KR101247224B1 - Method for remediating soil contaminated with zinc using solvent extraction and thereof system - Google Patents

Method for remediating soil contaminated with zinc using solvent extraction and thereof system Download PDF

Info

Publication number
KR101247224B1
KR101247224B1 KR1020120112824A KR20120112824A KR101247224B1 KR 101247224 B1 KR101247224 B1 KR 101247224B1 KR 1020120112824 A KR1020120112824 A KR 1020120112824A KR 20120112824 A KR20120112824 A KR 20120112824A KR 101247224 B1 KR101247224 B1 KR 101247224B1
Authority
KR
South Korea
Prior art keywords
zinc
soil
contaminated
stage extractor
stage
Prior art date
Application number
KR1020120112824A
Other languages
Korean (ko)
Inventor
김주엽
이철효
이환
최재헌
Original Assignee
주식회사 대일이앤씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대일이앤씨 filed Critical 주식회사 대일이앤씨
Priority to KR1020120112824A priority Critical patent/KR101247224B1/en
Application granted granted Critical
Publication of KR101247224B1 publication Critical patent/KR101247224B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/02Extraction using liquids, e.g. washing, leaching, flotation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE: A purification method of zinc polluted soil using a solvent extraction and a system thereof are provided to improve the zinc removal efficiency out of the zinc polluted soil and to prevent the second environmental contamination as an extraction agent is able to be recycled. CONSTITUTION: A purification method of zinc polluted soil comprises a step of mixing an extracting solution in which D2EHPA(Di-2-ethylhexylphosphoric acid) is dissolved in water, to zinc polluted soil. The zinc concentration of the zinc polluted soil is 1000-5000 mg/kg. The mixing ratio of the extracting solution to the zinc polluted soil is a weight ratio of 1:1. In case the zinc concentration in the zinc polluted soil is less than 1500 mg/kg, the extracting solution and the zinc polluted soil are reacted for 0.5-0.6 hours in a first stage extractor to extract zinc from the polluted soil and separate purified soil simultaneously. In case the zinc concentration in the zinc polluted soil is more than 1500 mg/kg and under 4000 mg/kg, the extracting solution is supplied to a second stage extractor and reacted with the polluted soil in which zinc is firstly extracted in the first stage extractor, for 0.5-0.6 hours to separate purified soil by re-extracting zinc from the polluted soil and to send the extracting solution used in the second stage extractor to the first stage extractor again in order to be recycled. In case the zinc concentration in the zinc polluted soil is more than 4000 mg/kg and under 5000 mg/kg, the extracting solution is supplied to a third stage extractor and reacted with the polluted soil in which zinc is firstly and secondly extracted in the first and second stage extractors, for 0.5-0.6 hours to separate purified soil by re-extracting zinc from the polluted soil and to send the extracting solution used in the third stage extractor to the second and first stage extractors consecutively in order to be recycled. [Reference numerals] (AA) Solvent after extracting contaminated soil; (BB) Purified soil; (CC) Supplying solvent

Description

용매 추출법을 이용한 아연 오염토양 정화방법 및 그 시스템 {METHOD FOR REMEDIATING SOIL CONTAMINATED WITH ZINC USING SOLVENT EXTRACTION AND THEREOF SYSTEM.}METHODS FOR REMEDIATING SOIL CONTAMINATED WITH ZINC USING SOLVENT EXTRACTION AND THEREOF SYSTEM.}

본 발명은 용매 추출법을 이용한 아연 오염토양 정화 방법 및 그 시스템에 관한 것으로서, 더 상세하게는 아연 추출 효율이 탁월한 추출제를 이용하여 아연으로 오염된 토양을 정화하는 시스템에 관한 것이다. The present invention relates to a method for purifying soil contaminated with zinc using a solvent extraction method and a system thereof, and more particularly, to a system for purifying soil contaminated with zinc using an extractant having excellent zinc extraction efficiency.

최근 유조시설, 저장시설, 산업단지의 유기 용매 저장시설, 군부대, 휴/폐광산 등 토양 오염 우려 지역에서 실제 오염 사례가 자주 발생되고 있으나, 이에 대한 효과적인 처리기술 확보는 아직 미진한 상태이다.Recently, there are frequent cases of soil contamination in areas such as oil tankers, storage facilities, organic solvent storage facilities in industrial complexes, military units, and waste and abandoned mines, but effective treatment technologies have not been secured yet.

토양 및 지하수 오염은 다른 환경 오염 지역에 비하여 직접 인지하기 쉽지 않고, 그러한 오염도 매우 천천히 진행되기 때문에, 오염 발견이 늦어지는 경우가 많으며, 오염에 따른 피해 범위는 광범위한바, 심각하게 오염된 이후에 그 오염 실태가 발견되는 경우가 태반이다.Soil and groundwater contamination is less directly noticeable than other environmentally contaminated areas, and since such contamination is very slow, the discovery of contamination is often delayed, and the range of damage from pollution is extensive. Placenta is the case of contamination.

또한 심각하게 오염된 상태에서는 정화를 위해 많은 정화 비용이 필요하고, 정화 시간도 상당한 기간이 소요되는바, 환경 기준 강화와 산업적 요구에 부응하는 실용적이고, 고효율, 저비용의 정화 기술 개발이 절실히 필요하다.In addition, in the severely polluted state, a large purification cost is required for purification and a considerable time is required for the purification, and thus, there is an urgent need for strengthening environmental standards and developing practical, high-efficiency, low-cost purification technologies that meet industrial requirements. .

최근 들어 유로 오염 토양보다 중금속 오염 토양 처리에 관한 기술 개발이 절실하게 요구되고 있지만, 현재까지 국내에서는 이러한 요구에 대한 기술 개발 및 중금속 처리 사례가 절대적으로 부족한 상황이다. Recently, the development of technology for the treatment of heavy metal-contaminated soil is urgently needed than the euro-contaminated soil, but to date, there are absolutely no cases of technology development and heavy metal treatment in Korea.

특히, 국내의 경우, 토양 지하수 환경 보전법상 중금속에 대한 처리 기술 중 세계적으로 가장 많이 활용되고 있는 고형화/안정화 기술에 대하여 법적으로 그 사용을 강제화하지 않고 있는바, 대부분 토양세척법 및 동전기법을 활용하여 중금속을 처리하고 있다.In particular, in Korea, the use of solidification / stabilization technology, which is the most widely used treatment technology for heavy metals in the Soil Groundwater Environment Conservation Act, is not legally mandated. Most of it uses soil washing and coin techniques. To treat heavy metals.

토양세척법은 염산, 황산 등의 세척제를 사용하여 토양 입자에 결합되어 있는 유해한 유기 오염 물질의 표면 장력을 약화시키거나, 중금속을 액상으로 변화시켜 처리하는 기술이다. 이러한 토양세척법은 화학적으로 강하게 결합되지 않은 오염 물질을 대상으로 하여 세척제로 이를 용출시키는 것을 목적으로 하는바, 생물학적 분해가 어려운 유해 화학 물질이나 중금속을 빠른 시간 안에 처리할 수 있는 장점을 가지고 있으며, 세척제의 종류에 따라 광범위한 무기 오염 물질을 제거할 수 있으나, 오염 물질이 복합적으로 존재하는 경우, 적절한 세척제를 선정하기 어려우며, 화학적으로 강하게 결합되어 있는 오염 물질에는 적용하기 어렵다는 단점이 존재한다.Soil washing is a technique that uses a cleaning agent such as hydrochloric acid or sulfuric acid to reduce the surface tension of harmful organic pollutants bound to soil particles or to change heavy metals into liquid phase. This soil washing method aims to elute the pollutants that are not chemically strongly bound with the cleaning agent, and has the advantage of quickly processing hazardous chemicals or heavy metals that are difficult to biodegrade. Depending on the type of detergent, a wide range of inorganic contaminants can be removed, but when contaminants are present in combination, it is difficult to select an appropriate detergent, and there is a disadvantage that it is difficult to apply to contaminants that are chemically strongly bound.

한편, 동전기법은 투수계수가 낮은 포화 토양에서 이온 상태의 오염물을 양극과 음극의 전기장에 의하여 이동속도를 촉진시켜 포화지역의 오염 토양을 처리하는 방식이다.On the other hand, the coin technique is a method of treating contaminated soils in saturated areas by promoting the movement speed of ionic contaminants in the saturated soil with low permeability coefficient by the electric field of the anode and cathode.

이러한 동전기법은 지중 처리 토양 정화 기술로서, 오염 지역에 전극을 연결하고, 전류를 흐르게 함으로써 투수계수가 낮은 토양, 점토, 슬러지, 해양준설토로부터 오염 물질을 제거하는 방식이다.This method is an underground soil treatment technology that removes contaminants from soils, clays, sludges and dredged soils with low permeability coefficients by connecting electrodes to the contaminated area and flowing current.

일반적으로 미세토양이 다량으로 혼합되어 투수계수가 낮은 토양의 경우, 토양 오염 처리 기술의 적용이 용이하지 않지만, 동전기법은 투수계수가 낮은 토양에서도 높은 처리 효율을 얻을 수 있는 장점이 존재한다.In general, in the case of soil with a low permeability coefficient mixed with a large amount of fine soil, it is not easy to apply the soil pollution treatment technology, the coin method has the advantage that can obtain a high treatment efficiency even in a soil with a low permeability coefficient.

그러나, 동전기법은 소요되는 전기량이 많아 운영비가 많이 들고, 산화/환원 반응에 의해 불필요한 부산물이 생성될 수 있으며, 토양 내 수분함량이 10% 미만인 경우, 정화 효율이 급격히 감소하기 때문에 다시 수분을 공급해 주어야 하는 단점을 가지고 있다.However, the coin technique requires a lot of electricity and requires a lot of operating costs, and can produce unnecessary by-products by oxidation / reduction reactions. When the moisture content in the soil is less than 10%, the purification efficiency is drastically reduced to supply water again. It has a disadvantage to be given.

또한 토양세척의 경우 토양의 성질과 중금속 존재 형태에 따라 처리 가능 여부가 결정되는 단점이 존재하는 것은 물론, 세척수 및 슬러지가 발생되어 2차적인 환경오염이 발생되는 문제점이 존재하며, 동전기법의 경우, 중금속이 이온상태로 존재할 경우에만 처리가 가능하다는 단점이 있는바, 다양한 형태로 존재하는 중금속을 완벽하게 처리할 수 없다는 문제점이 존재한다.In addition, in the case of soil washing, there is a disadvantage in that it can be treated depending on the nature of the soil and the form of heavy metals, as well as a secondary environmental pollution caused by washing water and sludge. In addition, there is a disadvantage that the treatment is possible only when the heavy metal is present in the ionic state, and there is a problem in that the heavy metal existing in various forms cannot be completely processed.

상기한 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.It should be understood that the foregoing description of the background art is merely for the purpose of promoting an understanding of the background of the present invention and is not to be construed as adhering to the prior art already known to those skilled in the art.

한국공개특허 제10-2004-0058505호(2004.07.05.)Korean Patent Publication No. 10-2004-0058505 (2004.07.05.)

본 발명은 이러한 종래의 문제점을 해결하기 위해 아연으로 오염된 토양을 물과 추출제를 이용, 토양 중에 존재하는 아연을 선택적으로 추출하여 토양 내 아연을 제거하고, 사용된 추출제를 재활용할 수 있는 용매 추출법을 이용한 아연 오염토양 정화방법 및 그 시스템 제공하는데 그 목적이 있다. In order to solve the above problems, the present invention selectively extracts zinc present in the soil by using water and extractant in soil contaminated with zinc to remove zinc in the soil, and recycles the used extractant. An object of the present invention is to provide a method for purifying contaminated zinc soil using a solvent extraction method and a system thereof.

이러한 목적을 달성하기 위한 본 발명에 따른 아연 오염토양 정화방법은, 아연으로 오염된 토양에, D2EHPA(Di-2-ethylhexylphosphoric acid) 추출제를 물에 용해한 추출액을 혼합하여 아연으로 오염된 토양을 정화하되, 아연으로 오염된 토양의 아연 농도는 1000 ~ 5000mg/kg 이고, 상기 추출액으로 D2EHPA(Di-2-ethylhexylphosphoric acid)를 물에 용해하여 사용하는 경우, 상기 추출액은 아연으로 오염된 토양에 대하여 그 중량비로 1 : 1로 혼합되며, 아연으로 오염된 토양의 아연 농도가 1500mg/kg 미만인 경우에는, 1단추출기에서 상기 추출액과 아연으로 오염된 토양을 0.5 ~ 0.6 시간 반응시켜 오염된 토양으로부터 아연을 추출함과 동시에 정화토를 분리해내고, 아연으로 오염된 토양의 아연 농도가 1500mg/kg 이상 4000mg/kg 미만인 경우에는, 2단추출기로 상기 추출액을 공급하여 이미 상기 1단추출기에서 1차적으로 아연이 추출된 오염토와 0.5 ~ 0.6 시간 반응시켜 오염된 토양으로부터 아연을 재추출하여 정화토를 분리해냄과 동시에, 상기 2단추출기에서 사용된 추출액을 상기 1단추출기로 보내 상기 추출액을 재활용하며, 아연으로 오염된 토양의 아연 농도가 4000mg/kg 이상 5000mg/kg 이하인 경우에는, 3단추출기로 상기 추출액을 공급하여 이미 상기 1단추출기 및 2단추출기에서 1, 2차적으로 아연이 추출된 오염토와 0.5 ~ 0.6 시간 반응시켜 오염된 토양으로부터 아연을 재추출하여 정화토를 분리해냄과 동시에, 상기 3단추출기에서 사용된 추출액을 상기 2단추출기 및 1단추출기로 연속적으로 보냄으로써 상기 추출액을 재활용하는 것을 특징으로 한다.
Zinc contaminated soil purification method according to the present invention for achieving this object, to clean the soil contaminated with zinc by mixing the extract liquid dissolved in water with D-2-EHPA (Di-2-ethylhexylphosphoric acid) extractant in the soil contaminated with zinc However, the zinc concentration of the soil contaminated with zinc is 1000 to 5000mg / kg, and when the extract is used by dissolving D-2-EHPA (Di-2-ethylhexylphosphoric acid) in water, the extract is used for the soil contaminated with zinc. When the zinc concentration of the soil contaminated with zinc is less than 1500 mg / kg, the extract is reacted with the extract-contaminated soil for 0.5 to 0.6 hours in a single-stage extractor. At the same time as the extraction, the purified soil is separated, and when the zinc concentration of the soil contaminated with zinc is 1500 mg / kg or more and less than 4000 mg / kg, the extract is supplied with a two-stage extractor. The first stage extractor reacts with the contaminated soil from which zinc was first extracted for 0.5 to 0.6 hours to re-extract zinc from the contaminated soil to separate the purified soil, and simultaneously extracts the extract used in the second stage extractor. If the zinc concentration of the soil contaminated with zinc is 4000mg / kg or more and 5000mg / kg or less, the extractant is supplied to the three-stage extractor, and the first and second stage extractors are used in the first and second stage extractors. Reacting zinc with contaminated soil extracted with zinc for 0.5 to 0.6 hours to separate the purified soil by re-extracting zinc from the contaminated soil and simultaneously extracting the extract used in the three-stage extractor to the two-stage extractor and the first-stage extractor. It is characterized by recycling the extract by sending continuously.

삭제delete

이러한 목적을 달성하기 위한 본 발명에 따른 아연 오염토양 정화 시스템은, 아연 농도 1000 ~ 5000mg/kg인 오염된 토양이 오염된 정도에 따라 순차적으로 이동하는 1단추출기, 2단추출기 및 3단추출기를 포함하는 추출기를 포함하되, D2EHPA(Di-2-ethylhexylphosphoric acid)를 물에 용해한 추출액은 상기 3단추출기, 2단추출기 및 1단추출기로 순차적으로 공급되되 아연 오염토양과 그 중량비로 1 : 1로 공급되며, 아연으로 오염된 토양의 아연 농도가 1500mg/kg 미만인 경우에는, 상기 추출액과 아연으로 오염된 토양을 상기 1단추출기에서 0.5 ~ 0.6 시간 반응시켜 정화토를 분리해내고, 아연으로 오염된 토양의 아연 농도가 1500mg/kg 이상 4000mg/kg 미만인 경우에는, 상기 1단추출기 및 상기 2단추출기에서 상기 추출액과 아연 오염 토양을 각각 0.5 ~ 0.6 시간 반응시켜 정화토를 분리해내며, 아연으로 오염된 토양의 아연 농도가 4000mg/kg 이상 5000mg/kg 이하인 경우에는, 상기 1단추출기, 2단추출기 및 3단추출기에서 상기 추출액과 아연 오염 토양을 각각 0.5 ~ 0.6 시간 반응시켜 정화토를 분리해내되, 상기 3단추출기, 2단추출기 및 1단추출기를 연속적으로 통과하여 배출된 용매와 탈거액을 혼합하여 용매 중의 중금속을 선택적으로 추출하여, 정화된 용매를 상기 3단추출기로 재공급하는 탈거조와, 이 탈거조로부터 추출된 중금속을 공급받아 저장하는 중금속 농축조를 더 포함한다.Zinc contaminated soil purification system according to the present invention for achieving this object, the first stage extractor, the second stage extractor and the three stage extractor to sequentially move according to the degree of contamination of the contaminated soil with zinc concentration of 1000 ~ 5000mg / kg Including extractor containing, D2EHPA (Di-2-ethylhexylphosphoric acid) dissolved in water extracts are sequentially supplied to the three-stage extractor, two-stage extractor and one-stage extractor, but with a 1: 1 ratio of zinc contaminated soil and its weight ratio When the zinc concentration of the soil contaminated with zinc is less than 1500 mg / kg, the extract and the soil contaminated with zinc are reacted in the first stage extractor for 0.5 to 0.6 hours to separate the purified soil and contaminated with zinc. When the zinc concentration in the soil is 1500 mg / kg or more and less than 4000 mg / kg, the purified soil is separated by reacting the extract and the zinc-contaminated soil in the first and second stage extractors for 0.5 to 0.6 hours, respectively. If the zinc concentration of the soil contaminated with zinc is 4000 mg / kg or more and 5000 mg / kg or less, the extract and the zinc-contaminated soil are reacted for 0.5 to 0.6 hours in the single-stage extractor, the two-stage extractor, and the three-stage extractor, respectively. Separation of the purified soil, and through the three-stage extractor, two-stage extractor and the first-stage extractor continuously mixed with the discharged solvent and the stripping liquid to selectively extract the heavy metal in the solvent, the purified solvent to the three-stage extractor And a heavy metal concentration tank for receiving and storing the heavy metal extracted from the stripping tank and re-supplying the furnace.

상기 1단추출기, 2단추출기 및 3단추출기에서 배출되는 추출액의 아연 농도를 실시간으로 계측하는 센서부와, 상기 센서부로부터 상기 추출액의 실시간 농도에 관한 정보를 전송받아 그 정보를 시각적으로 인지 가능하도록 출력하는 모니터; 및 상기 추출액의 아연 함량의 증감에 따라 상기 용매의 공급 유량을 조절할 수 있도록 상기 모니터로부터 증감 신호를 전송받아 상기 3단추출기로 용매의 유량을 증감시키는 제어부를 포함한다.The sensor unit for measuring the zinc concentration of the extract liquid discharged from the first stage extractor, the second stage extractor and the three stage extractor in real time, and receiving information on the real-time concentration of the extract from the sensor unit can visually recognize the information. Monitor to output; And a control unit for receiving the increase and decrease signal from the monitor to increase and decrease the flow rate of the solvent to the three-stage extractor to adjust the supply flow rate of the solvent in accordance with the increase and decrease of the zinc content of the extract.

본 발명은 상기한 기술적 구성으로 인해 아연 오염 토양의 아연 제거 효율이 향상되는 것은 물론, 추출제를 재활용할 수 있기 때문에 2차 환경오염을 방지할 수 있는 이점이 있다.The present invention has the advantage that the secondary environmental pollution can be prevented because of the improvement of the zinc removal efficiency of the zinc-contaminated soil due to the above-described technical configuration, as well as recycling the extractant.

도 1은, 본 발명에서 이용되는 다단향류추출방법을 설명하기 위한 개념도,
도 2는, 본 발명의 용매 추출법을 이용한 아연 오염토양 정화 시스템을 나타낸 도면이다.
1 is a conceptual diagram for explaining the multi-stage countercurrent extraction method used in the present invention,
2 is a view showing a zinc contaminated soil purification system using the solvent extraction method of the present invention.

이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 따른 용매 추출법을 이용한 아연 오염토양 정화방법 및 그 시스템을 설명한다.Hereinafter, a zinc contaminated soil purification method and a system using a solvent extraction method according to a preferred embodiment of the present invention with reference to the accompanying drawings.

본 발명의 용매 추출법을 이용한 아연 오염토양 정화방법은, 아연으로 오염된 토양에, D2EHPA(Di-2-ethylhexylphosphoric acid), Versatic acid-10, TBP(Tri-butyl-phosphate), TOP(Tri-octyl-phosphate) 중에서 선택된 어느 하나의 추출제를 물에 용해한 추출액을 혼합하여, 아연으로 오염된 토양으로부터 아연을 추출해내는 것을 특징으로 한다.Zinc contaminated soil purification method using the solvent extraction method of the present invention, the soil contaminated with zinc, D2EHPA (Di-2-ethylhexylphosphoric acid), Versatic acid-10, TBP (Tri-butyl-phosphate), TOP (Tri-octyl) It is characterized in that to extract zinc from the soil contaminated with zinc by mixing the extract solution dissolved in water any one extractant selected from -phosphate).

본 발명자는 추출액으로, 산성 추출제인 D2EHPA(Di-2-ethylhexylphosphoric acid) 및 Versatic acid-10, TBP(Tri-butyl-phosphate), 중성 추출제인 TBP(Tri-butyl-phosphate), TOP(Tri-octyl-phosphate)을 이용하여, 아연 추출 효율 분석 실험을 하였다.The present inventors are extractant, D2EHPA (Di-2-ethylhexylphosphoric acid) and Versatic acid-10, TBP (Tri-butyl-phosphate), TBP (Tri-butyl-phosphate) and TOP (Tri-octyl) -phosphate), the zinc extraction efficiency analysis experiment.

산성 추출제는 알킬인산, 카르복시산과 같은 산으로서, 양이온으로 존재하는 중금속과 양이온을 교환함으로써 결합되어 추출되게 된다. 그 예로, 알킬인산은 수용액 중에 2가 이온으로 존재하는 구리, 코발트, 니켈 등의 중금속에 이용될 수 있다.Acidic extractants are acids such as alkylphosphoric acid and carboxylic acid, which are combined and extracted by exchanging cations with heavy metals present as cations. For example, alkylphosphoric acid may be used for heavy metals such as copper, cobalt, nickel, and the like which exist as divalent ions in an aqueous solution.

Cu2 + + 2R2HPO4 --> Cu(R2PO4)2 + 2H+ Cu 2 + + 2R 2 HPO 4- > Cu (R 2 PO 4 ) 2 + 2H +

또한, 중성 추출제는 전기적으로 중성인 추출제를 의미하며, 이러한 추출제로는 한 쌍의 전자와 함께 산소 원자를 갖는 에테르, 알코올 및 중성인산 에스테르 등이 있다.In addition, a neutral extractant means an electrically neutral extractant, and such extractants include ethers, alcohols and neutral phosphoric acid esters having an oxygen atom together with a pair of electrons.

중성 추출제는 주로 불산과 같은 산 추출이나, 산과 결합된 형태의 중금속을 추출하는데 사용되는 것으로, 그 예로 TBP(Tributyl phosphate)에 의해 UO2(NO3)2 용액에서 우라늄이 추출되는 것으로 설명될 수 있다.Neutral extractants are mainly used for acid extraction, such as hydrofluoric acid, or for extraction of heavy metals in the form of acid-bound forms, for example uranium extraction from UO 2 (NO 3 ) 2 solution by TBP (Tributyl phosphate). Can be.

UO2 2 + + 2NO3 - + 2[TBP] --> [UO2(NO3)2(TBP)2] UO 2 2 + + 2NO 3 - + 2 [TBP] -> [UO 2 (NO 3) 2 (TBP) 2]

본 발명의 추출 방식으로는 다단 향류 추출 방식을 사용하는바, 총 3단계 추출 진행하였다.As the extraction method of the present invention, a multistage countercurrent extraction method was used, and a total of three steps were extracted.

다단 향류 추출 방식이란, 용매 추출의 연속 조업을 위한 것으로, 배치형 방식에 비하여 목적 성분의 회수율 및 분리성을 높일 수 있는 장점이 있다.The multi-stage countercurrent extraction method is for continuous operation of solvent extraction, and has an advantage of improving the recovery rate and separability of the target component compared to the batch type method.

다단 향류 추출공정은 물리화학적으로 다른 두 액상을 향류 방향으로 접촉시켜 액상으로 목적성분을 추출하는 공정이다. 본 발명의 다단 향류 추출방식은 2mm이하의 토양을 용매와 향류방향으로 접촉시켜 다단 향류 추출방식에 의해 처리하였다. The multistage countercurrent extraction process is a process of extracting the target components into the liquid phase by contacting two liquid phases which are physicochemically different in the countercurrent direction. The multistage countercurrent extraction method of the present invention was treated by the multistage countercurrent extraction method by contacting the soil of 2 mm or less in the countercurrent direction with the solvent.

본 발명의 다단 향류 추출방식의 개념도를 도 1에 도시하였다.The conceptual diagram of the multistage countercurrent extraction method of the present invention is shown in FIG.

도 1에 도시된 바와 같이, 공급되는 용매는 n번 반응기에 투입되어 1번 반응기를 거쳐 배출되며 배출된 용매는 용매재생시설을 통하여 n번 반응기로 재순환 된다. 공급되는 2mm이하의 토양은 1번 반응기에 투입되며 공급되는 용매와 혼합되면서 n번 반응기를 거쳐 배출된다. 배출된 토양은 필터프레스를 거쳐 고액 분리 후 배출시설로 이송된다. 이 방식을 통해 다단식 추출에 의한 연속 공정이 가능하며 추출제에 의한 처리효율을 극대화하도록 하게 된다. As shown in FIG. 1, the supplied solvent is introduced into reactor n and discharged through reactor 1. The discharged solvent is recycled to reactor n through a solvent regeneration facility. Soil less than 2mm is supplied to reactor 1 and discharged through reactor n while being mixed with the supplied solvent. The discharged soil is separated through the filter press and separated into solids and transferred to the discharge facility. Through this method, the continuous process by multi-stage extraction is possible, and the treatment efficiency by the extractant is maximized.

추출 조건으로는, 아연으로 오염된 토양 10kg/hr에, 아연으로 오염된 토양과 추출액의 중량비를 1 : 1로 조절하여 투입하고, 교반 속도 500rpm으로 혼합, 교반하되, 반응시간은 각 단계별로 30분으로 조절하였다.As extraction conditions, the weight ratio of the soil contaminated with zinc to the soil contaminated with zinc was adjusted to 1: 1, and mixed and stirred at a stirring speed of 500 rpm, but the reaction time was 30 for each step. Adjusted to minutes.

반응 이후에 액상과 토양을 샘플링한 후, 각각의 수질 및 토양 공정 시험법에 의한 전처리 후 아연 농도를 유도 결합 플라즈마 발광분광계를 이용하여 분석하였는바, 그 결과를 아래의 표 1에 도시하였다.
After the reaction, the liquid phase and the soil were sampled, and the concentrations of zinc after pretreatment by the respective water quality and soil process test methods were analyzed using an inductively coupled plasma emission spectrometer. The results are shown in Table 1 below.

Figure 112012082563416-pat00001
Figure 112012082563416-pat00001

표 1에 도시된 바와 같이, 처리 전 아연으로 오염된 토양의 아연농도는 2587.4mg/kg 이었는데, D2EHPA를 이용하여 추출한 경우에는 처리 후 토양의 아연 농도는 17.4mg/kg으로 매우 높은 추출 효율을 나타내었다.As shown in Table 1, the zinc concentration of the soil contaminated with zinc before the treatment was 2587.4 mg / kg. When extracted using D2EHPA, the zinc concentration of the soil after the treatment was 17.4 mg / kg, indicating a very high extraction efficiency. It was.

또한, Versatic acid-10, TBP, TOP를 이용하여 추출한 경우에는, 각각 382.7mg/kg, 482.7mg/kg, 397.2mg/kg을 나타내었다.In addition, when extracted using Versatic acid-10, TBP, TOP showed 382.7 mg / kg, 482.7 mg / kg, 397.2 mg / kg, respectively.

통상, 중금속 오염 토양과 관련하여, 토양 환경 보전법에서는 중금속 기준을 아래의 표 2와 같이 제시하고 있다.In general, in relation to heavy metal contaminated soils, the soil environmental conservation method provides the heavy metal standards as shown in Table 2 below.

오염 우려 기준 1지역은, 전, 답, 과수원, 목장 용지, 학교 용지, 양어장, 공원 등이 이에 포함되고, 오염 우려 기준 2지역은, 임야, 염전, 하천 등이 이에 포함되며, 오염 우려 기준 3지역은, 공장 용지, 주차장 등이 이에 포함되는바, 1지역에서 3지역으로 갈수록 중금속 허용 기준이 상향된다.
Pollution Concern Standard 1 includes, for example, fields, answers, orchards, ranch land, school land, fish farms, and parks, and Contamination Concern 2 includes forests, salt fields, rivers, etc. Areas include factory sites, parking lots, etc., and the allowance for heavy metals is raised from one region to three regions.


중금속heavy metal
AsAs CdCD CuCu PbPb ZnZn 오염 우려 기준 1지역Pollution concern standard 1 area 2525 44 150150 200200 300300 오염 우려 기준 2지역Pollution Concern Standard 2 5050 1010 500500 400400 600600 오염 우려 기준 3지역Pollution Concern 3 Areas 200200 6060 20002000 700700 20002000

표 1 및 표 2에 나타낸 바와 같이, D2EHPA의 경우에는 오염 우려 1지역 기준치인 300mg/kg 조건을 만족하였으며, Versatic acid-10, TBP, TOP의 경우에는 오염 우려 1지역 기준치를 초과하였으나, 2지역 기준치인 600mg/kg을 만족함을 알 수 있었다.As shown in Table 1 and Table 2, the D2EHPA satisfies the 300 mg / kg condition for pollution 1 area, while Versatic acid-10, TBP, and TOP exceeded the 1 area for pollution concern. It was found that the standard value of 600 mg / kg was satisfied.

특히, D2EHPA의 아연 제거 효율은 약 99.3%에 이르는 것으로, 추출제 중에서도 가장 높은 아연 제거 효율을 나타내었다.
In particular, the zinc removal efficiency of D2EHPA was about 99.3%, showing the highest zinc removal efficiency among the extractants.

본 발명의 용매 추출법을 이용한 아연 오염토양 정화방법에 따르면, 상술한 바와 같이 아연 제거 효과를 얻을 수 있는바, 본 발명자는 특히, D2EHPA를 사용하는 경우에도 오염 우려 1지역 기준치를 만족시키기 위해서 추출 단수를 조절하는 실험을 실행한바, 그 결과를 아래의 표 3에 나타내었다.
According to the zinc contaminated soil purification method using the solvent extraction method of the present invention, the zinc removal effect can be obtained as described above, the present inventors, in particular, even in the case of using D2EHPA, in order to satisfy the contamination area 1 standard value The experiment was performed to adjust the results, the results are shown in Table 3 below.

Figure 112012082563416-pat00002
Figure 112012082563416-pat00002

표 3에 나타낸 바와 같이, 오염 우려 기준 1지역 기준치를 만족시키기 위한 추출 단수를 설정하기 위하여 오염토 아연 농도별 추출 단수에 따른 처리 후 아연 농도를 측정하였다.As shown in Table 3, in order to set the extraction stage to satisfy the pollution concern 1 zone standard value, the zinc concentration after treatment according to the extraction stage by the contaminated soil zinc concentration was measured.

추출은 회수율 및 분리성을 향상시키기 위해서 믹서 세틀러 장치를 이용하였으며, 다단 향류 추출 방식으로 수행하였다.Extraction was performed using a mixer setler apparatus to improve recovery and separation, and was performed by a multistage countercurrent extraction method.

오염토는 10kg/hr, 추출액과 토양의 비율은 중량비로서 1 : 1로 하였고, 각 단의 반응 시간은 각각 30분씩 수행하였다.10kg / hr of contaminated soil, and the ratio of extract and soil were 1: 1 as weight ratio, and the reaction time of each stage was performed for 30 minutes each.

오염토의 농도범위는 토양 오염 우려 3지역 기준인 2000mg/kg의 2.5배인 5000mg/kg을 최대 농도로 하여, 1000mg/kg ~ 5000mg/kg 범위에서 조절하였다.The concentration range of contaminated soil was adjusted to 1000mg / kg ~ 5000mg / kg, with a maximum concentration of 5000mg / kg, which is 2.5 times the 2000mg / kg, which is the standard of three soil pollution concerns.

표 3에서의 점선은 토양 오염 우려 1지역 기준인 300mg/kg의 아연 농도를 나타낸 것인바, 이 기준을 만족하는 각 농도별 추출 단수를 관측한 결과, 아연 농도가 1500mg/kg 미만인 경우에는 추출액과 아연 오염 토양을 1단 처리하는 것만으로도 토양 오염 우려 1 지역 기준을 만족함을 알 수 있었다. 1차 반응시키고,The dotted line in Table 3 indicates the zinc concentration of 300 mg / kg, which is the standard for soil contamination 1 region. As a result of observing the number of extracted extracts for each concentration satisfying this criterion, when the zinc concentration is less than 1500 mg / kg, One step treatment of the zinc-contaminated soil was found to satisfy the regional standards for concern about soil contamination. First reaction,

아연 오염 토양의 아연 농도가 1500mg/kg 이상 4000mg/kg 미만인 경우에는 2단처리, 아연 오염 토양의 아연 농도가 4000mg/kg 이상 5000mg/kg 이하인 경우에는 3단처리함으로써 토양 오염 우려 1지역 기준을 만족함으로 알 수 있었다.
When the zinc concentration of zinc-contaminated soil is more than 1500mg / kg and less than 4000mg / kg, two-stage treatment is required. If the zinc concentration of zinc-contaminated soil is more than 4000mg / kg and 5000mg / kg, three-stage treatment meets the criteria for one area of concern about soil pollution. I could see.

한편, 본 발명자는, 추출액과 토양 비율에 따른 아연 제거율을 알아보기 위하여 별도의 실험을 수행하였다.On the other hand, the inventor performed a separate experiment to determine the zinc removal rate according to the extract and the soil ratio.

추출액과 토양 비율의 최적 조건을 설정하기 위해 추출액으로는 D2EHPA를 선정하였으며, 오염토양 10kg/hr, 각 단의 반응시간은 각각 30분, 추출단수는 3단으로 설정하였다.D2EHPA was selected as the extract to set the optimum condition of the extract and soil ratio. The polluted soil was 10kg / hr, the reaction time of each stage was 30 minutes, and the extraction stage was set to 3 stages.

초기 아연 농도가 2587.4mg/kg일 때, 처리 후 토양의 농도와 그 처리 효율은 아래의 표 4에 나타낸 바와 같다.
When the initial zinc concentration is 2587.4 mg / kg, the concentration of soil after treatment and its treatment efficiency are shown in Table 4 below.

Figure 112012082563416-pat00003
Figure 112012082563416-pat00003

표 4에 나타낸 바와 같이, 토양에 대한 추출액의 중량비가 증가할수록 추출 효율은 증가함으로 알 수 있었으며, 특히, 토양 : 추출액의 중량비가 1 : 1에서는 아연 제거 효율이 98.87%에 이르는 것을 확인할 수 있었다. 그 이상의 비율에서는 처리 효율이 일정 수준을 만족하였는바, D2EHPA를 이용하는 경우 최적의 고액비는 1 : 1인 것을 확인할 수 있었다.
As shown in Table 4, the extraction efficiency increased as the weight ratio of the extract to soil increased. In particular, it was confirmed that the zinc removal efficiency reached 98.87% when the weight ratio of the soil to the extract was 1: 1. At higher ratios, the treatment efficiency satisfies a certain level. When D2EHPA was used, the optimum solid ratio was found to be 1: 1.

본 발명자는 반응 시간에 따른 아연 제거 효율을 실험하였다.The inventors have tested the zinc removal efficiency over the reaction time.

반응 시간에 따른 아연 제거 효율을 측정하기 위하여, 추출액과 토양 비율을 1 : 1로 설정한 상태에서, 추출액으로 D2EHPA을 적용하였으며, 오염 토양 10kg/hr, 총 3단 추출 조건에서 각 단의 반응 체류 시간을 5 ~ 30분 범위로 조절하면서 처리 효율을 측정한바, 그 결과를 아래의 표 5에 나타내었다.
In order to measure the zinc removal efficiency according to the reaction time, D2EHPA was applied as the extract with the extract and soil ratio set to 1: 1, and the reaction residence of each stage at 10 kg / hr of contaminated soil in total extraction stage. Treatment efficiency was measured while adjusting the time in the range of 5 to 30 minutes, and the results are shown in Table 5 below.

Figure 112012082563416-pat00004
Figure 112012082563416-pat00004

표 5에 나타낸 바와 같이, 반응 시간 5분에서는 아연 제거량이 토양 kg당 881.5mg으로 낮은 수준이었으나, 반응 시간이 증가함에 따라 아연 처리량은 증가함을 알 수 있었다.As shown in Table 5, the zinc removal amount was low at 881.5 mg / kg soil at 5 minutes of reaction time, but the zinc throughput increased as the reaction time increased.

반응 시간 30분에서는 토양 kg당 3297.4mg의 아연 제거량을 나타내었으며, 그 이상의 반응 시간에서는 큰 변화가 없음을 알 수 있었다.In 30 minutes of reaction time, the amount of zinc removed was 3297.4mg / kg of soil, and there was no significant change in the reaction time.

따라서, 아연 제거 효율을 최대화할 수 있는 반응 시간은 각 단을 기준으로 30분임을 알 수 있었다.
Therefore, the reaction time to maximize the zinc removal efficiency was found to be 30 minutes based on each stage.

본 발명의 용매 추출법을 이용한 아연 오염토양 정화방법에 따른 실험예와 비교예의 아연 처리 효율을 비교하여 아래의 표 6에 나타내었다.The zinc treatment efficiencies of the experimental example and the comparative example according to the zinc contaminated soil purification method using the solvent extraction method of the present invention are shown in Table 6 below.

실험예 1 내지 3은 본 발명에 따른 실험예를 나타낸 것이고, 비교예 1 내지 비교예 5 중, 비교예 1은 추출비를 달리하여 실험한 경우이고, 비교예 2는 추출시간을 달리하여 실험한 경우이며, 비교예 3은 추출제로 HCL, 비교예 4는 EDTA, 비교예 5는 Texapon N-40을 사용한 것이다.
Experimental Examples 1 to 3 show experimental examples according to the present invention, Comparative Examples 1 to 5, Comparative Example 1 is a case of experiments with different extraction ratios, Comparative Example 2 was tested by varying the extraction time Comparative Example 3 is HCL, Comparative Example 4 is EDTA, Comparative Example 5 uses Texapon N-40 as the extractant.

추출제Extractant 추출비
(추출액:토양 w/w)
Extraction cost
(Extract: soil w / w)
추출시간
(hr)
Extraction time
(hr)
처리전 아연농도
(mg/kg)
Zinc concentration before treatment
(mg / kg)
처리후 아연농도
(mg/kg)
Zinc concentration after treatment
(mg / kg)
처리효율
(%)
Processing efficiency
(%)
비교예 1Comparative Example 1 D2EPHAD2EPHA 1:0.81: 0.8 0.50.5 2587.42587.4 151.0151.0 94.294.2 비교예 2Comparative Example 2 D2EPHAD2EPHA 1:11: 1 0.40.4 3297.43297.4 161.2161.2 95.195.1 실험예 1Experimental Example 1 D2EPHAD2EPHA 1:11: 1 0.50.5 2587.42587.4 29.029.0 98.998.9 실험예 2Experimental Example 2 D2EPHAD2EPHA 1:11: 1 0.60.6 3297.43297.4 15.615.6 99.599.5 실험예 3Experimental Example 3 D2EPHAD2EPHA 1:11: 1 0.50.5 627627 5.65.6 99.199.1 비교예 31) Comparative Example 3 1) HClHCl 5:15: 1 1One 273273 180.2180.2 3434 비교예 42) Comparative Example 4 2) EDTAEDTA 1:11: 1 22 800800 496496 3838 비교예 53) Comparative Example 5 3) Texapon N-40Texapon N-40 3.3:13.3: 1 2323 261261 34.934.9 86.686.6

※ 1) 한국지하수토양환경학회지, Vol.14(1), p78~82, 2009," 세척제를 이용한 아연오염 철도토양의 정화 타당성 연구"에서 발췌※ 1) Excerpts from "A study on the feasibility study of zinc-contaminated railroad soils using detergent" Vol.14 (1), p78 ~ 82, 2009,

※ 2) Journal of Hazardous materials, Vol.215-216, p32~39, 2012, "Pilot-scale washing of metal contaminated garden soil using EDTA."에서 발췌※ 2) Excerpt from Journal of Hazardous materials, Vol. 215-216, p32 ~ 39, 2012, "Pilot-scale washing of metal contaminated garden soil using EDTA."

※ 3) Physics and chemistry of the Earth, Vol. 37-39, p30-36, 2012, "Removal of As, Cd, Cu, Ni, Pb and Zn fro, a highly contaminated industrial soil using surfactant enhanced soil washing."에서 발췌
※ 3) Physics and chemistry of the Earth, Vol. 37-39, p30-36, 2012, "Removal of As, Cd, Cu, Ni, Pb and Zn fro, a highly contaminated industrial soil using surfactant enhanced soil washing."

표 6에 나타낸 바와 같이, 비교예 1에서 추출비를 1 : 0.8로 설정한 경우보다, 1 : 1로 설정한 경우, 잔존 아연 농도는 1/5 미만임을 알 수 있었다.As shown in Table 6, it was found that the residual zinc concentration was less than 1/5 when the extraction ratio was set to 1: 1 compared to the case where the extraction ratio was set to 1: 0.8.

또한, 비교예 2에서 반응시간을 0.4시간으로 설정한 경우보다 실험예 2에서 0.6시간으로 설정한 경우에는 잔존 아연 농도가 10배 정도 감소함으로 알 수 있었다.
In addition, when the reaction time was set to 0.6 hours in Experimental Example 2 than when the reaction time was set to 0.4 hours, it was found that the residual zinc concentration decreased by about 10 times.

도 2를 참조로, 본 발명의 용매 추출법을 이용한 아연 오염토양 정화방법 시스템을 설명한다.With reference to Figure 2, it will be described a zinc contaminated soil purification system using the solvent extraction method of the present invention.

본 발명의 용매 추출법을 이용한 아연 오염토양 정화 시스템은, 추출기, 탈거조, 중금속 농축조 및 필터프레스를 포함한다.Zinc contaminated soil purification system using the solvent extraction method of the present invention includes an extractor, stripping tank, heavy metal concentration tank and filter press.

추출기는 1단추출기, 2단추출기, 3단추출기를 포함하며, 아연 오염토양은 그것의 오염 정도에 따라 1단추출기, 2단추출기 및 3단추출기를 선택적으로 연속 통과한다. 반면, 추출액은 아연 오염 토양과 역 방향으로 흐르는바, 3단추출기, 2단추출기 및 1단추출기를 연속적으로 통과한다.The extractor includes a single stage extractor, a two stage extractor, and a three stage extractor, and the zinc contaminated soil passes through the first stage extractor, the two stage extractor and the three stage extractor according to its pollution degree. On the other hand, the extract flows in the reverse direction with the zinc contaminated soil, and passes continuously through the three-stage extractor, the two-stage extractor, and the first-stage extractor.

일 예로 아연 오염 정도가 심할 경우, 순환하는 추출액에 의해 1단추출기에서 아연 오염 토양이 1차 정화되고, 1차 정화된 아연 오염 토양은 2단추출기 및 3단추출기에서 2, 3차 정화된다. 이때 추출액은 아연 오염 토양과 역방향으로 흐르면서 재활용되는바, 3단추출기로 공급되는 가장 순수한 추출액은 이미 1, 2차 정화된 아연 오염토양을 마지막으로 정화하는데 사용된 후, 2단추출기 및 1단추출기로 공급되어 재활용되는 것이다.
For example, when the zinc contamination is severe, the zinc-contaminated soil is first purified by the circulating extract, and the zinc-contaminated soil that is purified first is purified by the second-stage extractor and the third-stage extractor. At this time, the extract is recycled while flowing backward with the zinc-contaminated soil. The purest extract supplied to the three-stage extractor is used to finally clean up the first and second purified zinc contaminated soils, and then the two-stage extractor and the first-stage extractor. It is supplied to and recycled.

1단추출기는, 아연 농도 1000 ~ 5000mg/kg인 오염된 토양과, D2EHPA(Di-2-ethylhexylphosphoric acid)를 물에 용해한 추출액을 그 중량비로 1 : 1로 공급받되, 아연으로 오염된 토양의 아연 농도가 1500mg/kg 미만인 경우에는 추출액과 아연으로 오염된 토양을 0.5 ~ 0.6 시간 반응시키는 기능을 한다. 1단추출기에서 반응하여 정화된 토양은 추출액과 분리 배출된다.One-stage extractor is supplied with 1: 1 contaminated soil with zinc concentration of 1000 to 5000 mg / kg and extracts dissolved in water with D2EHPA (Di-2-ethylhexylphosphoric acid) in a weight ratio of 1: 1. If the concentration is less than 1500 mg / kg, it functions to react the extract and the soil contaminated with zinc for 0.5 to 0.6 hours. The soil purified by reaction in the first stage extractor is discharged separately from the extract.

아연으로 오염된 토양의 아연 농도가 1500mg/kg 이상 4000mg/kg 미만인 경우에는 1단추출기 및 2단추출기에서 2단계 반응이 일어난다.If the zinc concentration of the soil contaminated with zinc is 1500 mg / kg or more and less than 4000 mg / kg, the two-stage reaction occurs in the single stage extractor and the two stage extractor.

즉, 아연 오염 토양은 1단추출기에서 1차 정화되고, 2단추출기에서 2차 정화되는바, 추출액은 먼저 2단추출기로 공급되어 사용되며, 1단추출기로 공급되어 재활용된다. 이때 1단추출기 및 2단추출기에서 각각 0.5 ~ 0.6 시간 반응시킨다.That is, the zinc-contaminated soil is first purified in the first stage extractor and secondly purified in the second stage extractor. The extract is first supplied to the second stage extractor, and is supplied to the first stage extractor for recycling. At this time, the first stage extractor and the second stage extractor are reacted for 0.5 to 0.6 hours.

아연으로 오염된 토양의 아연 농도가 4000mg/kg 이상 5000mg/kg 이하인 경우에는 1단추출기, 2단추출기 및 3단추출기에서 3단계 반응이 일어난다.When the zinc concentration of the soil contaminated with zinc is 4000 mg / kg or more and 5000 mg / kg or less, three-stage reactions occur in the single-stage extractor, the two-stage extractor, and the three-stage extractor.

즉, 아연 오염 토양은 1단추출기에서 1차 정화되고, 2단추출기에서 2차 정화되며, 3단추출기에서 3차 정화되는바, 추출액은 먼저 3단추출기로 공급되어 사용되며, 2단추출기 및 1단추출기로 연속적으로 공급되어 재활용된다. 이때 1단추출기 , 2단추출기 및 3단추출기에서 각각 0.5 ~ 0.6 시간 반응시킨다.That is, the zinc-contaminated soil is first purified in the first stage extractor, secondly purified in the second stage extractor, and thirdly purified in the third stage extractor. The extract is first supplied to the third stage extractor, and used in the second stage extractor and It is continuously supplied to a single-stage extractor and recycled. In this case, the first stage extractor, the second stage extractor, and the third stage extractor are reacted for 0.5 to 0.6 hours.

탈거조는, 추출 후 용매와 물에 수산화암모늄 등의 탈거액을 혼합하여 용매 중의 중금속을 선택적으로 추출하는 기능을 하는바, 정화된 용매는 3단추출기로 공급되어 2단추출기 및 1단추출기로 연속적으로 공급되어 재활용되며, 탈거액은 중금속 농축조로 이송된다.The stripping tank functions to selectively extract heavy metals in the solvent by mixing a stripping solution such as ammonium hydroxide with a solvent and water after extraction. The purified solvent is supplied to a three-stage extractor and continuously fed to a two-stage extractor and a single-stage extractor. And the stripping liquid is sent to a heavy metal concentrator.

한편, 본 발명의 용매 추출법을 이용한 아연 오염토양 정화 시스템은, 1단추출기, 2단추출기 및 3단추출기에서 배출되는 추출액의 아연 농도를 실시간으로 계측하는 센서부와, 이 센서부로부터 추출액의 실시간 농도에 관한 정보를 전송받아 그 정보를 시각적으로 인지 가능하도록 출력하는 모니터 및, 추출액의 아연 함량의 증감에 따라 상기 용매의 공급 유량을 조절할 수 있도록 모니터로부터 증감 신호를 전송받아 3단추출기로 용매의 유량을 증감시키는 제어부를 포함하는 것이 바람직하다.On the other hand, zinc contaminated soil purification system using the solvent extraction method of the present invention, the sensor unit for measuring the zinc concentration of the extract liquid discharged from the first stage extractor, the second stage extractor and the three stage extractor in real time, and the real time of the extract liquid from the sensor unit Monitor that receives information about the concentration and outputs the information visually, and receives the increase and decrease signal from the monitor so that the flow rate of the solvent can be adjusted according to the increase or decrease of zinc content of the extract, It is preferable to include the control part which increases or decreases a flow volume.

이로 인해, 실시간으로 추출액의 아연 함유량을 감지함으로써, 추출액의 중금속 함량의 농도가 포화치에 도달하기 전에, 용매 공급량을 증가시킬 수 있게 되는바, 중금속 처리 효율을 향상시킬 수 있게 된다.Therefore, by detecting the zinc content of the extract in real time, the solvent supply amount can be increased before the concentration of the heavy metal content of the extract reaches the saturation value, thereby improving the heavy metal treatment efficiency.

본 발명은 특정한 실시 예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the following claims It will be apparent to those of ordinary skill in the art.

Claims (4)

아연으로 오염된 토양에, D2EHPA(Di-2-ethylhexylphosphoric acid) 추출제를 물에 용해한 추출액을 혼합하여 아연으로 오염된 토양을 정화하되,
아연으로 오염된 토양의 아연 농도는 1000 ~ 5000mg/kg 이고,
상기 추출액으로 D2EHPA(Di-2-ethylhexylphosphoric acid)를 물에 용해하여 사용하는 경우, 상기 추출액은 아연으로 오염된 토양에 대하여 그 중량비로 1 : 1로 혼합되며,
아연으로 오염된 토양의 아연 농도가 1500mg/kg 미만인 경우에는, 1단추출기에서 상기 추출액과 아연으로 오염된 토양을 0.5 ~ 0.6 시간 반응시켜 오염된 토양으로부터 아연을 추출함과 동시에 정화토를 분리해내고,
아연으로 오염된 토양의 아연 농도가 1500mg/kg 이상 4000mg/kg 미만인 경우에는, 2단추출기로 상기 추출액을 공급하여 이미 상기 1단추출기에서 1차적으로 아연이 추출된 오염토와 0.5 ~ 0.6 시간 반응시켜 오염된 토양으로부터 아연을 재추출하여 정화토를 분리해냄과 동시에, 상기 2단추출기에서 사용된 추출액을 상기 1단추출기로 보내 상기 추출액을 재활용하며,
아연으로 오염된 토양의 아연 농도가 4000mg/kg 이상 5000mg/kg 이하인 경우에는, 3단추출기로 상기 추출액을 공급하여 이미 상기 1단추출기 및 2단추출기에서 1, 2차적으로 아연이 추출된 오염토와 0.5 ~ 0.6 시간 반응시켜 오염된 토양으로부터 아연을 재추출하여 정화토를 분리해냄과 동시에, 상기 3단추출기에서 사용된 추출액을 상기 2단추출기 및 1단추출기로 연속적으로 보냄으로써 상기 추출액을 재활용하는 것을 특징으로 하는, 용매 추출법을 이용한 아연 오염토양 정화방법.
In order to clean the soil contaminated with zinc, mix the extract dissolved in D2EHPA (Di-2-ethylhexylphosphoric acid) extract in water.
Sodium contaminated with zinc has a zinc concentration of 1000 to 5000 mg / kg,
When D2EHPA (Di-2-ethylhexylphosphoric acid) is used as the extract in water, the extract is mixed in a weight ratio of 1: 1 with respect to the soil contaminated with zinc.
If the zinc concentration of the soil contaminated with zinc is less than 1500 mg / kg, the extractor reacts with the soil contaminated with zinc for 0.5 to 0.6 hours in a single stage extractor to extract zinc from the contaminated soil and to separate the purified soil. Betting,
When the zinc concentration of the soil contaminated with zinc is 1500 mg / kg or more and less than 4000 mg / kg, the extract is supplied to the two-stage extractor and reacted with the contaminated soil in which the zinc is first extracted from the first-stage extractor for 0.5 to 0.6 hours. Re-extract zinc from the contaminated soil to separate the purified soil, and at the same time send the extract used in the two-stage extractor to the first-stage extractor to recycle the extract,
When the zinc concentration of the soil contaminated with zinc is 4000 mg / kg or more and 5000 mg / kg or less, the extractive liquid is supplied to the three-stage extractor, and the contaminated soil in which zinc is extracted first and second in the first and second stage extractors. And 0.5 to 0.6 hours to re-extract zinc from the contaminated soil to separate the purified soil, and at the same time, the extract used in the three-stage extractor is continuously sent to the two-stage extractor and the first-stage extractor to recycle the extract. Characterized in that the zinc contaminated soil purification method using a solvent extraction method.
삭제delete 아연 농도 1000 ~ 5000mg/kg인 오염된 토양이 오염된 정도에 따라 순차적으로 이동하는 1단추출기, 2단추출기 및 3단추출기를 포함하는 추출기를 포함하되, D2EHPA(Di-2-ethylhexylphosphoric acid)를 물에 용해한 추출액은 상기 3단추출기, 2단추출기 및 1단추출기로 순차적으로 공급되되 아연 오염토양과 그 중량비로 1 : 1로 공급되며, 아연으로 오염된 토양의 아연 농도가 1500mg/kg 미만인 경우에는, 상기 추출액과 아연으로 오염된 토양을 상기 1단추출기에서 0.5 ~ 0.6 시간 반응시켜 정화토를 분리해내고, 아연으로 오염된 토양의 아연 농도가 1500mg/kg 이상 4000mg/kg 미만인 경우에는, 상기 1단추출기 및 상기 2단추출기에서 상기 추출액과 아연 오염 토양을 각각 0.5 ~ 0.6 시간 반응시켜 정화토를 분리해내며, 아연으로 오염된 토양의 아연 농도가 4000mg/kg 이상 5000mg/kg 이하인 경우에는, 상기 1단추출기, 2단추출기 및 3단추출기에서 상기 추출액과 아연 오염 토양을 각각 0.5 ~ 0.6 시간 반응시켜 정화토를 분리해내되,
상기 3단추출기, 2단추출기 및 1단추출기를 연속적으로 통과하여 배출된 용매와 탈거액을 혼합하여 용매 중의 중금속을 선택적으로 추출하여, 정화된 용매를 상기 3단추출기로 재공급하는 탈거조와, 이 탈거조로부터 추출된 중금속을 공급받아 저장하는 중금속 농축조를 더 포함하는, 용매 추출법을 이용한 아연 오염토양 정화 시스템.
Including extractor including one-stage extractor, two-stage extractor and three-stage extractor, which sequentially move according to the degree of contamination of contaminated soil with zinc concentration of 1000 to 5000mg / kg, and contains D2EHPA (Di-2-ethylhexylphosphoric acid). Extracts dissolved in water are sequentially supplied to the three-stage extractor, the two-stage extractor, and the first-stage extractor, but are supplied at a ratio of 1: 1 by weight of zinc-contaminated soil and its weight, and when the zinc concentration of the soil contaminated with zinc is less than 1500 mg / kg. In order to separate the purified soil by reacting the soil contaminated with the extract with zinc in the first stage extractor for 0.5 to 0.6 hours, and when the zinc concentration of the soil contaminated with zinc is 1500 mg / kg or more and less than 4000 mg / kg, In the first stage extractor and the second stage extractor, the extract and the zinc-contaminated soil are reacted for 0.5 to 0.6 hours to separate the purified soil, and when the zinc concentration of the soil contaminated with zinc is 4000 mg / kg or more and 5000 mg / kg or less. There, by 0.5 ~ 0.6 hours of reaction, respectively the extract and zinc contaminated soil from the first-stage extractor, two-stage and three-stage extractor extractor being done to remove the purified soil,
A stripping tank for selectively extracting heavy metals in the solvent by mixing the solvent and the stripping liquid discharged through the three-stage extractor, the two-stage extractor and the first-stage extractor continuously, and resupplying the purified solvent to the three-stage extractor; Zinc contaminated soil purification system using a solvent extraction method further comprises a heavy metal concentration tank for receiving and storing the heavy metal extracted from the stripping tank.
청구항 3에 있어서,
상기 1단추출기, 2단추출기 및 3단추출기에서 배출되는 추출액의 아연 농도를 실시간으로 계측하는 센서부와,
상기 센서부로부터 상기 추출액의 실시간 농도에 관한 정보를 전송받아 그 정보를 시각적으로 인지 가능하도록 출력하는 모니터; 및
상기 추출액의 아연 함량의 증감에 따라 상기 용매의 공급 유량을 조절할 수 있도록 상기 모니터로부터 증감 신호를 전송받아 상기 3단추출기로 용매의 유량을 증감시키는 제어부를 포함하는, 용매 추출법을 이용한 아연 오염토양 정화 시스템.
The method according to claim 3,
A sensor unit for measuring the zinc concentration of the extract liquid discharged from the first stage extractor, the second stage extractor, and the three stage extractor in real time;
A monitor for receiving information on the real-time concentration of the extract from the sensor unit and outputting the information visually recognizable; And
Receiving the increase and decrease signal from the monitor to adjust the flow rate of the solvent in accordance with the increase and decrease of the zinc content of the extract liquid comprising a control unit for increasing or decreasing the flow rate of the solvent to the three-stage extractor, zinc contaminated soil purification using a solvent extraction method system.
KR1020120112824A 2012-10-11 2012-10-11 Method for remediating soil contaminated with zinc using solvent extraction and thereof system KR101247224B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120112824A KR101247224B1 (en) 2012-10-11 2012-10-11 Method for remediating soil contaminated with zinc using solvent extraction and thereof system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120112824A KR101247224B1 (en) 2012-10-11 2012-10-11 Method for remediating soil contaminated with zinc using solvent extraction and thereof system

Publications (1)

Publication Number Publication Date
KR101247224B1 true KR101247224B1 (en) 2013-03-25

Family

ID=48182516

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120112824A KR101247224B1 (en) 2012-10-11 2012-10-11 Method for remediating soil contaminated with zinc using solvent extraction and thereof system

Country Status (1)

Country Link
KR (1) KR101247224B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102112573B1 (en) * 2019-10-23 2020-05-19 한국지질자원연구원 Monitering system for extracting multiple solvent extraction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000157964A (en) 1998-11-27 2000-06-13 Dowa Mining Co Ltd Method for purifying polluted soil
JP2002045823A (en) * 2000-08-07 2002-02-12 Shiro Yoshizaki Method for removing heavy metals
KR20090087801A (en) * 2008-02-13 2009-08-18 닛코 킨조쿠 가부시키가이샤 Method for recovering valuable metal from lithium battery waste containing co, ni, and mn
KR20110035295A (en) * 2009-09-30 2011-04-06 주식회사 토리컴 Manufacturing method of zinc oxide using waste acid containing zinc

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000157964A (en) 1998-11-27 2000-06-13 Dowa Mining Co Ltd Method for purifying polluted soil
JP2002045823A (en) * 2000-08-07 2002-02-12 Shiro Yoshizaki Method for removing heavy metals
KR20090087801A (en) * 2008-02-13 2009-08-18 닛코 킨조쿠 가부시키가이샤 Method for recovering valuable metal from lithium battery waste containing co, ni, and mn
KR20110035295A (en) * 2009-09-30 2011-04-06 주식회사 토리컴 Manufacturing method of zinc oxide using waste acid containing zinc

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102112573B1 (en) * 2019-10-23 2020-05-19 한국지질자원연구원 Monitering system for extracting multiple solvent extraction

Similar Documents

Publication Publication Date Title
KR102379416B1 (en) Production of phosphate compounds from materials containing phosphorus and at least one of iron and aluminium
Zhou et al. Electrokinetic remediation of a Cu–Zn contaminated red soil by controlling the voltage and conditioning catholyte pH
Yan et al. Removal effectiveness and mechanisms of naphthalene and heavy metals from artificially contaminated soil by iron chelate-activated persulfate
Tang et al. Coupled with EDDS and approaching anode technique enhanced electrokinetic remediation removal heavy metal from sludge
Falciglia et al. Removal of mercury from marine sediments by the combined application of a biodegradable non-ionic surfactant and complexing agent in enhanced-electrokinetic treatment
Shu et al. Electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue
Gu et al. Enhanced electrokinetic remediation of cadmium-contaminated natural clay using organophosphonates in comparison with EDTA
Ifon et al. Metal-contaminated soil remediation: phytoremediation, chemical leaching and electrochemical remediation
Vecino et al. Valorisation options for Zn and Cu recovery from metal influenced acid mine waters through selective precipitation and ion-exchange processes: promotion of on-site/off-site management options
Yoo et al. Enhanced-electrokinetic extraction of heavy metals from dredged harbor sediment
EP3041795B1 (en) Electrodialytic separation of heavy metals from particulate material
Nogueira et al. Improving on electrokinetic remediation in spiked Mn kaolinite by addition of complexing agents
CN104190701A (en) Leaching method for remediation of arsenic polluted soil by using magnetic separation
Li et al. Effective extraction and recovery of rare earth elements (REEs) in contaminated soils using a reusable biosurfactant
Aharonov-Nadborny et al. Mechanisms governing the leaching of soil metals as a result of disposal of olive mill wastewater on agricultural soils
Wu et al. Enhancing Cu-Zn-Cr-Ni Co-extraction from electroplating sludge in acid leaching process by optimizing Fe3+ addition and redox potential
Nystroem et al. The use of desorbing agents in electrodialytic remediation of harbour sediment
Liang et al. Extraction of Cd and Pb from contaminated-paddy soil with EDTA, DTPA, citric acid and FeCl3 and effects on soil fertility
Mao et al. Remediation of lead-, arsenic-, and cesium-contaminated soil using consecutive washing enhanced with electro-kinetic field
Xu et al. Highly Selective Copper and Nickel Separation and Recovery from Electroplating Sludge in Light Industry.
JP6125824B2 (en) Cleaning liquid composition for heavy metal contaminated soil and method for cleaning heavy metal contaminated soil
Yang et al. Enhanced techniques of soil washing for the remediation of heavy metal-contaminated soils
Zhang et al. Chromium extraction from sewage sludge using polyepoxysuccinic acid
KR101247224B1 (en) Method for remediating soil contaminated with zinc using solvent extraction and thereof system
Pazos et al. Evaluation of electrokinetic technique for industrial waste decontamination

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160120

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180212

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200302

Year of fee payment: 8