得られた化合物は、含ケイ素高分子などの原材料として有用である。
【0009】
実施例1及び2で得られた付加化合物2、3及び5の化学構造の吸収スペクトルによるデータは上記したとおりである。付加化合物2及び3に対しては最終的にはX線結晶解析により決定した。その結果らの分子構造を図4に示す。
ジシラン1は350nmより長波長光を吸収しない、従って、400nm以上の波長域の照射はC60だけを励起することができる。ジシラン1からC60の三重項状態への電子転移の自由エネルギー変化(ΔG)は−8.3kcal/mol.である。
60の消滅速度は、ジアザビシクロ〔2.2.2.〕オクタン及び1,2,4,5−テトラメトキシベンゼン(これらはC60よりも低い酸化電位を有しており、かつC60に対して非反応性である)の付加によって抑制される。
これらの結果から、付加化合物2及び3は、基底状態のジシラン1と360 *(三重項励起状態)との間での光誘起電子移動の反応を経由して形成される。
その反応の想像図を図5に示す。
【0010】
反応メカニズムを明らかにするために、532nmのレーザー光分解反応において近赤外領域における遷移吸収帯を観察した。
非極性溶媒(ベンゼン)中では、C60 -・の遷移吸収帯は1070nmでは現れなかった、しかしながら、励起錯体の形成によるものと思われるかなり早い740nmでの360 *の減衰が観察された(図6)。
非極性溶媒中では、ジシラン1とC60の付加物は、励起錯体を経由して形成される。
【0011】
極性溶媒(ベンジルニトリル)中では、740nmでの360 *の吸収帯はレーザー照射直後に現れ、ジシラン1の存在中で減衰が開始された(図7)。360 *の減衰に伴って、1070nmでのC60 -・の吸収強度は増大し、約500ns後に飽和強度に達する。これからC60 -・360 *が1から電子を受け取ることにより生成することは明らかである。
この新規な光化学ビシリル化システムを発展させて、ベンゾニトリル中で触媒量のC60の存在中で1の光照射を行なった。2及び3もまた高収率で得られた。この結果は、C60は光誘起電子移動触媒としての作用をしていることを示唆している。
同様の結果は、C70、DCA及び2,4,6−トリフェニルピリリュウムテトラフルオロ硼酸塩を増感剤とした場合にも得られた。
【0012】
【発明の効果】
以上述べたように、本発明は、フラーレン化合物が光化学ビシリル化反応の触媒として有用であること見出すことにより、金属原子を含まなで、温和な条件において、電子材料、高分子などの原材料などの用途に用いられる有機ケイ素化合物を製造することができる方法を提供する、という優れた効果をもたしたものである。
【図面の簡単な説明】
【図1】 ジシランの不飽和化合物への付加反応
【図2】 ジシラン1とベンゾニトリルとの付加反応
【図3】 オキサジシリラン5とベンゾニトリルとの付加反応
【図4】 付加化合物2及び3のX線結晶構造解析による分子構造
【図5】 ジシラン1とベンゾニトリルとの付加反応の想像図
【図6】 脱空気ベンゼン中のジシリラン(5mM)の存在下でのC60(0.1mM)の532nmレーザーフラシュ光分解による遷移吸収スペクトル50ns(○)、500ns(●)
【図7】 脱空気ベンゾニトリル中のジシリラン(5mM)の存在下でのC60(0.1mM)の532nmレーザーフラシュ光分解による遷移吸収スペクトル100ns(○)、1μs(●)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silicon compound having a disilirane skeleton and an unsaturated organic compound, for example, a compound having a C≡N bond, an aldehyde having a C═O bond, a ketone, etc. in a polar solvent having a catalytic amount of fullerenes. The present invention relates to a method for producing an organosilicon compound in which the silicon compound is added to the unsaturated organic compound by irradiating with light (wavelength of 400 nm or more) and a novel organosilicon compound obtained by the bisilylation reaction .
In particular, it relates to the production of functional organosilicon compounds used in the field of electrical and electronic materials.
[0002]
[Prior art]
Conventionally, the synthesis of organosilicon compounds by bisilylation reaction of unsaturated organic compounds has attracted much interest because two silicon-carbon bonds are formed at once.
As a catalyst compound for promoting such a reaction, a bisilylation reaction method using a metal compound such as a palladium complex has been developed (M. Murakami, M. Suginome, and Y. Ito, J. Synth. Org). Chem. 53, 47 (1995)) (Japanese Patent Publication No. 7-21059).
On the other hand, group 14 group organometallic compounds such as silicon are a group of compounds rich in electrons, and are easy to donate electrons to an electron-deficient molecule photochemically. In recent years, the photoinduced electron transfer reaction of the organometallic compounds of the group 14 group has attracted attention in connection with the bisilylation reaction because it has properties such as the formation of an adduct or improved conductivity. (Y. Nakadaira, S. Kyushin, and M. Ohashi, J. Synth. Org. Chem. 48, 331 (1990)).
It is well known that the Si—Si sigma bond functions as an excellent electron donor in the presence of an electron acceptor such as photoexcited 9,10-dicyanoanthracene (DCA).
Cation radical intermediates generated in the photoinduced electron transfer reaction of disilane or polysilane are efficiently captured by alcohol and carbon tetrachloride, and various organosilicon compounds have been synthesized.
[0003]
On the other hand, C 60 behaves as an excellent electron acceptor due to its low lowest unoccupied orbital, but photoexcited C 60 is a stronger electron acceptor than ground state C 60 . Under such circumstances, the present inventor has already reported on the photochemical addition reaction between disilirane 1 and C 60 in toluene (T. Akasaka, W. Ando, K. Kobayashi, and S. Nagase, J. Am. Chem. Soc., 115, 10366 (1993)).
In addition, as a derivative of metal-encapsulated fullerene, there is also a report on a synthesis method of an organosilicon derivative in which disilirane is added to the double bond of metal-encapsulated fullerene (Nature 1995, 374,600, J. Chem. Soc. Commun. 1995, 1343, special feature). No. 9-87286, column 4) (see FIG. A, where Mes represents a mesityl group, that is, a 2,4,6-trimethylphenyl group).
By the way, organosilicon compounds are used as electronic materials such as intermediates of semiconductor resists and new ceramics including silicone. Studies on the synthesis of new organosilicon compounds and their physical properties are also active, and these results are a treasure trove for designing new functional materials.
[0004]
[Problems to be solved by the invention]
In such technical development, as an organosilicon compound as an electronic material, it may be inconvenient if a metal element is included, and it is difficult to completely remove the metal element from the organosilicon compound, When metals are discharged into the environment, there are problems such as causing various inconveniences.
Therefore, a method for synthesizing organosilicon compounds using a photo-inducing catalyst containing no metal is desired. Therefore, an object of the present invention is to find a method for synthesizing organosilicon compounds without the above-mentioned problems.
[0005]
[Means for Solving the Problems]
The first of the gist of the present invention is the general formula (1) disilirane
Figure 0003765046
(Wherein R is an unsubstituted or hydrocarbon group-substituted aryl group such as xylyl, mesityl group, diethylphenyl group, diisopropylphenyl group, etc., and all Rs may be the same, X is an alkylene group such as methylene. And an unsaturated organic compound are irradiated with light having a wavelength of 400 nm or more in a polar solvent in which a catalytic amount of fullerenes is present to bissilylate to form an addition compound of the silicon compound and the unsaturated compound. A method for producing the adduct compound using the compound represented by the general formula (2) as the organic unsaturated compound.
R1C≡N (2)
(Wherein R1 is an aryl group or an alkyl group.)
More specifically, the fullerenes are selected from C 60 , C 70 , higher-order fullerenes, and metal-encapsulated fullerenes.
The second gist of the present invention is an organosilicon compound represented by the general formula (3) obtained by the bissilylation:
Figure 0003765046
(Wherein X, R and R1 are the same as above).
The present inventor has solved the above-mentioned problems by finding that the synthesis reaction of organosilicon compounds can proceed under a relatively mild condition of not containing light in the ultraviolet region.
[0006]
[Aspect of the present invention]
In the present invention, examples of the fullerenes used as the photo-induced catalyst include C 60 , C 70 , higher-order fullerenes, and metal-encapsulated fullerenes.
Examples of polar solvents include benzonitrile, aldehydes, ketones and the like.
The blending amount of the fullerenes in the reaction system of the photosensitizer is a catalytic amount.
In this reaction, the disilirane compound (DS) passes an electron to fullerenes (C 60 ) excited by light irradiation (hv) to become a reaction intermediate, which reacts with the unsaturated compound. The addition compound (AD) is produced (see FIG. 1).
The bissilylation reaction of the present invention can proceed under mild conditions under natural light using fullerenes as a photosensitizer without using a metal catalyst such as a transition metal.
Therefore, the bisilylation reaction of the present invention is expected to contribute to the creation of a new functional material as a technique for synthesizing an organosilicon compound easily and cleanly.
[0007]
【Example】
Example 1
Disilirane 1 (wherein Mes represents a mesityl group) and C 60 fullerene are dissolved in benzonitrile (BN = PhCN / toluene = PhMe), and the solution is irradiated with a halogen lamp. At that time, light having a wavelength shorter than 400 nm is cut and irradiated.
As a result, 1: 1 addition compound 3 and 1: 2 addition compound 4 of BN and the above-mentioned disilirane were formed. The production rate of the addition compound 3 was 51%, and the production rate of the addition compound 4 was 18%.
The reaction is shown in FIG.
Analytical value of Addition Compound 3.
C 44 H 51 NSi 2
1 H-NMR (CD 2 Cl 2 )
δ 7.24 (mH), 7.15 (brs, 2H), 7.14 (brs, 2H), 6.55 (s, 4H), 6.50 (s, 4H), 2.23 (s, 12H), 2.17 (s, 6H), 2.16 ( s, 6H), 2.05 (s, 12H), 1.61 (s, 2H),
13 C-NMR (CD 2 Cl 2 )
δ 201.18,143.60,143.46,143,03,138.45,137.33,134.73,131.51,129.14 *, 128.65,127.64,125.89,24.70,23.37,20.31,20.29.11.12
* The two peaks overlap and were detected by ghmqc.
29 Si-NMR (CD 2 Cl 2 )
δ -0.21, -8.25
FT-IR (neat) 1604cm -1
UV-Vis (λmax, hexane) 215,219,225,272nm
FAB MS, m / z 648-654
Analytical value of addition compound 4 C 51 H 56 N 2 Si 2
mp 266 ℃
1 H-NMR (C 6 D 6 )
δ 7.69 (d, J = 7.0Hz, 4H), 6.86 (s, 4H) 6.84 (d, J = 7.0Hz, 2H), 6.76 (tJ = 7.0Hz, 4H), 6.21 (s.4H), 2.96 ( s.12H), 2.53 (s.12H), 2,75 (s.6H), 2.13 (s.6H), 2.12 (s.2H)
13 C-NMR (C 6 D 6 )
δ 178.78,144.74,144.26,139.09,138.70,138.64,135.28,133.56,130.88,130.27,129.88,129,04,127.99,25.30,24.72,21.46,21.18,14,94
One peak overlapped with C 6 D 6 and was detected by ghmqc.
29 Si-NMR (C 6 D 6 )
δ -15.98
FT-IR (neat) 1604cm -1
UV-Vis (λmax, hexane) 222,261,416nm
FAB MS, m / z 751-755
The obtained compound is useful as a raw material for silicon-containing polymers and the like.
[0008]
Example 2
When oxadisilirane 5 (Dep represents a diethylphenyl group) and C 60 fullerene were dissolved in benzonitrile (BN) in the same manner as in Example 1 and reacted under the same conditions as in Example 1, oxadisilirane 5: Adduct 7 with BN of 1: 1 was obtained. The yield is 62%.
The reaction is shown in FIG.
Analytical value of Addition Compound 5.
C 51 H 56 N 2 Si 2
mp 211 ℃
1 H-NMR (CD 2 Cl 2 )
δ 7.60 (d, J = 6.5Hz, 2H), 7.36 (t, J = 7.5Hz, H) 7.30 (t, J = 7.5Hz, 2H), 7.26 (t, J = 7.8Hz, 2H), 7.25 ( t, J = 7.8Hz, 2H), 7.00 (d, J = 8.0Hz, 4H), 6.99 (d, J = 7.5Hz, 4H), 3.07 (q, J = 7.3Hz, 4H), 2.68 (q, J = 7.0Hz, 4H), 2.62 (q, J = 7.3Hz, 4H), 2.43 (q, J = 7.3Hz, 4H), 0.77 (t, J = 7.3Hz, 12H), 0.61 (q, J = (7.5Hz, 12H)
13 C-NMR (CD 2 Cl 2 )
δ 201.71,150.08,149.13,145.13,135.45,133,08,129.62,129.61,129.03, 127.47,127.15,125.93,125.72,29.93,28.32,15.13,14.31
29 Si-NMR (CD 2 Cl 2 )
δ -6.38, -19.47
FT-IR (neat) 1587cm -1
UV-Vis (λmax, hexane) 213, 239, 253 nm
The obtained compound is useful as a raw material for silicon-containing polymers.
[0009]
The data by the absorption spectrum of the chemical structures of the addition compounds 2, 3 and 5 obtained in Examples 1 and 2 are as described above. The addition compounds 2 and 3 were finally determined by X-ray crystallography. The resulting molecular structure is shown in FIG.
Disilane 1 does not absorb light having a wavelength longer than 350 nm. Therefore, irradiation in the wavelength region of 400 nm or more can excite only C 60 . The free energy change (ΔG) of the electron transfer from disilane 1 to the triplet state of C 60 is −8.3 kcal / mol. It is.
The disappearance rate of C 60 is diazabicyclo [2.2.2. ] Octane and 1,2,4,5-methoxybenzene (these are C 60 has a lower oxidation potential than, and is non-reactive to C 60) is inhibited by the addition of.
From these results, adducts 2 and 3 are formed via a photoinduced electron transfer reaction between disilane 1 in the ground state and 3 C 60 * (triplet excited state).
An imaginary view of the reaction is shown in FIG.
[0010]
In order to clarify the reaction mechanism, a transition absorption band in the near infrared region was observed in a laser photolysis reaction at 532 nm.
In a non-polar solvent (benzene) , the transition absorption band for C 60 − · did not appear at 1070 nm, however, a much faster decay of 3 C 60 * at 740 nm was observed, which was probably due to the formation of an exciplex. (FIG. 6).
In nonpolar solvents, the adduct of disilane 1 and C 60 is formed via an exciplex.
[0011]
In a polar solvent (benzylnitrile), the 3 C 60 * absorption band at 740 nm appeared immediately after laser irradiation, and attenuation began in the presence of disilane 1 (FIG. 7). 3 With the decay of C 60 * , the absorption intensity of C 60 − at 1070 nm increases and reaches a saturation intensity after about 500 ns. From this, it is clear that C 60 − · is generated when 3 C 60 * receives electrons from 1.
This novel photochemical bisilylation system was developed to perform 1 light irradiation in the presence of catalytic amounts of C 60 in benzonitrile. 2 and 3 were also obtained in high yield. This result suggests that C 60 acts as a photoinduced electron transfer catalyst.
Similar results were obtained when C 70 , DCA and 2,4,6-triphenylpyrylium tetrafluoroborate were used as sensitizers.
[0012]
【The invention's effect】
As described above, the present invention finds that a fullerene compound is useful as a catalyst for a photochemical bisilylation reaction, so that it does not contain metal atoms and can be used for raw materials such as electronic materials and polymers under mild conditions. This has an excellent effect of providing a method capable of producing an organosilicon compound used for a use.
[Brief description of the drawings]
[Fig. 1] Addition reaction of disilane to unsaturated compound [Fig. 2] Addition reaction of disilane 1 and benzonitrile [Fig. 3] Addition reaction of oxadisilirane 5 and benzonitrile [Fig. 4] X of addition compounds 2 and 3 Molecular structure by line crystal structure analysis [FIG. 5] Imaginary view of addition reaction between disilane 1 and benzonitrile [FIG. 6] C 60 (0.1 mM) at 532 nm in the presence of disilirane (5 mM) in deaerated benzene Transition absorption spectrum by laser flash photolysis 50ns (○), 500ns (●)
FIG. 7 Transition absorption spectrum by 532 nm laser flash photolysis of C 60 (0.1 mM) in the presence of disilirane (5 mM) in deaired benzonitrile 100 ns (◯), 1 μs (●)

Claims (4)

一般式(1)ジシリラン
Figure 0003765046
(式中Rは、非置換又は炭化水素基置換アリール基、であり、全てのRは同じでも良い、Xは、アルキレン基又はOである。)
と不飽和有機化合物とを触媒量のフラーレン類の存在する極性溶媒中で波長400nm以上の光を照射してビスシリル化して前記ケイ素化合物と不飽和化合物との付加化合物を製造する方法。
General formula (1) disilirane
Figure 0003765046
(Wherein R is an unsubstituted or hydrocarbon group-substituted aryl group, all R may be the same, X is an alkylene group or O).
And an unsaturated organic compound are irradiated with light having a wavelength of 400 nm or more in a polar solvent containing a catalytic amount of fullerenes to bissilylate to produce an addition compound of the silicon compound and the unsaturated compound.
不飽和化合物が一般式(2)で表される化合物であることを特徴とする請求項1に記載の付加化合物を製造する方法。
【化2】
R1C≡N (2)
(式中R1は、アリール基、アルキル基である。)
The method for producing an addition compound according to claim 1, wherein the unsaturated compound is a compound represented by the general formula (2).
[Chemical 2]
R1C≡N (2)
(Wherein R1 is an aryl group or an alkyl group.)
フラーレン類がC60、C70、高次フラーレン類、及び金属内包フラーレンから選択されることを特徴とする請求項1又は2項に記載の付加化合物を製造する方法。How fullerenes to produce a C 60, C 70, higher fullerenes, and addition compound of claim 1 or 2 wherein, characterized in that it is selected from metal-encapsulated fullerene. 請求項1のビスシリル化で得られる一般式(3)で表される有機ケイ素化合物
Figure 0003765046
An organosilicon compound represented by the general formula (3) obtained by bissilylation according to claim 1
Figure 0003765046
JP33046798A 1998-11-20 1998-11-20 Photobissilylation of unsaturated compounds using fullerenes as photosensitizers, organosilicon compounds obtained by the reactions Expired - Fee Related JP3765046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33046798A JP3765046B2 (en) 1998-11-20 1998-11-20 Photobissilylation of unsaturated compounds using fullerenes as photosensitizers, organosilicon compounds obtained by the reactions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33046798A JP3765046B2 (en) 1998-11-20 1998-11-20 Photobissilylation of unsaturated compounds using fullerenes as photosensitizers, organosilicon compounds obtained by the reactions

Publications (2)

Publication Number Publication Date
JP2000154191A JP2000154191A (en) 2000-06-06
JP3765046B2 true JP3765046B2 (en) 2006-04-12

Family

ID=18232961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33046798A Expired - Fee Related JP3765046B2 (en) 1998-11-20 1998-11-20 Photobissilylation of unsaturated compounds using fullerenes as photosensitizers, organosilicon compounds obtained by the reactions

Country Status (1)

Country Link
JP (1) JP3765046B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528906B2 (en) * 2003-08-05 2010-08-25 国立大学法人 筑波大学 Separation and purification of nitrogen-containing fullerenes
US7531209B2 (en) 2005-02-24 2009-05-12 Michael Raymond Ayers Porous films and bodies with enhanced mechanical strength
WO2007143026A2 (en) 2006-05-31 2007-12-13 Roskilde Semiconductor Llc Linked periodic networks of alternating carbon and inorganic clusters for use as low dielectric constant materials
US7875315B2 (en) 2006-05-31 2011-01-25 Roskilde Semiconductor Llc Porous inorganic solids for use as low dielectric constant materials
WO2007143029A1 (en) 2006-05-31 2007-12-13 Roskilde Semiconductor Llc Porous materials derived from polymer composites
US7790234B2 (en) 2006-05-31 2010-09-07 Michael Raymond Ayers Low dielectric constant materials prepared from soluble fullerene clusters

Also Published As

Publication number Publication date
JP2000154191A (en) 2000-06-06

Similar Documents

Publication Publication Date Title
Effenberger et al. Photoactivated preparation and patterning of self‐assembled monolayers with 1‐alkenes and aldehydes on silicon hydride surfaces
Camps et al. Efficient cyclopropanation of C 60 starting from malonates
Gomurashvili et al. Phenothiazine photosensitizers for onium salt photoinitiated cationic polymerization
Benohoud et al. Stereoselective hydrosilylation of enals and enones catalysed by palladium nanoparticles
Dewar et al. Self-Consistent Field Molecular Orbital Calculations for Cyclobutadiene1
JP3765046B2 (en) Photobissilylation of unsaturated compounds using fullerenes as photosensitizers, organosilicon compounds obtained by the reactions
Reddy et al. Modification of photochemistry by cyclodextrin complexation. Competitive Norrish type I and type II reactions of benzoin alkyl ethers
Crivello et al. Long‐wavelength‐absorbing dialkylphenacylsulfonium salt photoinitiators: synthesis and photoinduced cationic polymerization
JP5091760B2 (en) Fullerene derivative and method for producing the same
Żak et al. Efficient Functionalisation of Cubic Monovinylsilsesquioxanes via Cross‐Metathesis and Silylative Coupling with Olefins in the Presence of Ruthenium Complexes
Troshina et al. Photoaddition of N‐Substituted Piperazines to C60: An Efficient Approach to the Synthesis of Water‐Soluble Fullerene Derivatives
CN111247156B (en) Aromatic aminosilicone functional material for capping porous dielectrics
Gilman et al. Small-Ring Organosilicon Compounds. I. A Comparison of the Reactivities of 1, 1, 2-Triphenyl-1-silacyclobutane and 1, 1, 2-Triphenyl-1-silacyclopentane
JP3560992B2 (en) Fullerene derivative and method for producing the same
Corriu et al. New preparation of N, N-bis (trimethylsilyl) enamines via iron carbonyl photocatalysed isomerisation of unsaturated amines
Marsden et al. Rhodium catalysed reactions of silylated diazoacetates: Stereoselective synthesis of α-silylated γ-lactones via C H insertion
Patel et al. Preparation of (η5-cyclopentadienyl) and (η5-methylcyclopentadienyl) Fe (CO) 2 Me cyclodextrin inclusion compounds and their subsequent ligand substitution reactions. Attempts at cyclodextrin mediated enantioselective ligand substitution
Briggs et al. A new radical-ionic allylation sequence
JP4211682B2 (en) Fullerene derivative and method for producing the same
Polarz et al. Materials surgery–Reactivity differences of organic groups in hybrids
Dötz et al. Chromium‐Templated Synthesis of Densely Substituted Distorted Arenes− Intramolecular Benzannulation of [(Alkynylaryl) alkenyl] carbene Complexes to Planar‐Chiral Hydroquinoid [2.2] Heterametacyclophanes
Oh et al. Synthesis of Optically Pure 2, 2′‐Dimercurio‐1, 1′‐binaphthyl Compounds: Catalysis of Diels− Alder Reactions of O‐Ethyl Crotonthioate
JP5190865B2 (en) Brominated porphycene derivative and photodynamic therapeutic agent containing the same
Karami et al. Silica‐supported ICl as a novel heterogeneous system for the rapid oxidation of urazoles to triazolinediones
Kuzuya et al. Concerning methoxy substituent effect and topotactic assistance by methylene chain on photocyclization of n-methylene dicinnamates

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees