JP3765032B2 - Purification method for contaminated soil - Google Patents

Purification method for contaminated soil Download PDF

Info

Publication number
JP3765032B2
JP3765032B2 JP37570298A JP37570298A JP3765032B2 JP 3765032 B2 JP3765032 B2 JP 3765032B2 JP 37570298 A JP37570298 A JP 37570298A JP 37570298 A JP37570298 A JP 37570298A JP 3765032 B2 JP3765032 B2 JP 3765032B2
Authority
JP
Japan
Prior art keywords
soil
contaminated
solid
arsenic
cyanide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP37570298A
Other languages
Japanese (ja)
Other versions
JP2000157964A (en
Inventor
達也 菊地
龍二 荒川
健太 田淵
智 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP37570298A priority Critical patent/JP3765032B2/en
Publication of JP2000157964A publication Critical patent/JP2000157964A/en
Application granted granted Critical
Publication of JP3765032B2 publication Critical patent/JP3765032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、砒素及びシアン等の有害物質に汚染された土壌から該有害物質を除去して土壌を浄化する方法に関するものである。
【0002】
【従来の技術】
従来から、汚染された土壌から有害物質を除去する技術は数多く提案され、実施されているものもあるが、有害物質の除去率やコスト面での問題が多く、その対策に苦慮しているのが現状である。従来から提案された技術例としては、次のようなものがある。
【0003】
(1)特開平5−293496号公報に記載の「下水汚泥含有重金属の除去方法」には、汚泥の5〜10倍量の酸水溶液を添加し、攪拌混合した後、水洗して重金属類を除去する技術が開示されている。
【0004】
(2)特開平10−3412号公報記載の「重金属・シアン化合物により汚染された土地の修復方法」には、汚染土壌に薬剤を用いてスラリー状で洗浄し、かつ第一鉄塩の添加により残存汚染物質を無害化する技術が開示されている。
【0005】
しかしながら、上記の従来技術にあっては、それぞれ特徴点があるが、いずれも土壌をスラリー化して攪拌槽中で抽出剤を添加し、攪拌混合して反応させた後に、固液分離する技術が骨子となっているため、次のような問題点がある。
【0006】
(イ)粗粒土壌は沈降速度が極めて大きいため、攪拌・混合および槽からの抜き出しが困難であること。
【0007】
(ロ)土壌からの有害物質の除去率が低い場合、除去率を高めるためには抽出液濃度を高めるか、もしくは固液比を下げる必要がある。従って、抽出剤及び溶媒を多量に消費するので、コスト高となること。
【0008】
(ハ)また、除去率を高めるために反応時間を長くすると、攪拌槽やシックナー等の処理設備が膨大となり、設備費がかかり過ぎること。また、ドラムウオッシャー等を使用すれば、反応時間を長くとれなくなる。
【0009】
上記のような従来技術の問題点を解消すべく鋭意検討の結果、次のような知見を得た。
【0010】
a)土壌と抽出剤との反応をスラリー攪拌でなく、粉体混合機等で混練する。これにより、抽出剤混合時の水量が低減され、土壌に対する抽出剤の濃度を高めることができること。
【0011】
b)この混練した土壌をヤード等に貯蔵しておき、抽出剤との接触時間を長くとることにより、即ち抽出剤濃度を高く保ち、接触反応時間を長くすることにより、有害物質を可溶性の形態に変化させることができること。
【0012】
c)次に、この土壌をドラムウオッシャー等の回転混合機により水洗を行い、スクリーン,サイクロン等で固液分離することにより、土壌中から有害物質を溶液中へ溶出させることができること。
【0013】
【発明が解決しようとする課題】
本発明は、汚染土壌中の砒素及びシアン等の有害物質を比較的簡単な設備で高除去率かつ低コストで除去し、汚染土壌を浄化する方法を提案するものである。
【0014】
【課題を解決するための手段】
即ち、本発明は砒素及びシアンに汚染された土壌にアルカリを添加し、混合機で混錬して養生した後、水で浸出し、固液分離することにより砒素及びシアンを除去することを特徴とする汚染土壌の浄化方法に関するものである。
【0015】
更に詳しくは、砒素及びシアンに汚染された土壌を分級し、150μm以上の土壌にアルカリを添加し、混合機で混練して養生した後、水で浸出し、固液分離することにより砒素及びシアンを除去するものであり、上記混練時の土壌と液体との固液比(W/V)は2.5〜10の範囲が好ましいのである
【0016】
【作用】
(イ)砒素及びシアンに汚染された汚染土壌をミキサー等の混合機に装入し、抽出液を加えた後に、水で固液比2.5〜10に調整し、混練を行なうが、このとき固液比が10以上では土壌と抽出液との混合を均一にすることが難しく、また2.5以下では抽出剤の局所的高濃度領域を保ち反応速度を促進させる効果が劣化する。
【0017】
抽出剤の添加量は、土壌の汚染物質と汚染度合または土壌の物理的性質により異なるが、通常の場合、添加量は土壌に対して2〜10重量%程度がよい。
【0018】
抽出剤は汚染物質の種類により異なるが、砒素とシアンに汚染されている場合には、NaOH等のアルカリ剤を使用し、砒素が3価(As3+)の形態の場合には、抽出剤に過酸化水素水(H22)等の酸化剤をあらかじめ添加しておき、砒素を5価(As5+)の形態に変えておくと、抽出率すなわち除去率が向上する。
【0019】
上記のように、所定の抽出剤を適量添加し、所定時間混練した土壌を屋根付きヤードに堆積し、養生させる。この養生処理により、土壌と抽出剤との接触(反応)時間を長くすることができ、土壌に含有されている有害物質を可溶性の形態に変化させる。
【0020】
次に、上記のように養生処理した土壌を分級・洗浄設備でパルプ濃度5〜40%で浸出した後、固液分離することにより、土壌から有害物質を抽出分離して、浄化された土壌を得る。浸出液は水又は界面活性剤を含んだ水等を用いることができるが、後の排水処理工程を考慮すると、水が適当である。一方、抽出分離された有害物質を含む溶液は、別系統で無害化処理する。
【0021】
(ロ)上記(イ)に記載した処理工程の前段に分級洗浄を行ない、150μm前後で分級し、粒径150μm以上の土壌に対して上記(イ)と同様の処理を行う。この場合の分級洗浄には、ドラムウオッシャー,振動篩,ハイドロサイクロン,スパイラル分級機等を使用する。
【0022】
分級洗浄を行う理由は、汚染土壌の物理的性質(各粒度により汚染物質濃度が異なる)を利用して、汚染物質の濃縮土壌をあらかじめ分級後、混練抽出を行うことにより、排水処理の負荷を軽減し、抽出後の土壌中の残汚染物質を低濃度にするためである。
【0023】
混練抽出、分級等で発生した排水については、別系統で処理する。これにより含有率の低い浄化土壌を合理的に得ることができる。上記(ロ)の処理工程のフローシート例を図1に示す。次に、本発明の実施の形態を実施例により説明する。
【0024】
【発明の実施の形態】
実施例
砒素(As)及びシアン(CN)で汚染された土壌をそれぞれ10mm、2mm、0.15mmの網目の篩により分級した。10mm以上の土壌は、解砕して10mm以下にした。分級した土壌で2〜10mm(As:60mg/Kg、CN:10mg/Kg)、0.15〜2mm(As:200mg/Kg、CN:120mg/Kg)を各々ビーカーに採取し、土壌重量に対して、2、5、10%になるようにアルカリ(NaOH)を添加し、固液比5.7(P.D.表示で85%)になるよう水を添加した。これを攪拌棒により5分混練を行い、その後プレートに移して1晩室温で放置した。放置後に、この土壌をポリビンに移し、固液比0.25(P.D.表示で20%)になるように水を添加し、振とう機(200往復/分、3cm)で10分間振とうし、その後篩により固液分離を行った。
【0025】
この結果を表1及び表2に示す。比較例の結果(表3)と同量のNaOH量での混練抽出を比較すると、As抽出率で2〜10mmが25%に対して45%、0.15〜2mmが10%に対して70%と向上している(表1参照)。また、CNについても良好な抽出率が得られる(表2参照)。
【0026】
【表1】

Figure 0003765032
【0027】
【表2】
Figure 0003765032
【0028】
比較例
Asで汚染された土壌をそれぞれ10mm、2mm、0.15mmの網目の篩により分級した。10mm以上の土壌は解砕して10mm以下にした。分級した土壌で2〜10mm(As:60mg/Kg)、0.15〜2mm(As:200mg/Kg)を各々ポリビンに採取し、固液比0.25(P.D.表示で20%)となるようにアルカリ溶液(NaOH8g/L)を添加し、振とう機(200往復/分、3cm)で10分間振とうし、その後に篩により固液分離を行った。
【0029】
その結果を表3に示す。なお、アルカリ溶液との攪拌を振とう機で行わず、ビーカーと回転式の攪拌機、インペラー(直径5cm)を使用して攪拌を行うと、攪拌状態でビーカー底部に土壌が沈降している。従って、連続処理では攪拌槽の底部に沈降するので、土壌の抜き出しが必要となる。
【0030】
【表3】
Figure 0003765032
【0031】
【発明の効果】
本発明の方法によれば、汚染土壌に対して、従来の技術と同様の薬剤コストで、倍以上の抽出率で土壌中から有害物質を抽出することが可能となる。また、攪拌槽で攪袢することが困難な0.15〜2mmの粒度の土壌や、2mm以上の粒度の土壌に対しても屋根付きの場所さえあれば、容易に抽出することが可能であり、スケールアップも低コストの設備投資で容易にできる利点がある。
【図面の簡単な説明】
【図1】本発明に係る汚染土壌の浄化方法による処理工程の一例を示すフローシートである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying soil by removing the harmful substances from soil contaminated with harmful substances such as arsenic and cyanide.
[0002]
[Prior art]
Many technologies for removing harmful substances from contaminated soil have been proposed and implemented in the past, but there are many problems with the removal rate and cost of harmful substances, and they are struggling with countermeasures. Is the current situation. Examples of conventionally proposed techniques include the following.
[0003]
(1) In the “method for removing heavy metal containing sewage sludge” described in JP-A-5-293396, an acid aqueous solution 5 to 10 times the amount of sludge is added, stirred and mixed, and then washed with water to remove heavy metals. Techniques for removal are disclosed.
[0004]
(2) According to “Method for repairing land contaminated with heavy metal / cyanide compound” described in Japanese Patent Application Laid-Open No. 10-3412, the contaminated soil is washed with a slurry using a chemical agent, and ferrous salt is added. A technique for detoxifying residual pollutants is disclosed.
[0005]
However, each of the above-mentioned conventional technologies has their respective characteristics, but in any case, there is a technology in which soil is slurried, an extractant is added in a stirring tank, and after stirring and mixing and reacting, solid-liquid separation is performed. Since it is the main point, it has the following problems.
[0006]
(B) Since coarse-grained soil has a very high sedimentation rate, it is difficult to stir and mix and extract from the tank.
[0007]
(B) When the removal rate of harmful substances from the soil is low, it is necessary to increase the concentration of the extract or lower the solid-liquid ratio in order to increase the removal rate. Therefore, the extractant and the solvent are consumed in a large amount, which increases the cost.
[0008]
(C) Also, if the reaction time is increased to increase the removal rate, the processing equipment such as the stirring tank and the thickener becomes enormous and the equipment cost is excessive. If a drum washer or the like is used, the reaction time cannot be made longer.
[0009]
As a result of intensive studies to solve the problems of the conventional technology as described above, the following knowledge was obtained.
[0010]
a) The reaction between the soil and the extractant is kneaded not by slurry stirring but by a powder mixer or the like. Thereby, the amount of water at the time of extractant mixing can be reduced, and the density | concentration of the extractant with respect to soil can be raised.
[0011]
b) By storing this kneaded soil in a yard or the like and taking a longer contact time with the extractant, that is, keeping the extractant concentration high and increasing the contact reaction time, the harmful substances are dissolved in a soluble form. It can be changed to.
[0012]
c) Next, the soil should be washed with a rotary mixer such as a drum washer and separated into solid and liquid using a screen, cyclone, etc., so that harmful substances can be eluted from the soil into the solution.
[0013]
[Problems to be solved by the invention]
The present invention proposes a method for purifying contaminated soil by removing harmful substances such as arsenic and cyanide in contaminated soil with relatively simple equipment at a high removal rate and at low cost.
[0014]
[Means for Solving the Problems]
That is, the present invention is characterized by adding alkali to soil contaminated with arsenic and cyan, kneading and curing with a mixer, leaching with water, and solid-liquid separation to remove arsenic and cyan. It is related with the purification method of contaminated soil.
[0015]
More specifically, the soil contaminated with arsenic and cyanide is classified, alkali is added to the soil of 150 μm or more, kneaded with a mixer and cured, and then leached with water and separated into solid and liquid to separate it. The solid-liquid ratio (W / V) between the soil and the liquid during the kneading is preferably in the range of 2.5 to 10.
[Action]
(B) The contaminated soil contaminated with arsenic and cyanide is charged into a mixer such as a mixer, and after adding the extract, it is adjusted to a solid-liquid ratio of 2.5 to 10 with water and kneaded. When the solid-liquid ratio is 10 or more, it is difficult to make the mixture of the soil and the extract uniform, and when it is 2.5 or less, the effect of maintaining the local high concentration region of the extractant and promoting the reaction rate deteriorates.
[0017]
The amount of the extractant to be added varies depending on the soil contaminants and the degree of contamination or the physical properties of the soil, but in the usual case, the amount added is preferably about 2 to 10% by weight with respect to the soil.
[0018]
The extractant varies depending on the type of contaminant, but when arsenic and cyanide are contaminated, an alkaline agent such as NaOH is used, and when arsenic is trivalent (As 3+ ), the extractant is used. If an oxidizing agent such as hydrogen peroxide (H 2 O 2 ) is added in advance and arsenic is changed to a pentavalent (As 5+ ) form, the extraction rate, that is, the removal rate is improved.
[0019]
As described above, an appropriate amount of a predetermined extractant is added, and the soil kneaded for a predetermined time is deposited in a yard with a roof and cured. By this curing treatment, the contact (reaction) time between the soil and the extractant can be lengthened, and harmful substances contained in the soil are changed to a soluble form.
[0020]
Next, after leaching the soil treated as described above with a classification / washing facility at a pulp concentration of 5 to 40%, by separating into solid and liquid, toxic substances are extracted and separated from the soil, obtain. As the leachate, water or water containing a surfactant can be used, but water is suitable in consideration of the subsequent wastewater treatment process. On the other hand, the solution containing harmful substances extracted and separated is detoxified by another system.
[0021]
(B) Classification washing is performed before the treatment step described in (a) above, classification is performed at around 150 μm, and the same treatment as in (a) above is performed on soil having a particle size of 150 μm or more. In this case, a drum washer, a vibrating sieve, a hydrocyclone, a spiral classifier or the like is used for classification cleaning.
[0022]
The reason for classifying and cleaning is to use the physical properties of contaminated soil (contaminant concentration varies depending on the particle size), classify contaminated soil in advance, and perform kneading extraction to reduce the load of wastewater treatment. This is to reduce the residual contaminants in the soil after extraction to a low concentration.
[0023]
Wastewater generated by kneading extraction, classification, etc. is treated in a separate system. Thereby, the purified soil with a low content rate can be obtained reasonably. FIG. 1 shows an example of a flow sheet of the processing step (b). Next, embodiments of the present invention will be described by way of examples.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Example Soil contaminated with arsenic (As) and cyan (CN) was classified by mesh screens of 10 mm, 2 mm, and 0.15 mm, respectively. The soil of 10 mm or more was crushed to 10 mm or less. 2 to 10 mm (As: 60 mg / Kg, CN: 10 mg / Kg) and 0.15 to 2 mm (As: 200 mg / Kg, CN: 120 mg / Kg) were collected in a beaker with classified soil, respectively. Then, alkali (NaOH) was added so as to be 2, 5, and 10%, and water was added so that the solid-liquid ratio was 5.7 (85% in terms of PD). This was kneaded with a stir bar for 5 minutes, then transferred to a plate and allowed to stand overnight at room temperature. After standing, the soil is transferred to a polybin, water is added so that the solid-liquid ratio is 0.25 (20% in PD display), and the mixture is shaken for 10 minutes with a shaker (200 reciprocations / minute, 3 cm). After that, solid-liquid separation was performed with a sieve.
[0025]
The results are shown in Tables 1 and 2. Comparing the kneading extraction with the same amount of NaOH as the result of the comparative example (Table 3), the As extraction rate was 2 to 10 mm 45% with respect to 25%, and 0.15 to 2 mm 70% with respect to 10%. % (See Table 1). Also, a good extraction rate can be obtained for CN (see Table 2).
[0026]
[Table 1]
Figure 0003765032
[0027]
[Table 2]
Figure 0003765032
[0028]
Comparative Example The soil contaminated with As was classified by mesh screens of 10 mm, 2 mm, and 0.15 mm, respectively. The soil of 10 mm or more was crushed to 10 mm or less. From the classified soil, 2 to 10 mm (As: 60 mg / Kg) and 0.15 to 2 mm (As: 200 mg / Kg) were each collected in a polybin, and the solid-liquid ratio was 0.25 (20% in PD display). Then, an alkaline solution (NaOH 8 g / L) was added, and the mixture was shaken with a shaker (200 reciprocations / min, 3 cm) for 10 minutes, and then solid-liquid separation was performed with a sieve.
[0029]
The results are shown in Table 3. In addition, when it stirs using a beaker, a rotary stirrer, and an impeller (diameter 5 cm), without stirring with an alkaline solution, the soil has settled on the bottom of the beaker in a stirred state. Therefore, since it settles in the bottom part of a stirring tank in a continuous process, extraction of a soil is needed.
[0030]
[Table 3]
Figure 0003765032
[0031]
【The invention's effect】
According to the method of the present invention, it becomes possible to extract harmful substances from soil at a double extraction rate at a chemical cost similar to that of the prior art with respect to contaminated soil. In addition, it is possible to easily extract soil with a particle size of 0.15 to 2 mm, which is difficult to stir in a stirring tank, and soil with a particle size of 2 mm or more, as long as there is a place with a roof. There is an advantage that scale-up can be easily done with low-cost capital investment.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a flow sheet showing an example of processing steps by a method for purifying contaminated soil according to the present invention.

Claims (3)

砒素及びシアンに汚染された土壌にアルカリを添加し、混合機で混錬して養生した後、水で浸出し、固液分離することにより砒素及びシアンを除去することを特徴とする汚染土壌の浄化方法。  Add soil to soil contaminated with arsenic and cyanide, knead and cure with a mixer, leaching with water, solid-liquid separation to remove arsenic and cyanide. Purification method. 砒素及びシアンに汚染された土壌を分級し、150μm以上の土壌にアルカリを添加し、混合機で混練して養生した後、水で浸出し、固液分離することにより砒素及びシアンを除去することを特徴とする汚染土壌の浄化方法。  Classification of soil contaminated with arsenic and cyanide, adding alkali to soil of 150 μm or more, kneading with a mixer, curing, leaching with water, solid-liquid separation to remove arsenic and cyanide A method for purifying contaminated soil. 前記混練時の土壌と液体との固液比(W/V)が2.5〜10である請求項1又は2記載の汚染土壌の浄化方法。  The method for purifying contaminated soil according to claim 1 or 2, wherein a solid-liquid ratio (W / V) between the soil and the liquid during the kneading is 2.5 to 10.
JP37570298A 1998-11-27 1998-11-27 Purification method for contaminated soil Expired - Lifetime JP3765032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37570298A JP3765032B2 (en) 1998-11-27 1998-11-27 Purification method for contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37570298A JP3765032B2 (en) 1998-11-27 1998-11-27 Purification method for contaminated soil

Publications (2)

Publication Number Publication Date
JP2000157964A JP2000157964A (en) 2000-06-13
JP3765032B2 true JP3765032B2 (en) 2006-04-12

Family

ID=18505922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37570298A Expired - Lifetime JP3765032B2 (en) 1998-11-27 1998-11-27 Purification method for contaminated soil

Country Status (1)

Country Link
JP (1) JP3765032B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288201A (en) * 2002-04-17 2005-10-20 Pbm Kk Method and apparatus for removing harmful substance
JP5377029B2 (en) * 2009-03-31 2013-12-25 エコサイクル株式会社 Method for detoxifying cyanide compounds
JP5226730B2 (en) * 2010-04-30 2013-07-03 大成建設株式会社 Cyan contaminated soil purification system
CN102172614B (en) * 2011-01-28 2012-07-04 南京市环境保护科学研究院 Ex-situ washing remediation method for nitrochlorobenzene-contaminated soil
KR101247224B1 (en) 2012-10-11 2013-03-25 주식회사 대일이앤씨 Method for remediating soil contaminated with zinc using solvent extraction and thereof system
JP5777075B2 (en) * 2014-02-19 2015-09-09 清水建設株式会社 Cleaning method for arsenic contaminated soil

Also Published As

Publication number Publication date
JP2000157964A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
US5316223A (en) Method and apparatus for cleaning contaminated particulate material
US4289532A (en) Process for the recovery of gold from carbonaceous ores
US5268128A (en) Method and apparatus for cleaning contaminated particulate material
US5476994A (en) Method for extracting metals from sediment
KR20050053669A (en) Method for clarifying soil
JP4358014B2 (en) Method and apparatus for washing incineration ash and cement kiln dust with water
AU2014272804B2 (en) Method for arsenic oxidation and removal from process and waste solutions
JP4568893B2 (en) Purification method of contaminated soil
EP0161698B1 (en) Method for cleansing and decontaminating soil and the equipment used for this purpose
JP2000051835A (en) Method for cleaning soil by using iron powder
JP2006346512A (en) Treating method of fine powder containing calcium component and lead component
JP3765032B2 (en) Purification method for contaminated soil
JP2020110739A (en) Method for converting refuse incineration ashes to resources and apparatus for converting to resources thereof
JP3818924B2 (en) Ash cleaning method and apparatus
US5466426A (en) Method and apparatus for removing metal contamination from soil
JP5359197B2 (en) Waste chromium removal method and chromium removal apparatus
JP4595099B2 (en) Method and system for cleaning contaminated soil
JPH09192625A (en) Alkali fly ash detoxicating treatment
JP4536257B2 (en) Method for producing sodium chloride aqueous solution
AU732381B2 (en) Process for cleaning mercury-contaminated soils
JP2004261795A (en) Method of removing nonvolatile contaminant in soil
JPH07214029A (en) Recycling method of heavy metal by making incineration ash or fly ash harmless
JP3608069B2 (en) Incineration ash treatment method
JP2019171304A (en) Waste muddy water volume reduction treatment apparatus and volume reduction treatment method
JP4767444B2 (en) Wastewater treatment method to reduce chlorine content in treated sludge

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term