JP3764210B2 - Tire pressure abnormality detection method - Google Patents

Tire pressure abnormality detection method Download PDF

Info

Publication number
JP3764210B2
JP3764210B2 JP15124796A JP15124796A JP3764210B2 JP 3764210 B2 JP3764210 B2 JP 3764210B2 JP 15124796 A JP15124796 A JP 15124796A JP 15124796 A JP15124796 A JP 15124796A JP 3764210 B2 JP3764210 B2 JP 3764210B2
Authority
JP
Japan
Prior art keywords
tire
pressure abnormality
detection method
abnormality detection
std
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15124796A
Other languages
Japanese (ja)
Other versions
JPH10909A (en
Inventor
洋人 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP15124796A priority Critical patent/JP3764210B2/en
Publication of JPH10909A publication Critical patent/JPH10909A/en
Application granted granted Critical
Publication of JP3764210B2 publication Critical patent/JP3764210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はタイヤ空気圧異常検出方法に関する。さらに詳しくは、走行中の車両タイヤの空気圧低下を適確に判定し、警報を発することができるタイヤ空気圧異常検出方法に関する。
【0002】
【従来の技術】
タイヤはパンク、バルブ損傷などの突発的な要因により空気圧が低下することがある。空気圧が低下したままで走行を続けるとタイヤの変形が大きくなり発熱し、最悪のばあい、バーストして事故につながるという危険な状況につながる。そのため、これまでにタイヤ空気圧異常を警報する装置または方法が数多く提案されている。
【0003】
たとえば、特開平7−149119号公報では、タイヤの回転数の相対的な差から内圧低下を検出する方法が提案されている。この方法は、かなりの成果がえられるが、図4に示すように、205/65R15サイズの4種類のタイヤA、B、CおよびDのばあい、動荷重半径は、正常内圧からの約30%減圧によるタイヤの回転数の変化率よりも同サイズタイヤ間の径のばらつきの方が大きいため、タイヤを交換したとき、内圧が正常か異常か判定が難しい。したがって、タイヤを交換したときは初めに正常内圧での各タイヤ間の回転数の相対差または比を予め記憶しておく必要がある。
【0004】
この正常内圧でのタイヤの径のばらつきを補正する補正係数(以下、STDファクターという)を計算し、記憶する動作(以下、STDという)は、なるべく他の要因でタイヤの回転数の相対差または比が変化しないような直線の一定速走行中に行なわれるのが望ましい。そこで、操舵角がある特定の値域にあるときのみタイヤの空気圧低下の判定を行なう方法(特開平7−125510号公報参照)により、操舵角がほぼ直線走行を示す状態のときのみSTDをすることも考えられる。しかし、車両に操舵角センサの出力がないばあい、新たに操舵角センサを取り付けるのは技術的に不可能なばあいや、コスト的に見合わないばあいが多い。かといってタイヤの回転速度情報からのみ、具体的にはタイヤの回転速度の左右差または比だけから、直線か、またはカーブかを判定するには、タイヤの径のばらつき分を取り除いたタイヤの回転速度でなければならないため当然不可能になる。
【0005】
また、STD開始スイッチを押してから短時間だけはドライバーに直線走行してもらうという方法もあるが、タイヤを交換する度にドライバーに直線走行してもらうのは、そういった特殊な走行手順をすべきであるということを忘れてしまうこともあり、また制限付きの走行というのは非常に危険であるため適当でない。
【0006】
したがって、現状ではタイヤを交換したあとでは、ドライバーにボタンスイッチを押してもらうだけにし、直線走行データを使うかわりに、長時間(たとえば2時間程度の走行)のデータを平均すれば左右のコーナが均等に含まれるであろうという予定のもとに、この長時間のデータに均等に重みをつけて平均して計算している。
【0007】
【発明が解決しようとする課題】
しかしながら、前述した長時間データを蓄積するという方法では、STD処理に時間が掛かってしまうため、内圧異常を検出するのが遅れてしまう。
【0008】
また、STD処理中はタイヤ径のばらつき分だけ、左右のタイヤの回転数が異なるため、直線走行かコーナリング中なのか分からない。たとえば図5に示すように、タイヤの車幅方向加速度(横G)の計算誤差は低速では小さいが、高速では大きくなる。したがって、横Gの大きさでデータを排除するかどうかの判定をすると、タイヤ径のばらつきによっては常に大きな横Gが計算されてSTD処理が進まなくなる惧れがある。逆に誤差が大きいからといってどんな横Gが計算されようともそのデータを排除しないと、実際にこのような大きな横Gを発生している不適当な走行データもSTD処理で採用してしまうこともありうる。
【0009】
本発明は、叙上の事情に鑑み、タイヤの内圧異常を迅速に検出し、適確な判定と警報を行なうことができるタイヤ空気圧異常検出方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明のタイヤ空気圧異常検出方法は、車両用タイヤの空気圧低下を知らせるタイヤ空気圧異常検出方法であって、各タイヤが正常内圧であるときのタイヤ径のばらつきを補正する係数を計算し、不揮発性メモリに記憶する初期化処理の進行状態に合わせて、計算されるタイヤの車幅方向加速度によるデータの不採用判定のしきい値を下げていくことを特徴としている。
【0011】
また本発明のタイヤ空気圧異常検出方法は、車両用タイヤの空気圧低下を知らせるタイヤ空気圧異常検出方法であって、各タイヤが正常内圧であるときのタイヤ径のばらつきを補正する係数を計算し、不揮発性メモリに記憶する初期化処理の進行状態に合わせて、計算されるタイヤの車幅方向加速度によるデータの不採用判定のしきい値を下げていくことおよび内圧異常警報のしきい値を下げていくことを特徴としている。
【0012】
【発明の実施の形態】
以下、添付図面に基づいて本発明タイヤ空気圧異常検出方法を説明する。
【0013】
図1は本発明にかかわるタイヤ空気圧異常警報装置の一実施例を示す説明図、図2は本発明のタイヤ空気圧異常検出方法の一実施例の前半部であって従来方法と同様の制御を説明するためのフローチャート、図3は本発明のタイヤ空気圧異常検出方法の一実施例を示すフローチャートである。
【0014】
図1に示すように、本発明にかかわるタイヤ空気圧異常警報装置は、4輪車両の各タイヤW1〜W4にそれぞれ関連して設けられた通常の構成の車輪速センサ1を備えており、この車輪速センサ1の出力は制御ユニット2に伝達される。制御ユニット2にはドライバーによって操作することのできるボタンSW3、および空気圧が異常であることを表示する表示器4が接続されている。
【0015】
つぎに図2〜3にしたがって、制御ユニット2内での処理を説明する。まず、スタートすると不揮発性メモリからSTDの情報であるSTDCntとSTDファクターを読み込む。STDCntはSTDの進行状態を表すカウンタであり、STDファクターはSTDで計算されて1秒ごとの処理の最初に使われる係数である。正常内圧に設定されたことをドライバーが確認した上で、ボタンSWが押されるとSTDCntはクリアされ、STDファクターはデフォルトの値(初期値)、たとえばFAC(2)=1、FAC(3)=1、FAC(4)=1にセットされる。
【0016】
そして、たとえば1秒周期でSTDファクターによって4輪のタイヤ回転速度が式(1)によって補正される。なお、1秒周期で補正するのは、0.5秒周期では短かすぎ、5秒周期では長すぎるからである。
【0017】
V(1)=v0(1)
V(2)=v0(2)×FAC(2)
V(3)=v0(3)×FAC(3)
V(4)=v0(4)×FAC(4) ‥‥‥‥‥‥(1)
ただし、v0(x):STDファクター補正前のタイヤの回転速度(m/sec)V(x):STDファクター補正後のタイヤの回転速度(m/sec)
FAC(x):STDファクター
x:1=前左タイヤ、2=前右タイヤ、3=後左タイヤ、4=後右タイヤ
前記FAC(2)、FAC(3)およびFAC(4)は、つぎの式(2)により各輪の前左タイヤ(x=1)の回転速度v0(1)に対する比の時間平均として求まる。
【0018】
【数1】

Figure 0003764210
【0019】
nは、STDが完了するまでの時間(秒)で、10分〜20分相当の値である。
【0020】
つぎにこの補正後の4輪の回転速度V(x)を使って、低速判定が行なわれる。低速判定はいずれかのタイヤの回転速度が低速判定のしきい値を下回ると低速とみなし、以降の処理をやめて、つぎの1秒周期を待つ。
【0021】
低速判定で低速でないと判定されると、V(1)、V(2)、V(3)、V(4)からつぎの式(3)にしたがい横Gの計算をする。なお、式中のABSとは、絶対値を示している。
【0022】
Figure 0003764210
計算された横G(LatG)が横G用しきい値(ThL)以上ならば以降の処理をやめて、つぎの1秒周期を待つ。
【0023】
横Gがしきい値を下回ったなら、つぎにSTD処理中かどうか、現在内圧異常警報が出ているかどうかを判定する。STDCntがNend(STD完了値)未満なら現在STD処理中であり、かつ現在内圧異常警報が出ていないならSTDCntをインクリメントし、STDファクターを更新し、これらを不揮発性メモリに記憶する。
【0024】
STDCntがNend以上でSTD処理中ではないとき、またはSTD処理中だが警報が出ているときは内圧異常判定処理をする。
【0025】
まず、内圧異常判定値であるDELをつぎの式(4)にしたがい計算する。
【0026】
【数2】
Figure 0003764210
【0027】
つぎに予めその車両固有の関数として準備した補正式を用いてつぎの式(5)にしたがいコーナリング走行時のDELを直線走行時のDEL′に補正する。ただし、f(x,y)は予め準備した車両固有の関数であって、具体的には、左旋回の時、y=1および右旋回の時、y=−1とすると
▲1▼フロント駆動車の場合、f(x,y)=A×x×y
▲2▼リア駆動車の場合、f(x,y)=−A×x×y
ただし、Aは定数である。
【0028】
または
▲1▼フロント駆動車の場合、f(x,y)=A×x×y+B×x2×y
▲2▼リア駆動車の場合、f(x,y)=−(A×x×y+B×x2×y)
ただし、A、Bは定数である。
【0029】
のように決定される。
【0030】
DEL′=ABS{DEL−f(LatG,旋回方向)}‥‥‥(5)
こうしてえられたコーナリング補正後の内圧異常判定値であるDEL′が内圧異常判定用しきい値(ThW)と比較して、大きければ警報を出力し、小さければ警報を消去する。
【0031】
以上のフローにしたがうと、
▲1▼STD処理が終わるまで内圧異常判定ができない、すなわち内圧が異常であったとしても警報が出ない、および
▲2▼タイヤ径のかなり違うタイヤでは横Gの計算誤差が大きいためデータが採用されないことが頻繁に起きる
という不都合が生じる。
【0032】
つぎに請求項1と請求項2にかかわる発明を加えて変更した処理(図3)について変更点を中心に説明する。横Gの計算(式(3))までは図2と同じである。
【0033】
ここで請求項1の処理として横Gの大きさを比較するしきい値(ThL′)を設定する。横Gの計算式(3)において、装着されるタイヤの径の最大誤差をDLRdefとするとつぎの式(6)によって横Gの誤差分が計算される。DLRdefは動荷重半径の最大誤差でJATMAには参考値としてあるが、規格にはなっていないため、自社規格の最大値より大きめの値を設定する。
【0034】
ErrG=Vave×DLRdef×Vave/(Tw×9.8)‥‥(6)
DLRdefの設定範囲は、一般的に動荷重半径の生産バラツキの最大値は0.01以内であることから、0.01≦DLRdef≦0.04が適当である。
【0035】
つぎにSTD処理の進行状況に合わせてこの誤差分ErrGを小さくして横Gによるデータの選定を次第に厳しくするために、STD処理の開始時には1で完了時には0になる係数を乗ずる。具体的にはSTDCntとNendを用いてつぎの式(7)のようになる。
【0036】
AddG=ErrG×(Nend−STDCnt)/Nend‥‥‥(7)この横Gの時限誤差分(AddG)を本来のしきい値(ThL)につぎの式(8)のように加算してThL′を求める。
【0037】
ThL′=ThL+AddG‥‥‥(8)
そして横G(LatG)がこのしきい値(ThL′)以上ならば以降の処理をやめて、つぎの1秒周期を待つ。ここまでが請求項1の処理である。
【0038】
そののちのSTD処理の部分は同じだが、請求項2のためにSTD処理をする1秒周期中に内圧異常判定もする点が異なる。さらに内圧異常判定に使うしきい値は横Gの誤差分も含めて以下の手順によって計算する。
【0039】
DELの計算式(4)において、装着されるタイヤの径の最大誤差をDLRdefとするとつぎの式(9)によって、まずDELの誤差分が計算される。
【0040】
【数3】
Figure 0003764210
【0041】
つぎにSTD処理の進行状態に合わせてこの誤差分DELerrを小さくして内圧異常判定の感度を上げるために、横Gのしきい値と同様につぎの式(10)のように係数をかける。
【0042】
AddDEL=DELerr×(Nend-STDCnt)/Nend…(10)このDELの時限誤差分(AddDEL)と、横Gの時限誤差分(AddG)からコーナリング補正によって生じる誤差分を本来のしきい値(ThW)につぎの式(11)のように加算してThW′を求める。なお、ABS{f(AddG,旋回方向)}は、具体的には、前記f(x,y)と同様にして求める。
【0043】
Figure 0003764210
こうしてえられたしきい値(ThW′)とDEL′を比較して警報判定をする。
【0044】
【発明の効果】
以上説明したとおり、請求項1にかかわる発明により、横Gによるデータの排除が原因でSTD処理が進まないこともなくなり、また請求項2にかかわる発明により、STD処理の途中からは大きな内圧変化は検出できるようになり、タイヤの内圧異常を迅速に検出し、適確な判定と警報を行なうことができる。
【図面の簡単な説明】
【図1】本発明にかかわるタイヤ空気圧異常警報装置の一実施例を示す説明図である。
【図2】本発明のタイヤ空気圧異常検出方法の一実施例の前半部であって従来方法と同様の制御を説明するためのフローチャートである。
【図3】本発明のタイヤ空気圧異常検出方法の一実施例を示すフローチャートである。
【図4】4種類のタイヤの内圧と動荷重半径の関係を示す図である。
【図5】速度と計算された横Gの関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tire pressure abnormality detection method. More specifically, the present invention relates to a tire pressure abnormality detection method capable of accurately determining a decrease in air pressure of a running vehicle tire and issuing an alarm.
[0002]
[Prior art]
Tire pressure may drop due to sudden factors such as punctures and valve damage. If you continue running with the air pressure lowered, the tire will deform and generate heat, and in the worst case, it will lead to a dangerous situation where it bursts and leads to an accident. For this reason, many devices or methods for alarming tire pressure abnormality have been proposed so far.
[0003]
For example, Japanese Patent Laid-Open No. 7-149119 proposes a method for detecting a decrease in internal pressure from a relative difference in the number of rotations of a tire. Although this method is quite successful, as shown in FIG. 4, in the case of four types of tires A, B, C and D of 205 / 65R15 size, the dynamic load radius is about 30 from the normal internal pressure. Since the variation in diameter between tires of the same size is larger than the rate of change in the number of rotations of the tire due to the% reduction, it is difficult to determine whether the internal pressure is normal or abnormal when the tire is replaced. Therefore, when the tire is replaced, it is necessary to first store in advance the relative difference or ratio of the rotational speed between the tires at normal internal pressure.
[0004]
An operation for calculating and storing a correction coefficient (hereinafter referred to as an STD factor) for correcting a variation in the tire diameter at the normal internal pressure is referred to as a relative difference in the number of rotations of the tire due to other factors as much as possible. It is desirable to be performed during a straight, constant speed travel where the ratio does not change. Therefore, STD is performed only when the steering angle is in a substantially straight running state by a method of determining a decrease in tire air pressure only when the steering angle is in a certain range (see JP-A-7-125510). Is also possible. However, when there is no output of the steering angle sensor in the vehicle, it is often the case that it is technically impossible to attach a new steering angle sensor or the cost is not met. However, in order to determine whether the tire is a straight line or a curve only from the tire rotation speed information, specifically, from the difference or ratio of the tire rotation speed, it is possible to determine the tire Obviously it is impossible because it must be at rotational speed.
[0005]
In addition, there is a method in which the driver runs straight for a short time after pressing the STD start switch, but to have the driver run straight each time the tire is changed, such a special driving procedure should be used. There are times when you forget that there is, and limited driving is very unsafe and unsuitable.
[0006]
Therefore, at the present time, after replacing the tires, if the driver only presses the button switch and instead of using straight running data, averaging the data for a long time (for example, about 2 hours of driving) will result in equal left and right corners. Under the schedule that it will be included in the data, this long time data is weighted equally and averaged.
[0007]
[Problems to be solved by the invention]
However, in the above-described method of accumulating long-term data, it takes a long time for the STD process, so that it is delayed to detect the internal pressure abnormality.
[0008]
In addition, during the STD process, the number of rotations of the left and right tires differs by the amount of variation in tire diameter, so it is not known whether the vehicle is running straight or cornering. For example, as shown in FIG. 5, the calculation error of the vehicle width direction acceleration (lateral G) of the tire is small at a low speed, but is large at a high speed. Therefore, if it is determined whether or not to exclude data based on the size of the lateral G, depending on the tire diameter variation, there is a possibility that the large lateral G is always calculated and the STD processing does not proceed. On the other hand, if the data is not excluded no matter what the lateral G is calculated even if the error is large, inappropriate running data that actually generates such a large lateral G is also adopted in the STD processing. It is also possible.
[0009]
In view of the above circumstances, an object of the present invention is to provide a tire air pressure abnormality detection method capable of quickly detecting an internal pressure abnormality of a tire and performing an accurate determination and warning.
[0010]
[Means for Solving the Problems]
The tire air pressure abnormality detection method of the present invention is a tire air pressure abnormality detection method for informing a decrease in air pressure of a vehicle tire, and calculates a coefficient for correcting a variation in tire diameter when each tire has a normal internal pressure. In accordance with the progress of the initialization process stored in the memory, the threshold value for the data non-adoption determination based on the calculated tire width-direction acceleration is reduced.
[0011]
The tire air pressure abnormality detection method of the present invention is a tire air pressure abnormality detection method for notifying a decrease in vehicle tire air pressure, calculating a coefficient for correcting variation in tire diameter when each tire has normal internal pressure, In accordance with the progress of the initialization process stored in the memory, reduce the threshold value for the data non-recruitment judgment based on the calculated tire acceleration in the vehicle width direction and the threshold value for the abnormal internal pressure alarm. It is characterized by going.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The tire pressure abnormality detection method of the present invention will be described below with reference to the accompanying drawings.
[0013]
FIG. 1 is an explanatory view showing an embodiment of a tire air pressure abnormality alarm device according to the present invention, and FIG. 2 is a first half of an embodiment of a tire air pressure abnormality detecting method according to the present invention and explains the same control as the conventional method. FIG. 3 is a flowchart showing one embodiment of the tire pressure abnormality detection method of the present invention.
[0014]
As shown in FIG. 1, the tire pressure abnormality alarm device according to the present invention includes a wheel speed sensor 1 having a normal configuration provided in association with each of the tires W1 to W4 of a four-wheel vehicle. The output of the speed sensor 1 is transmitted to the control unit 2. Connected to the control unit 2 are a button SW3 that can be operated by a driver and a display 4 that displays that the air pressure is abnormal.
[0015]
Next, processing in the control unit 2 will be described with reference to FIGS. First, when starting, STDCnt and STD factor, which are STD information, are read from the nonvolatile memory. STDCnt is a counter indicating the progress state of the STD, and the STD factor is a coefficient that is calculated by the STD and used at the beginning of processing every second. When the driver confirms that the normal internal pressure has been set and the button SW is pressed, STDCnt is cleared and the STD factor is a default value (initial value), for example, FAC (2) = 1, FAC (3) = 1, FAC (4) = 1 is set.
[0016]
Then, for example, the tire rotational speed of the four wheels is corrected by the formula (1) by the STD factor at a cycle of 1 second. The reason for correcting with a 1 second period is that the 0.5 second period is too short and the 5 second period is too long.
[0017]
V (1) = v0 (1)
V (2) = v0 (2) × FAC (2)
V (3) = v0 (3) × FAC (3)
V (4) = v0 (4) × FAC (4) (1)
However, v0 (x): tire rotational speed before STD factor correction (m / sec) V (x): tire rotational speed after STD factor correction (m / sec)
FAC (x): STD factor x: 1 = front left tire, 2 = front right tire, 3 = rear left tire, 4 = rear right tire The FAC (2), FAC (3) and FAC (4) are (2) is obtained as the time average of the ratio of the front left tire (x = 1) of each wheel to the rotational speed v0 (1).
[0018]
[Expression 1]
Figure 0003764210
[0019]
n is a time (second) until STD is completed, and is a value corresponding to 10 minutes to 20 minutes.
[0020]
Next, the low speed determination is performed using the corrected rotational speed V (x) of the four wheels. The low speed determination is regarded as a low speed when the rotation speed of any tire falls below the threshold value for the low speed determination, the subsequent processing is stopped, and the next one-second cycle is awaited.
[0021]
If it is determined in the low speed determination that the speed is not low, the lateral G is calculated from V (1), V (2), V (3), and V (4) according to the following equation (3). Note that ABS in the equation represents an absolute value.
[0022]
Figure 0003764210
If the calculated lateral G (LatG) is equal to or greater than the lateral G threshold (ThL), the subsequent processing is stopped and the next one-second cycle is awaited.
[0023]
If the lateral G falls below the threshold value, it is next determined whether or not STD processing is in progress and whether or not an internal pressure abnormality alarm is currently being issued. If STDCnt is less than Nend (STD completion value), the current STD process is in progress, and if the present internal pressure abnormality alarm is not issued, STDCnt is incremented, the STD factor is updated, and these are stored in the nonvolatile memory.
[0024]
When STDCnt is Nend or more and STD processing is not in progress, or when STD processing is in progress but an alarm is issued, internal pressure abnormality determination processing is performed.
[0025]
First, DEL, which is an internal pressure abnormality determination value, is calculated according to the following equation (4).
[0026]
[Expression 2]
Figure 0003764210
[0027]
Next, using a correction formula prepared in advance as a function unique to the vehicle, DEL during cornering travel is corrected to DEL 'during straight travel according to the following formula (5). However, f (x, y) is a vehicle-specific function prepared in advance. Specifically, when turning left, y = 1, and turning right, y = −1. In the case of a driving vehicle, f (x, y) = A × xx × y
(2) In the case of a rear drive vehicle, f (x, y) = − A × xx × y
However, A is a constant.
[0028]
Or (1) f (x, y) = A × x × y + B × x 2 × y for a front drive vehicle
(2) For a rear drive vehicle, f (x, y) = − (A × x × y + B × x 2 × y)
However, A and B are constants.
[0029]
It is determined as follows.
[0030]
DEL '= ABS {DEL-f (LatG, turning direction)} (5)
The DEL ′, which is the internal pressure abnormality determination value after cornering correction obtained in this way, is compared with the internal pressure abnormality determination threshold value (ThW), and if it is large, an alarm is output, and if it is small, the alarm is cleared.
[0031]
According to the above flow,
(1) Internal pressure abnormality cannot be determined until the STD process is completed, that is, no alarm is issued even if the internal pressure is abnormal, and (2) Data with a large lateral G calculation error is adopted for tires with significantly different tire diameters. The inconvenience of not happening frequently occurs.
[0032]
Next, the processing (FIG. 3) modified by adding the invention according to claims 1 and 2 will be described focusing on the changed points. The calculation up to the lateral G (formula (3)) is the same as in FIG.
[0033]
Here, as a process of claim 1, a threshold value (ThL ′) for comparing the size of the lateral G is set. In the lateral G calculation formula (3), if the maximum error in the diameter of the tire to be mounted is DLRdef, the lateral G error is calculated by the following formula (6). DLRdef is the maximum error of the dynamic load radius and is a reference value in JATMA. However, since it is not a standard, a value larger than the maximum value of the company standard is set.
[0034]
ErrG = Vave × DLRdef × Vave / (Tw × 9.8) (6)
As for the setting range of DLRdef, since the maximum value of the production variation of the dynamic load radius is generally within 0.01, 0.01 ≦ DLRdef ≦ 0.04 is appropriate.
[0035]
Next, in order to make the error ErrG smaller in accordance with the progress of the STD process and select data by the lateral G gradually, the coefficient which becomes 1 at the start of the STD process and 0 at the completion is multiplied. Specifically, the following equation (7) is obtained by using STDCnt and Nend.
[0036]
AddG = ErrG × (Nend−STDCnt) / Nend (7) This lateral G time limit error (AddG) is added to the original threshold (ThL) as shown in the following equation (8), and ThL Find ′.
[0037]
ThL ′ = ThL + AddG (8)
If the lateral G (LatG) is equal to or greater than the threshold value (ThL ′), the subsequent processing is stopped and the next one-second cycle is awaited. The processing up to this point is the processing of claim 1.
[0038]
The subsequent STD processing is the same, except that the internal pressure abnormality determination is also performed during the 1 second period in which STD processing is performed for claim 2. Further, the threshold value used for the internal pressure abnormality determination is calculated according to the following procedure including the lateral G error.
[0039]
In the DEL calculation formula (4), if the maximum error of the diameter of the tire to be mounted is DLRdef, the error of the DEL is first calculated by the following formula (9).
[0040]
[Equation 3]
Figure 0003764210
[0041]
Next, in order to reduce the error DELerr in accordance with the progress state of the STD process and increase the sensitivity of the internal pressure abnormality determination, a coefficient is applied as in the following equation (10) in the same manner as the lateral G threshold value.
[0042]
AddDEL = DELerr × (Nend−STDCnt) / Nend (10) The time error (AddDEL) of this DEL and the error caused by the cornering correction from the time error (AddG) of the lateral G are converted into the original threshold value (ThW). ) To obtain ThW ′ by the following equation (11). Note that ABS {f (AddG, turning direction)} is specifically obtained in the same manner as f (x, y).
[0043]
Figure 0003764210
The threshold value (ThW ′) thus obtained is compared with DEL ′ to make an alarm determination.
[0044]
【The invention's effect】
As described above, the invention according to claim 1 prevents the STD process from proceeding due to the exclusion of data by the lateral G, and the invention according to claim 2 prevents a large change in internal pressure from the middle of the STD process. This makes it possible to detect the tire internal pressure abnormality quickly, and to make an appropriate determination and alarm.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an embodiment of a tire pressure abnormality alarm device according to the present invention.
FIG. 2 is a flowchart for explaining control similar to a conventional method in the first half of one embodiment of a tire air pressure abnormality detection method of the present invention.
FIG. 3 is a flowchart showing an embodiment of the tire pressure abnormality detection method according to the present invention.
FIG. 4 is a diagram showing the relationship between internal pressure and dynamic load radius of four types of tires.
FIG. 5 is a diagram illustrating a relationship between speed and calculated lateral G. FIG.

Claims (2)

車両用タイヤの空気圧低下を知らせるタイヤ空気圧異常検出方法であって、各タイヤが正常内圧であるときのタイヤ径のばらつきを補正する係数を計算し、不揮発性メモリに記憶する初期化処理の進行状態に合わせて、計算されるタイヤの車幅方向加速度によるデータの不採用判定のしきい値を下げていくことを特徴とするタイヤ空気圧異常検出方法。A tire pressure abnormality detection method for informing a decrease in vehicle tire air pressure, calculating a coefficient for correcting a variation in tire diameter when each tire has a normal internal pressure, and storing the progress of initialization processing in a nonvolatile memory The tire air pressure abnormality detection method is characterized by lowering the threshold value of the data non-adoption judgment based on the calculated tire acceleration in the vehicle width direction. 車両用タイヤの空気圧低下を知らせるタイヤ空気圧異常検出方法であって、各タイヤが正常内圧であるときのタイヤ径のばらつきを補正する係数を計算し、不揮発性メモリに記憶する初期化処理の進行状態に合わせて、計算されるタイヤの車幅方向加速度によるデータの不採用判定のしきい値を下げていくことおよび内圧異常警報のしきい値を下げていくことを特徴とするタイヤ空気圧異常検出方法。A tire pressure abnormality detection method for informing a decrease in vehicle tire air pressure, calculating a coefficient for correcting a variation in tire diameter when each tire has a normal internal pressure, and storing the progress of initialization processing in a nonvolatile memory Tire pressure abnormality detection method characterized by lowering the threshold value of data non-adoption judgment based on the calculated acceleration in the vehicle width direction of the tire and lowering the threshold value of the internal pressure abnormality alarm .
JP15124796A 1996-06-12 1996-06-12 Tire pressure abnormality detection method Expired - Fee Related JP3764210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15124796A JP3764210B2 (en) 1996-06-12 1996-06-12 Tire pressure abnormality detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15124796A JP3764210B2 (en) 1996-06-12 1996-06-12 Tire pressure abnormality detection method

Publications (2)

Publication Number Publication Date
JPH10909A JPH10909A (en) 1998-01-06
JP3764210B2 true JP3764210B2 (en) 2006-04-05

Family

ID=15514494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15124796A Expired - Fee Related JP3764210B2 (en) 1996-06-12 1996-06-12 Tire pressure abnormality detection method

Country Status (1)

Country Link
JP (1) JP3764210B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3344919B2 (en) * 1997-03-07 2002-11-18 住友電気工業株式会社 Tire pressure drop detector
JP3923873B2 (en) 2002-09-06 2007-06-06 住友ゴム工業株式会社 Tire pressure drop detection method and apparatus, and tire decompression determination program

Also Published As

Publication number Publication date
JPH10909A (en) 1998-01-06

Similar Documents

Publication Publication Date Title
US5578984A (en) Tire air pressure reduction detecting method and apparatus
US6802213B1 (en) Method and apparatus for tire pressure monitoring
US6060983A (en) Apparatus for alarming decrease in tire air-pressure and method thereof
JPH07318584A (en) Wheel-speed calibrating procedure for automobile
US5682333A (en) Motor vehicle wheel speed balancing method
KR20040091154A (en) Off-road detection for improving the detection of tyre pressure loss
US7991523B2 (en) Method for indirect tire pressure monitoring
JP3605026B2 (en) Tire pressure drop warning device and method
JP3923873B2 (en) Tire pressure drop detection method and apparatus, and tire decompression determination program
JPH10250324A (en) Lowered air pressure detecting device for tire
JPH10104248A (en) Method and device for generating error signal in power vehicle
JP3764210B2 (en) Tire pressure abnormality detection method
US20110210841A1 (en) System and Method for Indirect Indication of Tire Pressure Loss
JP5126048B2 (en) Tire pressure monitoring device
JP3834261B2 (en) Tire pressure drop detection method and apparatus, and tire decompression determination program
JP2003276627A (en) Vehicle control device
JP7005979B2 (en) Tire rotation speed correction device
JP3980835B2 (en) Tire identification device and method thereof, and tire pressure drop alarm device and method using the same
JP2005193712A (en) Air pressure monitoring device and air pressure monitoring method
JP3695884B2 (en) Tire pressure estimation device
JP2004017717A (en) Method and device for detecting decrease of air pressure of tire, and program for determining pressure reduction of tire
JP3929961B2 (en) Tire pressure drop detection method and apparatus, and tire decompression determination program
JP2008018940A (en) Method and device for detecting lowering of tire pressure, and program for determining reduction of tire pressure
JP2005126013A (en) Detection method for reduction of tire air pressure, device for the same, and program for determination of pressure reduction of tire
JPH07156621A (en) Initial correction method for tire inflation pressure lowering detection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees