JP3764565B2 - Thermal infrared detector - Google Patents

Thermal infrared detector Download PDF

Info

Publication number
JP3764565B2
JP3764565B2 JP25430997A JP25430997A JP3764565B2 JP 3764565 B2 JP3764565 B2 JP 3764565B2 JP 25430997 A JP25430997 A JP 25430997A JP 25430997 A JP25430997 A JP 25430997A JP 3764565 B2 JP3764565 B2 JP 3764565B2
Authority
JP
Japan
Prior art keywords
infrared
heat sink
stem
infrared detector
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25430997A
Other languages
Japanese (ja)
Other versions
JPH1183633A (en
Inventor
克昭 小椋
秀次 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP25430997A priority Critical patent/JP3764565B2/en
Publication of JPH1183633A publication Critical patent/JPH1183633A/en
Application granted granted Critical
Publication of JP3764565B2 publication Critical patent/JP3764565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、キャンとステムとよりなる容器内にサーモパイルよりなる感温素子を設けた熱型赤外線検出器に関する。
【0002】
【従来の技術】
物体の温度を非接触で測定する温度測定装置の一つに、導電体で形成された容器内にサーモパイルよりなる感温素子を設けた熱型赤外線検出器がある。この熱型赤外線検出器は、図に示すように、二種の熱電材料を接続した複数の熱電対を直列に接続したサーモパイルよりなる感温素子51を設け、この感温素子51の冷接合部をヒートシンク52に熱的に接続するとともに、容器53の底面部53aに絶縁部材54を介して支持される正リードピン55および負リードピン56とで絶縁状態で支持されるヒートシンク57を設け、接地リードピン58をハンダ58aを介して導電体の前記容器53に設け、この容器53に、例えば、フッ化カルシウムで構成される赤外線透過性窓59を接着して、感温素子51の温接合部において測定対象である物体から放射されている赤外線を検出するものである。
【0003】
【発明が解決しようとする課題】
しかし、上述のように構成した従来の熱型赤外線検出器においては、入射赤外線Aにより赤外線透過性窓59から発生する熱を逃がし切れないから、この熱によって放射される赤外線も、赤外線透過性窓59を透過した赤外線とともに検出される。よって、出力誤差が大きく、また、視野特性が悪かった。
【0004】
更に、赤外線透過性窓59はフッ化カルシウムで構成されているから、赤外線透過性窓59と容器53とが電気的に結合されず、赤外線透過性窓59と容器53との間に電気的導通が無く、そのため、電磁気に対するシールド性が悪く、電気的なノイズを受け易かった。したがって、長期間にわたって安定に動作する熱型赤外線検出器を得ることができなかった。
【0005】
この発明は、上述の事柄に留意してなされたもので、その目的は、入射赤外線により赤外線透過性窓から発生する熱を効率よく逃がすことができるとともに、電気的なノイズを受け難い熱型赤外線検出器を提供することである。
【0006】
【課題を解決するための手段】
上記目的を達成するために、この発明は、第1の赤外線透過性窓が電気的導通可能に結合されたキャンと、電気的に絶縁された状態で上下に貫設された信号取り出し用のリードピンを有するステムとからなる容器内に、上下2つのヒートシンクに挟まれた状態で、サーモパイルよりなる感温素子がその冷接合部を前記両ヒートシンクと熱的に結合するようにして配置されてなる熱型赤外線検出器において、前記ステムは銅製であるとともに、下側のヒートシンクは銅製で椀状に形成され、この椀状下側のヒートシンクを伏せた状態にしてその側部の開放側下端部が前記ステムの上面に良熱伝導性接着剤により固着され、かつ、上側のヒートシンクは銅製でその中央部に穴を有するドーナツ状に形成され、この上側のヒートシンクの上面には、良熱伝導性半導体を母材とし、この母材の両面に前記第1の赤外線透過性窓を通過した入射赤外線のうち、特定波長の赤外光のみを透過させて感温素子の受光部に至らせる波長選択性多層膜を形成している第2の赤外線透過性窓が前記上側のヒートシンクの中央部の穴を覆う状態で良熱伝導性接着剤により固着され、さらに、少なくとも前記下側のヒートシンクおよびリードピンを熱的に結合したことを特徴としている。
【0007】
【発明の実施の形態】
以下、この発明の詳細について図を参照しながら説明する。
【0008】
図1〜図3は、この発明の第1の実施形態を示し、まず、図1において、1は下部側が開放された筒状のキャン2と、このキャン2の下方開口側を閉塞する板状のステム3とからなる容器で、両者2,3は、例えば圧接(または溶接)によって接合され、これにより容器1が封止されている。
【0009】
前記キャン2は、例えば厚さ0.3mm程度の銅板をプレス加工によりハット状に形成したもので、その外面は鏡面あるいは光沢めっきが施されている。そして、このキャン2の上面中央部には、当該部分を適宜の大きさだけ矩形状に切除して形成された開口に、シリコン、ゲルマニウム等の熱伝導性が良好な半導体を母材とする赤外線透過性窓(第1の赤外線透過性窓)4が、前記母材の両面にコーティング膜を有する状態で、はんだa付けすることにより形成されている。そして、半導体を母材としているので、電気伝導性が良好である。なお、5はキャン2の開放下端部に形成される鍔部である。
【0010】
前記ステム3は、例えば厚さ1mm程度の銅板からなる。そして、このステム3には、2本の信号取り出し用のリードピン6が貫設され、その貫通部7はリードピン6とステム3を電気的に絶縁するためにガラス溶着が施されている。bはそのガラス溶着部である。また、8はステム3の下面に適宜の手法で固着されるアース用リードピンである。
【0011】
9は感温素子で、図2、図3に示すように、二種の熱電材料10,11を接続した複数の熱電対を直列に接続したサーモパイルよりなり、例えばポリエチレン系樹脂よりなる薄い絶縁基板12上に、冷接合部13が外側に、温接合部14が内側にそれぞれ位置するように形成されてなるものである。15は信号取り出しリードである。そして、感温素子9の温接合部14を含む絶縁基板12上の領域には、感温素子9の受光部Rが形成されている。この受光部Rは、例えば、金黒あるいは銀黒の蒸着膜で構成される。
【0012】
16は前記感温素子9を保持する下側のヒートシンクで、例えば厚さ0.4mm程度の銅板をプレス加工によって底部に穴16aを有する状態で椀状に形成し、これを伏せた状態にしてステム3の上面に当接載置したもので、その側部17の開放側下端部はエポキシ樹脂など熱伝導性に優れた接着剤18によって固着されている。そして、このヒートシンク16の上部平面部19上に、絶縁基板12上に形成された感温素子9が穴16aを覆う状態で載置される。
【0013】
20は、前記第1の赤外線透過性窓4を透過した赤外線を透過させる第2の赤外線透過性窓で、シリコン、ゲルマニウム等の熱伝導性が良好な半導体を母材とし、この母材の両面に波長選択性多層膜を形成して構成されている。これにより、第2の赤外線透過性窓20を特定波長の赤外光のみが透過する。第2の赤外線透過性窓20は、例えば、8μmカットオンフィルタである。
【0014】
21は前記第2の赤外線透過性窓20を前記第1の赤外線透過性窓4に臨むようにして保持する上側のヒートシンクで、銅よりなり、ドーナツ状に形成されている。第2の赤外線透過性窓20は上側のヒートシンク21の上面cに熱伝導性接着剤(例えば、エポキシ樹脂)によって固着されている。
【0015】
そして、感温素子9は、上下2つのヒートシンク21,16に挟まれた状態で冷接合部13を両ヒートシンク21,16と熱的に結合するようにして配置されている。つまり、感温素子9はそれの上側を上側のヒートシンク21の底部内環状面21aに密着するようにして固着され、底部内環状面21aから下方へ至る段差mを介して底部外環状面21bに絶縁基板12がヒートシンク16の上部平面部19とにより密着している。
【0016】
更に、上側のヒートシンク21の穴22の径Dが、感温素子9の受光部Rの径dの1.5倍以下に設定されている。
【0017】
而して、第1の赤外線透過性窓4を通過した入射赤外線のうち、特定波長の赤外光のみが第2の赤外線透過性窓20を透過して受光部Rに至る。この際、入射赤外線による第2の赤外線透過性窓20の発生する熱を上下2つのヒートシンク21,16に効率良く逃がすことができ、前記熱によって放射される赤外線が無くなるので、入射赤外線のうち第2の赤外線透過性窓20を透過した特定波長の赤外光だけに感温素子9が感応する。よって、視野特性の良好な熱型赤外線検出器を得ることができる。
【0018】
また、第1の赤外線透過性窓4の母材であるシリコン、ゲルマニウム等の半導体と導電体の容器1がハンダaを介して電気的に結合されるので、電磁気に対するシールド性を向上でき、電気的なノイズを受けることはない。よって、長期間にわたって安定に動作する熱型赤外線検出器を得ることができる。
【0019】
また、下側のヒートシンク16およびリードピン6は熱的に結合されている。
【0020】
【0021】
この発明は、上述の実施例に限られるものではなく、種々の変形して実施することができる。例えば、キャン2をアルミニウムやフェルニコなどの鉄系合金で形成してあってもよい。
【0022】
また、ヒートシンク16,30の表面に厚さ数μm程度の電気的絶縁コーティングを施すようにしてもよい。
【0023】
【発明の効果】
この発明は、上下2つのヒートシンクと2つの赤外線透過性窓とを熱的に結合して入射赤外線による第2の赤外線透過性窓の発生する熱を上下2つのヒートシンクに効率良く逃がすことができ、第2の赤外線透過性窓の発生する熱によって放射される赤外線の感温素子への入射を防止できる。
【0024】
このように感温素子は、物体から放射されている赤外線のうち、第1の赤外線透過性窓から第2の赤外線透過性窓を透過してきた赤外線だけに感応するため、出力誤差を軽減でき、かつ、視野特性の良好な熱型赤外線検出器を得ることができる。
【0025】
また、第1の赤外線透過性窓の母材である半導体と導電体の容器が電気的に結合されるので、電磁気に対するシールド性を向上でき、電気的なノイズを受けることはない。よって、長期間にわたって安定に動作する熱型赤外線検出器を得ることができる。
【図面の簡単な説明】
【図1】 この発明の熱型赤外線検出器の第1の実施形態を示す断面図である。
【図2】 前記熱型赤外線検出器の分解斜視図である。
【図3】 前記熱型赤外線検出器で用いる感温素子の構成を概略的に示す平面図である。
【図4】 従来例を示す断面図である。
【符号の説明】
1…容器、2…キャン、3…ステム、4,20…赤外線透過性窓、6…リードピン、9…感温素子、13…冷接合部、16,21…ヒートシンク、22…穴、R…感温素子の受光部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal infrared detector in which a thermosensitive element made of a thermopile is provided in a container made of a can and a stem.
[0002]
[Prior art]
One type of temperature measuring device that measures the temperature of an object in a non-contact manner is a thermal infrared detector in which a thermosensitive element made of a thermopile is provided in a container formed of a conductor. As shown in FIG. 4 , this thermal infrared detector includes a thermosensitive element 51 composed of a thermopile in which a plurality of thermocouples connected to two types of thermoelectric materials are connected in series. And a heat sink 57 supported in an insulated state by a positive lead pin 55 and a negative lead pin 56 supported via an insulating member 54 on the bottom surface portion 53a of the container 53, and a ground lead pin. 58 is provided in the container 53 of a conductor via solder 58a, and an infrared transmissive window 59 made of, for example, calcium fluoride is bonded to the container 53, and measurement is performed at the temperature junction of the temperature sensing element 51. It detects infrared rays radiated from the target object.
[0003]
[Problems to be solved by the invention]
However, in the conventional thermal type infrared detector configured as described above, the heat generated from the infrared transmissive window 59 by the incident infrared ray A cannot be released. 59 is detected together with infrared rays transmitted through 59 . Therefore, the output error is large and the visual field characteristics are poor.
[0004]
Further, since the infrared transmissive window 59 is made of calcium fluoride, the infrared transmissive window 59 and the container 53 are not electrically coupled, and the infrared conductive window 59 and the container 53 are electrically connected. Therefore, the shielding property against electromagnetics was poor, and it was easy to receive electrical noise. Therefore, a thermal infrared detector that operates stably over a long period of time cannot be obtained.
[0005]
The present invention has been made in consideration of the above-mentioned matters, and an object of the present invention is to efficiently release the heat generated from the infrared transmitting window by the incident infrared rays and to prevent the generation of electric noise. It is to provide a detector.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a can in which a first infrared transmitting window is coupled so as to be electrically conductive, and a lead pin for extracting a signal that is vertically insulated in an electrically insulated state. in a container comprising a stem having a in a state sandwiched between the upper and lower heat sinks, heat temperature sensitive element made of a thermopile is disposed the cold junction so as to bind to the two heat sink and thermal In the type infrared detector, the stem is made of copper, and the lower heat sink is made of copper and is formed into a bowl shape. is fixed to the upper surface of the stem by good heat conductive adhesive, and the upper heat sink is formed in a donut shape having a hole in its center portion made of copper, on the upper surface of the upper heat sink, A thermal conductive semiconductor is used as a base material, and only infrared light having a specific wavelength is transmitted through the first infrared transmitting window on both sides of the base material to reach the light receiving portion of the temperature sensing element. A second infrared transmissive window forming a wavelength selective multilayer film to be attached is fixed by a heat conductive adhesive in a state of covering a central hole of the upper heat sink, and at least the lower heat sink The lead pin is thermally coupled .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, details of the present invention will be described with reference to the drawings.
[0008]
1 to 3 show a first embodiment of the present invention. First, in FIG. 1, reference numeral 1 denotes a cylindrical can 2 whose lower side is opened, and a plate-like shape that closes the lower opening side of the can 2. 2 and 3 are joined together by, for example, pressure welding (or welding), whereby the container 1 is sealed.
[0009]
The can 2 is, for example, a copper plate having a thickness of about 0.3 mm formed in a hat shape by press working, and its outer surface is mirror-finished or gloss-plated. In the central portion of the upper surface of the can 2, an infrared ray having a base material of a semiconductor having good thermal conductivity such as silicon or germanium is formed in an opening formed by cutting the portion into a rectangular shape of an appropriate size. A transmissive window (first infrared transmissive window) 4 is formed by soldering a with a coating film on both surfaces of the base material. And since the semiconductor is used as a base material, electrical conductivity is good. In addition, 5 is a collar part formed in the open lower end part of the can 2.
[0010]
The stem 3 is made of, for example, a copper plate having a thickness of about 1 mm. The stem 3 is provided with two lead pins 6 for extracting signals, and the penetrating portions 7 are glass-welded to electrically insulate the lead pins 6 and the stem 3 from each other. b is the glass welded part. Reference numeral 8 denotes a ground lead pin fixed to the lower surface of the stem 3 by an appropriate method.
[0011]
2 and 3, a thermosensitive element 9 is composed of a thermopile in which a plurality of thermocouples connected to two thermoelectric materials 10 and 11 are connected in series, for example, a thin insulating substrate made of polyethylene resin, for example. 12 is formed such that the cold junction 13 is located on the outside and the warm junction 14 is located on the inside. Reference numeral 15 denotes a signal extraction lead. A light receiving portion R of the temperature sensitive element 9 is formed in a region on the insulating substrate 12 including the temperature joining portion 14 of the temperature sensitive element 9. The light receiving portion R is made of, for example, a gold black or silver black vapor deposition film.
[0012]
Reference numeral 16 denotes a lower heat sink for holding the temperature sensing element 9. For example, a copper plate having a thickness of about 0.4 mm is formed into a bowl shape with a hole 16 a at the bottom by pressing, and this is turned down. It is placed in contact with the upper surface of the stem 3, and the lower end of the open side of the side portion 17 is fixed by an adhesive 18 having excellent thermal conductivity such as epoxy resin. Then, the temperature sensing element 9 formed on the insulating substrate 12 is placed on the upper flat portion 19 of the heat sink 16 so as to cover the hole 16a.
[0013]
Reference numeral 20 denotes a second infrared transmissive window that transmits infrared light transmitted through the first infrared transmissive window 4. A semiconductor having good thermal conductivity, such as silicon or germanium, is used as a base material. And a wavelength-selective multilayer film. Thereby, only the infrared light of a specific wavelength permeate | transmits the 2nd infrared transparent window 20. FIG. The second infrared transmissive window 20 is, for example, an 8 μm cut-on filter.
[0014]
Reference numeral 21 denotes an upper heat sink that holds the second infrared transmissive window 20 so as to face the first infrared transmissive window 4 and is made of copper and formed in a donut shape. The second infrared transmissive window 20 is fixed to the upper surface c of the upper heat sink 21 with a heat conductive adhesive (for example, epoxy resin).
[0015]
The temperature sensing element 9 is disposed so as to thermally couple the cold junction 13 to both the heat sinks 21 and 16 while being sandwiched between the two upper and lower heat sinks 21 and 16. That is, the temperature sensing element 9 is fixed so that the upper side thereof is in close contact with the bottom inner annular surface 21a of the upper heat sink 21 and is attached to the bottom outer annular surface 21b via the step m extending downward from the bottom inner annular surface 21a. The insulating substrate 12 is in close contact with the upper flat portion 19 of the heat sink 16.
[0016]
Further, the diameter D of the hole 22 of the upper heat sink 21 is set to 1.5 times or less of the diameter d of the light receiving portion R of the temperature sensitive element 9.
[0017]
Thus, of the incident infrared light that has passed through the first infrared transmissive window 4, only infrared light having a specific wavelength passes through the second infrared transmissive window 20 and reaches the light receiving unit R. At this time, the heat generated by the second infrared transmissive window 20 by the incident infrared rays can be efficiently released to the upper and lower two heat sinks 21 and 16, and the infrared rays radiated by the heat are eliminated. The temperature sensitive element 9 is sensitive only to infrared light having a specific wavelength that has passed through the two infrared transmissive windows 20. Therefore, it is possible to obtain a thermal infrared detector with good visual field characteristics.
[0018]
Further, since the semiconductor container 1 made of silicon, germanium, or the like, which is the base material of the first infrared transmissive window 4, and the conductive container 1 are electrically coupled via the solder a, the shielding property against electromagnetics can be improved. You won't be subject to noise. Therefore, a thermal infrared detector that operates stably over a long period of time can be obtained.
[0019]
Further , the lower heat sink 16 and the lead pin 6 are thermally coupled.
[0020]
[0021]
The present invention is not limited to the above-described embodiments, and can be implemented with various modifications. For example, the can 2 may be formed of an iron-based alloy such as aluminum or fernico .
[0022]
Further, an electrically insulating coating having a thickness of about several μm may be applied to the surface of the heat sinks 16 and 30.
[0023]
【The invention's effect】
In this invention, the upper and lower two heat sinks and the two infrared transmissive windows are thermally coupled, and the heat generated by the second infrared transmissive window due to incident infrared rays can be efficiently released to the upper and lower two heat sinks, Incidence of infrared rays radiated by the heat generated by the second infrared transmissive window to the thermosensitive element can be prevented.
[0024]
Thus, since the temperature sensitive element is sensitive only to the infrared rays transmitted from the first infrared transmitting window to the second infrared transmitting window among the infrared rays radiated from the object, the output error can be reduced. In addition, it is possible to obtain a thermal infrared detector with good visual field characteristics.
[0025]
Further, since the semiconductor, which is the base material of the first infrared transmitting window, and the container of the conductor are electrically coupled, the shielding property against electromagnetics can be improved and no electrical noise is received. Therefore, a thermal infrared detector that operates stably over a long period of time can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of a thermal infrared detector of the present invention.
FIG. 2 is an exploded perspective view of the thermal infrared detector.
FIG. 3 is a plan view schematically showing a configuration of a temperature sensitive element used in the thermal infrared detector.
FIG. 4 is a cross-sectional view showing a conventional example .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Can, 3 ... Stem, 4,20 ... Infrared transparent window, 6 ... Lead pin, 9 ... Temperature-sensitive element, 13 ... Cold junction, 16 , 21 ... Heat sink, 22 ... Hole, R ... Feel The light receiving part of the temperature element.

Claims (4)

第1の赤外線透過性窓が電気的導通可能に結合されたキャンと、電気的に絶縁された状態で上下に貫設された信号取り出し用のリードピンを有するステムとからなる容器内に、上下2つのヒートシンクに挟まれた状態で、サーモパイルよりなる感温素子がその冷接合部を前記両ヒートシンクと熱的に結合するようにして配置されてなる熱型赤外線検出器において、前記ステムは銅製であるとともに、下側のヒートシンクは銅製で椀状に形成され、この椀状下側のヒートシンクを伏せた状態にしてその側部の開放側下端部が前記ステムの上面に良熱伝導性接着剤により固着され、かつ、上側のヒートシンクは銅製でその中央部に穴を有するドーナツ状に形成され、この上側のヒートシンクの上面には、良熱伝導性半導体を母材とし、この母材の両面に前記第1の赤外線透過性窓を通過した入射赤外線のうち、特定波長の赤外光のみを透過させて感温素子の受光部に至らせる波長選択性多層膜を形成している第2の赤外線透過性窓が前記上側のヒートシンクの中央部の穴を覆う状態で良熱伝導性接着剤により固着され、さらに、少なくとも前記下側のヒートシンクおよびリードピンを熱的に結合したことを特徴とする熱型赤外線検出器。In a container composed of a can in which a first infrared transmitting window is coupled so as to be electrically conductive and a stem having a lead pin for signal extraction extending vertically in an electrically insulated state, the top and bottom 2 In a thermal infrared detector in which a thermosensitive element made of a thermopile is disposed so as to be thermally coupled to both the heat sinks while being sandwiched between two heat sinks , the stem is made of copper. At the same time, the lower heat sink is made of copper and formed into a bowl shape, and the lower heat sink of the lower part is fixed to the upper surface of the stem with a good heat conductive adhesive. is, and the upper heat sink is formed in a donut shape having a hole in its central portion with copper, on the upper surface of the upper heat sink, good thermal conductivity semiconductor as a base material, the base material Of the incident infrared rays having passed through the first infrared transparent window on the surface, the forming a wavelength-selective multilayer film to bring the light receiving portion of the temperature-sensitive element by transmitting only the infrared light of a specific wavelength 2 The infrared transparent window is fixed with a heat conductive adhesive in a state of covering the hole in the center of the upper heat sink, and at least the lower heat sink and the lead pin are thermally coupled. Thermal infrared detector. 前記第1の赤外線透過性窓とキャンがハンダで接合され、前記キャンとステムは圧接または溶接によって接合され、前記下側のヒートシンクおよびステムを熱的に結合している請求項1に記載の熱型赤外線検出器。2. The heat according to claim 1, wherein the first infrared transmitting window and the can are joined by soldering, the can and the stem are joined by pressure welding or welding, and the lower heat sink and the stem are thermally coupled. Type infrared detector. 前記上側のヒートシンクの穴の径が、前記感温素子の受光部の径の1.5倍以下に設定されている請求項1または請求項2に記載の熱型赤外線検出器。  The thermal infrared detector according to claim 1 or 2, wherein a diameter of a hole of the upper heat sink is set to be 1.5 times or less of a diameter of a light receiving portion of the temperature sensing element. 前記第1の赤外線透過性窓は、半導体を母材とし、その母材の両面に赤外線を透過するコーティング膜を形成して構成されている請求項1〜請求項3のいずれかに記載の熱型赤外線検出器。The heat according to any one of claims 1 to 3, wherein the first infrared transmitting window is configured by using a semiconductor as a base material and forming coating films that transmit infrared light on both surfaces of the base material. Type infrared detector.
JP25430997A 1997-09-02 1997-09-02 Thermal infrared detector Expired - Fee Related JP3764565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25430997A JP3764565B2 (en) 1997-09-02 1997-09-02 Thermal infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25430997A JP3764565B2 (en) 1997-09-02 1997-09-02 Thermal infrared detector

Publications (2)

Publication Number Publication Date
JPH1183633A JPH1183633A (en) 1999-03-26
JP3764565B2 true JP3764565B2 (en) 2006-04-12

Family

ID=17263209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25430997A Expired - Fee Related JP3764565B2 (en) 1997-09-02 1997-09-02 Thermal infrared detector

Country Status (1)

Country Link
JP (1) JP3764565B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19942214A1 (en) * 1999-09-03 2001-03-08 Braun Gmbh Heated infrared sensor and infrared thermometer with such a sensor
JP4633296B2 (en) * 2001-05-18 2011-02-16 株式会社堀場製作所 Thermopile sensor
JP6286215B2 (en) * 2014-01-28 2018-02-28 株式会社日立ハイテクノロジーズ Plasma processing equipment
CN113720446A (en) * 2021-08-27 2021-11-30 西安应用光学研究所 Wiring structure and wiring method of low-temperature radiometer

Also Published As

Publication number Publication date
JPH1183633A (en) 1999-03-26

Similar Documents

Publication Publication Date Title
US5056929A (en) Temperature compensation type infrared sensor
US20060169902A1 (en) Infrared sensor
WO2005083374A1 (en) Infrared sensor and method of producing the same
JPS6129648B2 (en)
US20050161605A1 (en) Infrared gas sensor
JP2001116621A (en) Infrared sensor capable of stabilization of temperature and infrared thermometer having the same type sensor
JP2006047085A (en) Infrared sensor device and its manufacturing method
JP2006071601A (en) Infrared sensor, infrared type gas detector, and infrared ray source
JP3580126B2 (en) Infrared sensor
JPH07209089A (en) Infrared ray sensor
JP3764565B2 (en) Thermal infrared detector
JP3723677B2 (en) Thermal infrared detector
JP2001174323A (en) Infrared ray detecting device
JP3339276B2 (en) Infrared detector
JP2005221483A (en) Infrared detector
KR100769587B1 (en) Non-contact ir temperature sensor
US11209353B2 (en) Infrared device
KR100759013B1 (en) Non-contact ir temperature sensor and method for manufactruing the same
JPH0249124A (en) Thermopile
JP3718330B2 (en) Method for manufacturing temperature-sensitive element used in thermal infrared detector
JP2004037297A (en) Infrared sensor and method for manufacturing the same
JPH11258055A (en) Thermopile type temperature sensor
JP3608427B2 (en) Infrared absorber and thermal infrared sensor using the infrared absorber
JPH11258041A (en) Thermopile type infrared ray sensor
JP2006208177A (en) Infrared detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees