JP3763568B2 - Seismic isolation system - Google Patents

Seismic isolation system Download PDF

Info

Publication number
JP3763568B2
JP3763568B2 JP2002114159A JP2002114159A JP3763568B2 JP 3763568 B2 JP3763568 B2 JP 3763568B2 JP 2002114159 A JP2002114159 A JP 2002114159A JP 2002114159 A JP2002114159 A JP 2002114159A JP 3763568 B2 JP3763568 B2 JP 3763568B2
Authority
JP
Japan
Prior art keywords
seismic isolation
rubber plate
rubber
flat rubber
upper structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002114159A
Other languages
Japanese (ja)
Other versions
JP2003307045A (en
Inventor
光生 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002114159A priority Critical patent/JP3763568B2/en
Publication of JP2003307045A publication Critical patent/JP2003307045A/en
Application granted granted Critical
Publication of JP3763568B2 publication Critical patent/JP3763568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
1995年の阪神淡路大震災以降、大地震時における建物の応答加速度を抑制し、建物自体のみでなくその収容物を含めて、構造物全体を無損傷で守ろうとする免震構造物が増加しつつある。本発明は、免震構造物の中でも戸建て住宅などの比較的小規模な免震建物の免震構造システムに関するものである。
【0002】
【従来の技術】
戸建て住宅や小規模店舗などの小規模な建物を免震構造とする場合、構造物重量が小さいために大型の積層ゴムでは固有周期の伸長ができず、周期を伸ばすためには平面寸法が小さく細高い積層ゴム形状となるが、それでは十分な変形性能を確保できない。
【0003】
この問題を解決する方法として、建物重量をすべり系支承体や転がり系支承体に支持させ、重量を支持しない積層ゴム系支承体(高減衰ゴムや鉛プラグ入り積層ゴムなど)に復元力と減衰を負担させる方法、あるいはすべり面の摩擦を減衰として利用し、すべり面や転がり面を曲面として重力によるポテンシャルエネルギーを復元力に変換する方法などが実用化されている。
【0004】
以上のとおり、小規模・軽量の構造物を免震構造化する方法は既に幾通りかの方法が開発されているが、現実には小規模の免震建物は殆ど普及していないのが現状である。
【0005】
【発明が解決しようとする課題】
小規模免震建物が普及しない原因は極めて明白で、それは免震構造を採用しない従来の耐震構造建物に比較して、免震建物の建設費用が高くなるためである。無論、大型免震ビルの費用upに較べればその絶対額は小さいものの、総工事費自体が小額であるため、その増額比率が非常に大きくなり、大型ビルでは通常数%前後と言われる増額比率が、戸建て住宅免震では優に1割は超え、2割以上の増額となっている事例が少なくない。
【0006】
このコストアップには次の3つの要因がある。即ち、▲1▼通常の設計に較べて高度な構造設計を行うため、設計費用が高くなること。▲2▼免震装置の費用が追加されること。▲3▼免震装置を挟んで基礎が2重になるため、装置上下の基礎構造体に費用がかかることである。
【0007】
上記▲1▼の設計費用を安くする方法としては、従来は日本建築センター評定および建設大臣認定の特別の許認可審査が必要であったが、建築基準法改正により一般の建築確認申請で処理可能になったこと。また、現実の設計費用を下げる方法として、建物や免震システムを標準化して、個々の建物での個別設計自体を省略ないし簡略化する取り組みなどが行われている。
【0008】
免震建物の低コスト化を実現する上で最も重要な課題は、上記▲2▼の免震装置に要する費用そのものを安くすることであり、本発明の課題は低コスト免震装置の提供にある。但し、一般的には低コスト化を実現するために免震性能(=免震効果および安全性能)そのものを妥協する傾向があるが、本発明は、極めて高い免震効果と安全性能を有する免震システムを極めて低廉なコストで実現できる方法を提供するものである。
【0009】
また▲3▼の免震装置上下の2重基礎躯体に要する建設費も重要な条件であり、この部分の低コスト化を図るためにはできるだけ単純な形状の躯体形状とすることが重要であり、躯体形状の単純化が可能な免震システムとすることも本発明の課題である。
【0010】
【課題を解決するための手段】
上記従来技術で述べたとおり、小規模建物では構造物重量が小さいために大型の積層ゴムでは固有周期の伸長ができず、周期を伸ばすためには小さく細高い積層ゴム形状となるが、それでは十分な荷重支持性能と変形性能を確保できない。この問題を解決するために、建物重量をすべり系支承体や転がり系支承体に支持させ、重量を支持しない積層ゴム系支承体(高減衰ゴムや鉛プラグ入り積層ゴムなど)に復元力と減衰を負担させる方法が実用化されているが、小型装置とは言え積層ゴム系支承体の製造には複雑な手間と品質管理を要するため、依然として高コストの装置となっている。
【0011】
そこで、本発明は積層ゴム系支承体を一切使用しないことを基本方針とし、それを実現できる免震システムとして次の構成を採用する。
〈構成1〉
地盤もしくは基礎構造体あるいは上部重量を支える支持構造体(以下、下部構造体と呼ぶ)と、上記下部構造体に対して水平方向に相対移動可能に支持された免震構造物(以下、上部構造体と呼ぶ)と、上記上部構造体と下部構造体の間に配置され、上部構造体の重量を支える転がり支承体と、上記上部構造体と上記下部構造体に連結され、上記構造体の重量を支持しない、平板状のゴム板を備えたことを特徴とする免震構造システム。
【0012】
〈構成2〉
地盤もしくは基礎構造体あるいは上部重量を支える下部構造体と、上記下部構造体に対して水平方向に相対移動可能に支持された上部構造体と、上記上部構造体と下部構造体の間に配置され、上部構造体の重量を支えるすべり支承体と、上記上部構造体に一端を接続し、上記下部構造体に他端を接続し、上記構造体の重量を支持しない、平板状のゴム板を備えたことを特徴とする免震構造システム。
【0013】
〈構成3〉
【0014】
〈構成4〉
構成2乃至3のいずれかに記載の免震構造システムにおいて、上下両面が潤滑面となったすべり支承本体と、上部構造体の底面および下部構造体の上面に配置されたすべり板を備えたことを特徴とする免震構造システム。
【0015】
〈構成5〉
構成1乃至4のいずれかに記載の免震構造システムにおいて、上部構造体と下部構造体を連結している平板状のゴム板が水平面に対して30°以内の傾斜角で設置されていることを特徴とする免震構造システム。
【0016】
〈構成6〉
構成1乃至4のいずれかに記載の免震構造システムにおいて、上部構造体と下部構造体を連結する平板状のゴム板を下部構造体との接続点近傍では水平面に対して30°以内の傾斜角で取り付け、上記平板状のゴム板を、上部構造体との接続点近傍ではほぼ鉛直方向に取り付け、下部構造体に固定された円柱状部材を、上記上部構造体へのゴム板取り付け位置の直下近傍で、ゴム板に外接する位置に配置したことを特徴とする免震構造システム。
【0017】
〈構成7〉
構成1乃至4のいずれかに記載の免震構造システムにおいて、上部構造体と下部構造体を連結する平板状のゴム板の一端を、上部構造体との接続点近傍でほぼ鉛直方向に取り付け、他端を下部構造体に取り付け、下部構造体に固定された一対の円柱状部材を、上記上部構造体へのゴム板取り付け位置の直下近傍で、ゴム板を挟むように配置したことを特徴とする免震構造システム。
【0018】
〈構成8〉
構成1乃至7のいずれかに記載の免震構造システムにおいて、平板状のゴム板の端部に固定用金物が取り付けられており、その固定用金物に設けられた穴に挿入したボルトにより、ゴム板を上部構造体と下部構造体のいずれか一方または双方に固定したことを特徴とする免震構造システム。
【0019】
〈構成9〉
構成1乃至7のいずれかに記載の免震構造システムにおいて、平板状のゴム板の端部に固定用の円柱状部材が取り付けられており、その円柱状部材を、上部構造体と下部構造体のいずれか一方または双方に固定された円筒形部材内に挿入して、ゴム板を上部構造体と下部構造体のいずれか一方または双方に固定したことを特徴とする免震構造システム。
【0020】
〈構成10〉
構成1乃至8のいずれかに記載の免震構造システムにおいて、平板状のゴム板が円筒形ゴムから構成されたことを特徴とする免震構造システム。
【0021】
〈構成11〉
構成1乃至5のいずれかに記載の免震構造システムにおいて、平板状のゴム板の一端が転がり支承体もしくは上下両面が滑動面となっているすべり支承体に固定され、他端が上部構造体と下部構造体のいずれか一方に固定されたことを特徴とする免震構造システム。
【0022】
〈構成12〉
構成1乃至11のいずれかに記載の免震構造システムにおいて、上部構造体と下部構造体を連結する平板状のゴム板が2枚以上設けられていることを特徴とする免震構造システム。
【0023】
〈構成13〉
建物の上部構造体と下部構造体とを連結する平板状のゴム板であって、端部に固定用金物が取り付けられており、上記上部構造体と下部構造体のいずれか一方または双方にゴム板端部を固定するためのボルトを挿入する穴を、その固定用金物に設けたことを特徴とする平板状のゴム板。
【0024】
〈構成14〉
建物の上部構造体と下部構造体とを連結する平板状のゴム板であって、その端部に、上部構造体と下部構造体のいずれか一方または双方に固定された円筒形部材内に挿入される、円柱状部材が取り付けられたことを特徴とする平板状のゴム板。
【0025】
〈構成15〉
建物の上部構造体と下部構造体とを連結する平板状のゴム板であって、上部構造体と下部構造体のいずれか一方または双方に固定される部分に、ゴム板端部固定用金物を挟み込んだことを特徴とする平板状のゴム板。
【0026】
〈概要〉
先ず、本発明では免震構造物(上部構造体)の重量を、転がり支承体もしくはすべり支承体のいずれか、あるいは両者の組み合わせにより支持することを第一条件とし、復元力を負担する免震装置を荷重支持条件から解放する。第二に復元力および減衰を負担する免震装置として積層ゴム系免震装置(天然ゴム系積層ゴム、高減衰積層ゴム、鉛プラグ入り積層ゴム等)を採用することを否定する。
【0027】
そして本発明は、最も単純で低コストで供給でき、免震構造物に水平方向復元力を与えることができる方法として平板状のゴム板を採用する。そしてこのゴム板平板に要求すべき課題として、▲1▼大きな水平変形(少なくとも60cm以上)に追従できること、▲2▼建物重量に対応したバネ性能を調節できること、▲3▼一つのゴム板で水平2方向に同じ復元力を発揮できること、▲4▼抵抗力ができるだけ水平方向に発生し、抵抗力の鉛直成分ができるだけ小さいこと、▲5▼残留変形やクリープ変形が小さいこと、等を実現できることを重要条件とする。
【0028】
以上の各条件に対する本発明の対応方法や長所は以下のとおりである。先ず、▲1▼大きな水平変形性能を確保すること。これは1995年の阪神淡路大震災で記録された震度7の地震動に対応するためには、減衰定数20%以上を確保した上で少なくとも60cm以上は必要であり、できれば80cm以上の水平変形性能を確保することが望ましい。80cm以上の変形性能を積層ゴムで確保するためには、積層ゴム直径は120cm以上。ゴム層総高さで32cm以上の大型装置が必要となる。この大型装置を採用するためには、面圧100kg/cm2として装置1基当たり1000トン以上の重量が必要となり、総重量が100トンにも満たない戸建て住宅では採用不可能である。
【0029】
これに対して、本発明の平板状ゴム板を採用し、これをほぼ水平方向に配置するものとすれば、ゴムの伸び率を200%〜250%で抑えるとして、80cmの水平変形を確保するためには32cm〜40cm程度のゴム板長さがあればよく、このゴム板に300%までの伸びを許容すれば96cm〜120cmという大変形が許容できることになる。尚、ゴムの破断伸び量は550%〜600%以上であるので、安全性能はまだまだ充分に確保されている。以上のとおり、本発明のゴム板免震装置では極めて簡単に大型積層ゴム以上の大変形性能を確保することができる。これが、本発明の第一の長所である。
【0030】
次に、上記▲2▼の建物重量に応じたばね性能を調節できることという条件に対しては、ゴム板の材質(縦弾性係数E)およびゴム板断面積Aと長さLの3要素により、ばね定数はKe=A・E/Lで表されるので、この3要素の組み合わせにより自由自在に調節可能である。特に積層ゴムでは建物重量が小さい場合に対応が困難であるのに対して、本発明の平板状ゴム板では負担重量1トンのように小さい場合でも変形性能・ばね定数および周期を自由に設定することができる。
【0031】
▲3▼の水平2方向に抵抗力を発揮できること、▲4▼の水平抵抗力を大きく、鉛直成分を小さくすることは共にゴム板平板の配置の工夫により解決できる。また▲5▼の残留変形やクリープ変形を小さくするためには、ゴム材質として高減衰ゴムよりも天然ゴムなどを採用することで望ましい結果が得られる。
【0032】
【発明の実施の形態】
以下、本発明を実施例を示す図面に基づいて説明する。
【0033】
図1は、本発明が対象としている戸建て住宅等小規模建物における免震層の構成例である。図1(1)は免震層付近の断面構成、図1(2)は免震装置の配置例を示している。本例は、建物全体の重量を球体転がり支承体で支持し、復元力および減衰を建物重量を支持しない小型積層ゴム(鉛プラグ入り積層ゴムもしくは高減衰積層ゴム)により供給している。減衰性能の高い小型積層ゴムを重量支持機能から解放することにより、小型軽量の構造物でも大きな水平変形性能を確保することを可能としている。図1(2)の円形平面が積層ゴムを固定する円形型枠を示しており、建物平面のできるだけ外周位置に装置を配置して、免震層のねじれ抵抗力を高めている。
【0034】
この免震システムは、軽量構造物でも大きな水平変形性能を確保できるが、▲1▼小型装置とはいえ積層ゴムという複雑で製造手間のかかる装置を採用しているため、かなりのコストアップが避けられないこと、▲2▼変形性能を高めると積層ゴム形状が細高くなり、その結果、▲3▼装置固定部に発生する曲げモーメントが大きくなり、その応力負担のために固定部材の断面耐力を高める必要があること、▲4▼また装置の純せん断変形モードが崩れ、曲げ変形・引張り変形モードが顕著になり復元力特性が安定しない等の難点を有している。
【0035】
本発明はこれらの難点を解決するためになされたもので、積層ゴムの替わりに極めて単純明快なゴム板を採用する。図2は、建物重量を転がり支承体で支持し、復元力装置にゴム板ばねを採用する構成1の免震層構成例である。上下構造体をゴム板ばねで直線的に連結する基本構成配置では、伸び変形時にのみ抵抗力が発生するので、2体一組とした配置をしている。転がり支承体の摩擦抵抗は極めて小さい(μ≒0.001〜0.005程度)ので、減衰を負担するために、ゴム板ばねに高減衰ゴムを採用するか、別の減衰装置を付加する。尚、ゴム板の形状は、例えば図10(2)に示すような平板形状としている。
【0036】
復元力ばねとするゴム形状は理論的には紐状でも良いが、本発明で形状を平板状のゴム板としているには重要な理由がある。ゴムのバネ性能は上記のとおりA・E・Lの3要素で調整可能であるが、適切なばね強さを得るには在る程度のゴム断面積が必要になる。ゴム断面積が大きくなるに伴い、紐状ではその直径が大きくなり、転がり支承体やすべり支承体の高さを超えるようになり、当初意図した積層ゴムを排除して免震層高さを低くするというねらいが達成できなくなる。また、構成6、7、図9に後述するように水平2方向に抵抗できるように折り曲げるためには平板形状が有効であり、直径断面の大きな紐では折り曲げ不可能となる。また、端部の固定方法も、図10に示すように薄い平板の方が容易で有利である。
【0037】
図3は、建物重量をすべり支承体により支持し、これにゴム板ばねを組み合わせる構成2を示している。免震層の降伏耐力は、通常は建物重量の5%前後が適切な値と見なされている。建物重量を全てすべり支承体で支える場合、すべり面をPTFE(テフロン(登録商標))など個体潤滑材+ステンレス板等の組み合わせにすると、摩擦係数は通常μ=0.1〜0.15程度となり、抵抗力が高くなりすぎる。従って、より低いすべり抵抗力を設定したい場合には、低摩擦係数のすべり支承体を組み合わせて調節する。すべり抵抗が減衰性能を発揮するので、すべり支承体以外の減衰装置は必要としない。
【0038】
図4は、建物重量を転がり支承体とすべり支承体の両者で支持し、これにゴム板ばねを組み合わせる構成3の免震層構成例である。転がり支承体の水平抵抗力はほぼゼロに等しいので、転がり支承体とすべり支承体が支える重量比を調整することにより、免震層として降伏耐力(水平抵抗力)を任意の値に設定することができる。図4では、建物の4隅にすべり支承体を配置し、建物重量の50%を支持させることにより、Q=0.5Wx0.1=0.05Wの降伏耐力(すべり抵抗力)としている。尚、ねじれ振動の発生を防止するために、すべり支承体およびゴム板ばねの配置は、建物重心に対して偏心しないように且つできるだけ建物平面の外側に配置してねじれ抵抗力を高めることが重要である。
【0039】
図5は、免震層に配置される免震装置の構成を示したもので、図5(1)は建物重量を支える転がり支承体、すべり支承体に復元力用の積層ゴム支承体を組み合わす場合の免震層の断面構成図である。積層ゴム支承体が他の装置よりも背が高いために、他の装置は基礎台の上に配置する必要があり、その結果、免震層が高くなり且つ免震層躯体が複雑になるために、大きなコストアップ要因となる。
【0040】
これに対して、本発明の図5(2)では、ゴム板ばねをほぼ水平に配置するため、免震層高さは転がり支承体もしくはすべり支承体が必要とする最小限度の高さでよく、特に図6(1)(2)のように転がり支承体やすべり支承体のすべり板をコンクリート躯体面と同一面にすることにより、躯体形状が完全な平板形状(最も単純な形態)となり、その結果、万一設計条件を超える強い地震動入力を受けた場合に、設計値以上の大変形にも問題なく追従できることになり、潜在的安全性が飛躍的に高い免震構造システムとなる。尚、図6(1)はすべり支承本体を上盤コンクリートの上から挿入設置できるようにした場合、図6(2)はすべり支承本体62の上下にすべり板61を配置して、上下両面ですべるようにした場合である。
【0041】
図7(1)は、構成4に示す上下両面を滑動面とするの構成を示しており、図の左側はすべり支承体が剛体の場合、右側はすべり支承体が積層ゴムとなっており、作用水平力がすべり摩擦以下の場合は積層ゴム体が変形し、すべり摩擦に達するとすべりが始まる装置とした場合である。
【0042】
構成5は、復元力を負担するゴム板ばねの設置方法を規定したもので、図7(2)に示すように水平面となす角度がθ≦30°となるように、できるだけ水平に取り付ける。ゴム板ばねの設置条件は、▲1▼設置角度、▲2▼ゴム板ばねがたわまないようにピンと取り付けること、およびねじれ振動を防止できるように平面配置のバランスをとることの3点である。
【0043】
ゴム板ばねの設置角度θ≦30°は、単純ではあるが極めて重要な条件である。その物理的意味を示したものが図8である。図8(1)は、設置角度によりゴム板に発生する抵抗力Toの内、水平抵抗力THに寄与する割合、即ち水平抵抗効率=TH/Toを、図8(2)はゴム板抵抗力の鉛直成分の割合を示したものである。θ=0°、ゴム板を水平に設置した場合の効率は1.0で、鉛直抵抗力は発生せず理想的な配置である。逆に、ゴム板を垂直(θ=90°)に設置した場合は、水平変形が小さい領域では抵抗力の殆どが鉛直方向に作用し、水平抵抗力として機能しないことが判る。図8(1)(2)から判るように、θ≦30°という条件により、ゴム板抵抗力の殆どを水平抵抗力として有効に作用させ、鉛直成分の割合を小さく抑制できることがわかる。図8(3)は水平抵抗力と水平変位との関係を示したもので、θ≦30°の条件により、ゴム板ばねの復元力特性を「ほぼ完全な線形ばね」とすることに成功している。
【0044】
図9は、上部構造体と下部構造体を結ぶゴム板ばねの連結方法を示したものである。図9(1)は上下構造体を単純に直線結合する「基本連結方式」を示したもので、ゴム板が伸びる場合には抵抗力が発生し、縮む方向への移動の場合にはゴム板が曲がり、抵抗力が発生しないことを示している。従って、この基本連結方式を採用する場合には、図2〜図4に示したように、左右(あるいは正負)両方向の移動に対して必ずどちらかのゴム板が伸びるように2対一組として配置することが基本原則となる。
【0045】
これに対して、構成6は上下構造体の相対移動が左右(正負)どちらに移動しても一つのゴム板が均等な抵抗力を発揮できる配置方法を示したものである。即ち、図9(2)に示すように上部構造体近傍では鉛直下向きにゴム板を取り付け、その直下で水平角度30°以下に曲げ、下部構造体への固定側に円柱形部材(下部構造体に固定)を配置する。こうして、円柱形部材をゴム板の一方の面に外接させる。この方法により、下部構造体固定側と反対方向に上部構造体が移動した場合はゴム板ばねは単純に伸び変形し、逆に固定側に移動した場合には円柱形部材を中心にしてゴム板が折れ曲がり、同様に水平抵抗力を発揮することができる。
【0046】
構成7は、構成6を発展させたもので、図9(3)に示すようにゴム板ばねの上部構造体固定位置の直下に、ゴム板の両側に、ゴム板を挟むように円柱形部材を配置することにより、それより下のゴム板ばねの固定方向とは無関係に、上部構造体に水平抵抗力を有効に発生させることができる。尚、上部構造体への連結部のゴム板は鉛直方向(θ=90°)となっているが、円柱形部材がその直下に存在することにより、図8のθ=90°とは異なり、水平抵抗効率は極めて高い値が確保される。また、円柱形部材をゴム板の両側に配置することにより、上部構造体のねじれ変位に対してゴム板が高いねじれ抵抗力を発揮することになる。
【0047】
図10(1)〜(4)は、いずれもゴム板端部に固定用金物を取り付ける構成8の構成例を示したものであり、(4)は固定用金物がゴム板からの抜け出しが起きにくいように金物の外側端部に円柱形突起部を設けたものである。
【0048】
図10(5)は、構成9の固定方法を示したもので、ゴム板端部に円柱形金物を取り付け、これを上下構造体側に固定された円筒形部材内に挿入することにより固定する方法である。この方法のメリットは、ゴム板の伸び変形に伴って変化する設置角度θの変化に無理なく追従できること、およびゴム板ばねの装着、取り外しが容易に行えることである。
【0049】
図10(6)は、構成10を示したものである。これは、ゴム板ばねを円筒形ゴムとして製作し、これを扁平に押しつぶして取り付ける方法である。円筒形ゴム(ゴムの輪)の製造は、長いホース状のゴム体を製造し、これを適切な長さに切断するだけでよく、極めて安価に製造できる優れた方法である。
【0050】
図11は、構成11のゴム板ばねと建物重量を支持するすべり支承体もしくは転がり支承体を複合・一体化した免震装置の構成方法を示している。上下両面のすべり支承体もしくは転がり支承体を上部構造体および下部構造体の両者からゴム板ばねで連結することにより、構成1〜10で示した本免震システムを一体化した複合免震装置として配置することができる。
【0051】
【発明の効果】
以上のとおり、本発明は、従来の免震装置の代表的存在であった積層ゴムに比較して極めて単純な平板状のゴム板という装置により、戸建て住宅や小規模建築物を極めて高性能・高安全性の免震建物として実現可能とした免震構造システムであり、以下のような効果と長所を有している。
▲1▼ゴム板という極めて単純な装置であるので、製造コストが極めて安い。
▲2▼軽量構造物に対しても80cm以上、あるいは1m以上という大変形性能を容易に確保でき、しかもその全領域に渡って線形の復元力特性を実現できる。
▲3▼「転がり支承体+すべり支承体+ゴム板」という免震構造システムにより、周期特性、減衰性能、許容変形性能を自由に設定できる。
▲4▼ゴム板の配置およびその直下の円柱状部材の配置により、ねじれ振動を抑止することができる。
▲5▼すべり支承体および転がり支承体はそのすべり板表面がコンクリート躯体表面と同一レベルに設定されているため、その可動領域は極めて広く、またゴム板は、その有効長さを僅か30cm程度に設定しても100cm以上の変形性能を有しているため、その潜在的安全性能は極めて高い。
▲6▼転がり支承体・すべり支承体・ゴム板の各免震装置は単純明快な装置であるためその信頼性が高く、耐久性能も充分であるが、その装置も必要に応じて容易に交換することも可能である。
▲7▼免震層の高さを、転がり支承体もしくはすべり支承体の高さに合わすことが可能であるため、基礎の根切り底を浅くすることができ、且つ免震層上部の1階床を地盤面から高くない位置に設定できるので、経済的であるだけでなく、使い勝手のよい免震住宅を実現できる。
【0052】
以上のとおり、本免震構造システムを採用すれば、戸建住宅などの軽量建物を、「震度7にも安全、最大速度100カイン(cm/s)を超える地震動にも無損傷」という超高性能・超高安全性能の免震構造建物として経済的に実現することができる。本発明により、高性能の小規模免震建物の普及が促進され、安全な社会の建設に大きく貢献するものと期待される。
【図面の簡単な説明】
【図1】 小規模免震建物の免震層の構成例。本発明の前提となる代表的な既存免震システム
(1)免震層の断面構成図
(2)免震装置配置図およびコンクリート基礎盤平面図
【図2】 本発明の免震構造システムの装置配置例:「転がり支承体+平板状ゴム板」システム
(1)免震層の断面構成図
(2)免震装置配置図およびコンクリート基礎盤平面図
【図3】 本発明の免震構造システムの装置配置例:「すべり支承体+平板状ゴム板」システム
(1)免震層の断面構成図
(2)免震装置配置図およびコンクリート基礎盤平面図
【図4】 本発明の免震構造システムの装置配置例:「転がり支承体+すべり支承体+平板状ゴム板」システム
(1)免震層の断面構成図
(2)免震装置配置図およびコンクリート基礎盤平面図
【図5】 免震層の断面構成図および免震装置の取り付け要領図
(1)従来の積層ゴム・球体転がり支承体・スベリ支承体を採用した場合の一般的な断面構成
(2)本発明の平板状ゴム板・球体転がり支承体・スベリ支承体を採用した場合の断面構成
【図6】 本発明の免震層の断面構成図および免震装置の取り付け要領図
(1)すべり支承体をコンクリート上盤の穴から後付けする場合
(2)すべり支承体の上下両面を滑動面とした場合
【図7】 本発明の免震装置の取り付け要領図
(1)上下両面滑動のすべり支承体の2タイプ:
左側:すべり支承体が剛体の場合、右側:すべり支承体に積層ゴムとした場合
(2)平板状ゴム板の取り付け要領説明図:水平面との傾斜角度θ≦30°とする。
【図8】 本発明の平板状ゴム板を傾斜角30°以下で設置すべき物理的意味の説明図
(1)水平抵抗力の発生効率(=水平力/ゴム板抵抗力)が90%以上の領域に制限している。
(2)ムダな力となる鉛直成分をできるだけ小さく抑制できること。
(3)平板状ゴム板による復元力特性(水平力−水平変位関係)
水平変位の全領域に渡って、ほぼ完全な線形ばねを実現している。
【図9】 平板状ゴム板の取り付け方法と変形状態の説明図
(1)上下構造体間に直線状に配置した基本連結方式:
伸び変形方向では抵抗力が発生するが逆方向変位には抵抗力が発生しないため、向きを逆にした2枚一組として配置する。
(2)上部構造体直下のゴム片側に円柱状部材を配置する方法:
伸び反対方向の変位でもゴムが折れ曲がり、伸び変形となり水平抵抗力が発生する。
(3)上部構造体直下のゴム両側に円柱状部材を配置する方法:
左右両方向の変位に対して、ゴムが折れ曲がり水平抵抗力が発生する。
またねじれ変形の拘束効果も飛躍的に高まる。
【図10】平板状ゴム板端部の固定方法説明図
(1)ゴム板端部に固定用金物(穴付き鋼板)を内蔵し、ボルトで固定する方法
(2)上記ゴム板の形状構成例:
ゴム板の長さは変形性能に応じて、ゴム板の幅は必要抵抗力・剛性に応じて設定される。
(3)ゴム板端部の固定方法例:上下に固定用鋼板を配置して締め付ける方法
(4)ゴム板端部の固定用金物の構成例:
埋め込み鋼板の端部に抜け出し防止用円柱部材を取り付けた場合
(5)ゴム板端部の固定用金物を円柱状として、円筒形部材内に挿入して固定する方法
(6)ゴム板材を円筒形部材(リング状)とし、その内側に固定用金物を挟んで固定する方法
【図11】平板状ゴム板とすべり支承体および転がり支承体との複合免震装置
(1)上下両面すべり支承体とゴム板を複合した装置の取り付け状態(断面図)
(2)上記装置の変形状態
(3)転がり支承体とゴム板を複合した免震装置取り付け状態(断面図)
【符号の説明】
1 :地盤
2 :コンクリート基礎盤
21:免震装置取り付け台座(下側)
3 :コンクリート上盤
31:免震装置取り付け台座(上側)
32:免震装置固定用打ち込み金物
4 :上部建物
5 :転がり免震支承体
51:転動体受け平板
52:転動体(=球体)
6 :すべり支承体
61:すべり板
62:すべり支承本体(積層ゴム内蔵)
63:すべり支承本体(剛体タイプ)
7 :積層ゴム免震装置
71:取り付けフランジ
8 :平板状ゴム板
80:円筒型ゴム板
81:固定用打ち込み金物
82:ゴム板端部固定用金物
83:固定用穴
84:ゴム板端部固定用円柱型金物
85:固定用円筒型金物
86:固定用ボルト
9 :ゴム板複合免震装置
91:ゴム板+すべり支承体複合装置
92:ゴム板+転がり支承体複合装置
[0001]
BACKGROUND OF THE INVENTION
Since the 1995 Great Hanshin-Awaji Earthquake, the number of seismic isolation structures that suppresses the response acceleration of buildings in the event of a major earthquake and protects the entire structure, including not only the building itself but also its containment, is increasing. is there. The present invention relates to a seismic isolation system for relatively small seismic isolation buildings such as detached houses among seismic isolation structures.
[0002]
[Prior art]
When building a small-scale building such as a detached house or a small-scale store, the natural period cannot be extended with a large laminated rubber because the structure weight is small, and the plane dimension is small to extend the period. Although it becomes a thin and highly laminated rubber shape, it cannot ensure sufficient deformation performance.
[0003]
To solve this problem, the building weight is supported by a sliding or rolling bearing, and the restoring force and damping of a laminated rubber bearing (such as high damping rubber or laminated rubber with lead plugs) that does not support the weight. Have been put to practical use, or a method of converting the potential energy due to gravity into a restoring force by using the friction of the sliding surface as a damping and using the sliding surface or rolling surface as a curved surface.
[0004]
As described above, several methods have already been developed for seismic isolation of small and lightweight structures, but in reality, small-scale seismic isolation buildings are rarely used. It is.
[0005]
[Problems to be solved by the invention]
The reason why small-scale seismic isolation buildings are not widespread is quite obvious, because the construction costs of seismic isolation buildings are higher than conventional seismic structures that do not employ seismic isolation structures. Of course, although the absolute amount is small compared to the cost up of large seismic isolation buildings, the total construction cost itself is small, so the increase ratio is very large, and the increase ratio that is usually around several percent for large buildings However, there are many cases where the detached house seismic isolation is well over 10% and the increase is over 20%.
[0006]
This cost increase has the following three factors. That is, (1) The design cost is high because the advanced structural design is performed as compared with the normal design. (2) The cost of seismic isolation equipment is added. (3) Since the foundation is doubled across the seismic isolation device, the foundation structure above and below the device is expensive.
[0007]
As a method of reducing the design cost of (1) above, a special approval examination by the Japan Building Center rating and the Minister of Construction was required in the past, but it can be processed by a general building confirmation application by amending the Building Standards Act. That became. In addition, as a method of reducing the actual design cost, efforts are being made to standardize buildings and seismic isolation systems and to omit or simplify individual designs in individual buildings.
[0008]
The most important issue in realizing cost reduction of a seismic isolation building is to reduce the cost required for the seismic isolation device of (2) above, and the problem of the present invention is to provide a low cost seismic isolation device. is there. However, in general, there is a tendency to compromise the seismic isolation performance (= seismic isolation effect and safety performance) itself in order to realize cost reduction. However, the present invention has an extremely high seismic isolation effect and safety performance. It provides a method that can realize a seismic system at an extremely low cost.
[0009]
In addition, the construction cost required for the double foundation frame above and below the seismic isolation device in (3) is also an important condition. To reduce the cost of this part, it is important to make the frame shape as simple as possible. It is also an object of the present invention to provide a seismic isolation system capable of simplifying the shape of the chassis.
[0010]
[Means for Solving the Problems]
As described in the above prior art, since the weight of the structure is small in a small building, the natural cycle cannot be extended with a large laminated rubber, and it becomes a small and thin laminated rubber shape to extend the cycle. Load bearing performance and deformation performance cannot be secured. In order to solve this problem, the building weight is supported by a sliding bearing or rolling bearing, and the restoring force and damping of laminated rubber bearings (such as high damping rubber and laminated rubber with lead plugs) that do not support weight. However, although it is a small-sized device, manufacturing a laminated rubber bearing requires complicated labor and quality control, so that it is still a high-cost device.
[0011]
Therefore, the basic policy of the present invention is not to use any laminated rubber bearings, and the following configuration is adopted as a seismic isolation system capable of realizing it.
<Configuration 1>
Support structure (hereinafter referred to as lower structure) that supports the ground or foundation structure or upper weight, and seismic isolation structure (hereinafter referred to as upper structure) supported so as to be relatively movable in the horizontal direction with respect to the lower structure. And a rolling bearing that is disposed between the upper structure and the lower structure and supports the weight of the upper structure, and is connected to the upper structure and the lower structure, and the weight of the structure A seismic isolation system characterized by a flat rubber plate that does not support
[0012]
<Configuration 2>
Placed between the upper structure and the lower structure, the lower structure that supports the ground or the foundation structure or the upper weight, the upper structure that is supported to be movable relative to the lower structure in the horizontal direction, and A sliding bearing for supporting the weight of the upper structure, and a flat rubber plate that has one end connected to the upper structure, the other end connected to the lower structure, and does not support the weight of the structure. Seismic isolation system characterized by
[0013]
<Configuration 3>
[0014]
<Configuration 4>
The seismic isolation structure system according to any one of Configurations 2 to 3, comprising a sliding support body whose upper and lower surfaces are lubricated surfaces, and a sliding plate disposed on the bottom surface of the upper structure and the upper surface of the lower structure. Seismic isolation system characterized by
[0015]
<Configuration 5>
In the seismic isolation system according to any one of Configurations 1 to 4, a flat rubber plate connecting the upper structure and the lower structure is installed at an inclination angle of 30 ° or less with respect to the horizontal plane. Seismic isolation system characterized by
[0016]
<Configuration 6>
In the seismic isolation structure system according to any one of Configurations 1 to 4, a flat rubber plate connecting the upper structure and the lower structure is inclined within 30 ° with respect to the horizontal plane in the vicinity of the connection point between the lower structure and the lower structure. At the corner, the flat rubber plate is attached in the vertical direction in the vicinity of the connection point with the upper structure, and the columnar member fixed to the lower structure is attached to the rubber plate attachment position on the upper structure. A seismic isolation system characterized by being placed in the immediate vicinity and circumscribing the rubber plate.
[0017]
<Configuration 7>
In the seismic isolation structure system according to any one of Configurations 1 to 4, one end of a flat rubber plate that connects the upper structure and the lower structure is attached in a substantially vertical direction in the vicinity of the connection point with the upper structure, The other end is attached to the lower structure, and a pair of columnar members fixed to the lower structure are arranged so as to sandwich the rubber plate in the vicinity immediately below the position where the rubber plate is attached to the upper structure. Seismic isolation system.
[0018]
<Configuration 8>
In the seismic isolation system according to any one of Configurations 1 to 7, a fixing hardware is attached to an end portion of a flat rubber plate, and a rubber inserted by a bolt inserted into a hole provided in the fixing hardware. A base-isolated structure system in which a plate is fixed to one or both of an upper structure and a lower structure.
[0019]
<Configuration 9>
In the seismic isolation structure system according to any one of configurations 1 to 7, a fixing columnar member is attached to an end of a flat rubber plate, and the columnar member is divided into an upper structure and a lower structure. A seismic isolation system characterized by being inserted into a cylindrical member fixed to one or both of the above and fixing a rubber plate to either one or both of the upper structure and the lower structure.
[0020]
<Configuration 10>
The seismic isolation structure system according to any one of configurations 1 to 8, wherein the flat rubber plate is made of cylindrical rubber.
[0021]
<Configuration 11>
6. The seismic isolation structure system according to any one of configurations 1 to 5, wherein one end of a flat rubber plate is fixed to a rolling bearing body or a sliding bearing body whose upper and lower surfaces are sliding surfaces, and the other end is an upper structure body. A seismic isolation system characterized in that it is fixed to either the lower structure or the lower structure.
[0022]
<Configuration 12>
12. The seismic isolation system according to any one of configurations 1 to 11, wherein two or more flat rubber plates for connecting the upper structure and the lower structure are provided.
[0023]
<Configuration 13>
It is a flat rubber plate that connects the upper structure and lower structure of a building, and a fixing hardware is attached to the end, and rubber is attached to one or both of the upper structure and the lower structure. A flat rubber plate characterized in that a hole for inserting a bolt for fixing the plate end portion is provided in the fixing hardware.
[0024]
<Configuration 14>
It is a flat rubber plate that connects the upper structure and the lower structure of a building, and is inserted into a cylindrical member fixed to one or both of the upper structure and the lower structure at its end. A flat rubber plate to which a cylindrical member is attached.
[0025]
<Configuration 15>
A flat rubber plate that connects the upper structure and lower structure of a building, and a rubber plate end fixing hardware is attached to a part fixed to one or both of the upper structure and the lower structure. A flat rubber plate characterized by being sandwiched.
[0026]
<Overview>
First, in the present invention, the first condition is that the weight of the seismic isolation structure (upper structure) is supported by either a rolling bearing or a sliding bearing, or a combination of the two, and the seismic isolation that bears the restoring force. Release the device from load bearing conditions. Secondly, the use of laminated rubber-based seismic isolation devices (natural rubber-based laminated rubber, high-damped laminated rubber, laminated rubber with lead plugs, etc.) as a seismic isolation device that bears restoring force and damping is denied.
[0027]
The present invention adopts a flat rubber plate as a method that can be supplied at the simplest and low cost and can provide a horizontal restoring force to the seismic isolation structure. The issues that must be demanded of this rubber plate are: (1) The ability to follow large horizontal deformations (at least 60 cm), (2) The ability to adjust the spring performance corresponding to the weight of the building, and (3) One rubber plate that is horizontal. It is possible to realize the same restoring force in two directions, (4) resistance force is generated in the horizontal direction as much as possible, vertical component of resistance force is as small as possible, and (5) residual deformation and creep deformation are small. It is an important condition.
[0028]
The handling method and advantages of the present invention for each of the above conditions are as follows. First, (1) ensure large horizontal deformation performance. In order to cope with the seismic intensity 7 recorded in the Great Hanshin-Awaji Earthquake in 1995, it is necessary to secure a damping constant of 20% or more and at least 60cm, and if possible, ensure horizontal deformation performance of 80cm or more. It is desirable to do. In order to ensure deformation performance of 80 cm or more with laminated rubber, the diameter of the laminated rubber is 120 cm or more. A large device with a total rubber layer height of 32 cm or more is required. In order to employ this large apparatus, a surface pressure of 100 kg / cm 2 requires a weight of 1000 tons or more per apparatus, and it cannot be employed in a detached house having a total weight of less than 100 tons.
[0029]
On the other hand, if the flat rubber plate of the present invention is employed and is arranged in a substantially horizontal direction, the horizontal deformation of 80 cm is secured assuming that the rubber elongation rate is suppressed to 200% to 250%. For this purpose, it is sufficient that the rubber plate has a length of about 32 cm to 40 cm. If the rubber plate is allowed to extend up to 300%, a large deformation of 96 cm to 120 cm can be allowed. In addition, since the elongation at break of rubber is 550% to 600% or more, the safety performance is still sufficiently secured. As described above, the rubber plate seismic isolation device of the present invention can very easily ensure a large deformation performance higher than that of a large laminated rubber. This is the first advantage of the present invention.
[0030]
Next, for the condition (2) that the spring performance can be adjusted in accordance with the building weight, the spring is determined by the rubber plate material (longitudinal elastic modulus E) and the rubber plate cross-sectional area A and length L. Since the constant is expressed by Ke = A · E / L, it can be freely adjusted by a combination of these three elements. In particular, with laminated rubber, it is difficult to handle when the building weight is small, but with the flat rubber plate of the present invention, deformation performance, spring constant and cycle can be set freely even when the burden weight is as small as 1 ton. be able to.
[0031]
(3) The ability to exert a resistance force in two horizontal directions, and (4) to increase the horizontal resistance force and reduce the vertical component can both be solved by the arrangement of the rubber plate. Further, in order to reduce the residual deformation and creep deformation of (5), a desirable result can be obtained by adopting natural rubber or the like as the rubber material rather than high damping rubber.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments.
[0033]
FIG. 1 is a configuration example of a seismic isolation layer in a small-scale building such as a detached house targeted by the present invention. Fig. 1 (1) shows a cross-sectional configuration in the vicinity of the seismic isolation layer, and Fig. 1 (2) shows an arrangement example of the seismic isolation device. In this example, the weight of the entire building is supported by a spherical rolling bearing, and the restoring force and damping are supplied by a small laminated rubber (a laminated rubber with a lead plug or a high damping laminated rubber) that does not support the weight of the building. By releasing the small laminated rubber with high damping performance from the weight support function, it is possible to secure a large horizontal deformation performance even with a small and light structure. The circular plane of FIG. 1 (2) shows a circular formwork for fixing the laminated rubber, and the device is arranged as far as possible on the building plane to increase the torsional resistance of the seismic isolation layer.
[0034]
Although this seismic isolation system can secure a large horizontal deformation performance even with a lightweight structure, (1) although it is a small device, it employs a complicated and time-consuming device called laminated rubber, which avoids a considerable increase in cost. (2) When the deformation performance is increased, the shape of the laminated rubber becomes narrower. As a result, (3) the bending moment generated in the device fixing part increases, and the cross-sectional strength of the fixing member is increased due to the stress load. (4) Further, there is a problem that the pure shear deformation mode of the apparatus is broken, the bending deformation / tensile deformation mode becomes remarkable, and the restoring force characteristic is not stable.
[0035]
The present invention has been made to solve these problems, and employs a very simple and clear rubber plate in place of laminated rubber. FIG. 2 is an example of a seismic isolation layer configuration of configuration 1 in which the building weight is supported by a rolling bearing and a rubber leaf spring is employed as the restoring force device. In the basic configuration arrangement in which the upper and lower structures are linearly connected by rubber leaf springs, a resistance force is generated only at the time of expansion deformation, so that two bodies are arranged as a set. Since the frictional resistance of the rolling bearing is extremely small (μ≈0.001 to 0.005), in order to bear the damping, a high damping rubber is used for the rubber leaf spring or another damping device is added. The shape of the rubber plate is, for example, a flat plate shape as shown in FIG.
[0036]
The rubber shape used as the restoring force spring may theoretically be a string shape, but there is an important reason for making the shape into a flat rubber plate in the present invention. The spring performance of rubber can be adjusted by the three elements A, E, and L as described above, but a rubber cross-sectional area of a certain level is necessary to obtain an appropriate spring strength. As the rubber cross-sectional area increases, the diameter of the string increases, which exceeds the height of the rolling and sliding bearings, eliminating the originally intended laminated rubber and lowering the seismic isolation layer height. The aim to do is not achieved. Further, as will be described later with reference to configurations 6 and 7 and FIG. 9, a flat plate shape is effective for bending so that it can resist in two horizontal directions, and a string having a large diameter cross section cannot be bent. Also, as for the fixing method of the end portion, a thin flat plate is easier and more advantageous as shown in FIG.
[0037]
FIG. 3 shows a configuration 2 in which the building weight is supported by a sliding support body and a rubber leaf spring is combined with this. The yield strength of seismic isolation layers is usually considered to be around 5% of the building weight. When all the building weight is supported by a sliding support, if the sliding surface is made of a combination of solid lubricant such as PTFE (Teflon (registered trademark)) + stainless steel plate, the friction coefficient is usually about μ = 0.1 to 0.15. , Resistance becomes too high. Therefore, when it is desired to set a lower slip resistance, the slip bearing body having a low friction coefficient is adjusted in combination. Since the slip resistance exhibits the damping performance, no damping device other than the sliding bearing is required.
[0038]
FIG. 4 is an example of the seismic isolation layer configuration of Configuration 3 in which the building weight is supported by both the rolling bearing body and the sliding bearing body, and a rubber leaf spring is combined therewith. Since the horizontal resistance of rolling bearings is almost equal to zero, the yield strength (horizontal resistance) should be set to an arbitrary value as a seismic isolation layer by adjusting the weight ratio supported by the rolling bearings and sliding bearings. Can do. In FIG. 4, the yield strength (slip resistance) of Q = 0.5Wx0.1 = 0.05W is set by arranging sliding bearing bodies at the four corners of the building and supporting 50% of the building weight. In order to prevent the occurrence of torsional vibration, it is important that the sliding bearings and rubber leaf springs be arranged as far as possible from the center of the building and on the outside of the building plane to increase the torsion resistance. It is.
[0039]
Fig. 5 shows the structure of the seismic isolation device placed in the seismic isolation layer. Fig. 5 (1) shows a rolling bearing that supports the weight of the building, a sliding bearing and a laminated rubber bearing for restoring force. It is a section lineblock diagram of a seismic isolation layer in the case of. Because laminated rubber bearings are taller than other devices, other devices need to be placed on the foundation, which results in higher seismic isolation layers and more complicated seismic isolation housings. In addition, the cost increases.
[0040]
On the other hand, in FIG. 5 (2) of the present invention, since the rubber leaf springs are arranged almost horizontally, the seismic isolation layer height may be the minimum height required for the rolling bearing body or the sliding bearing body. Especially, as shown in Fig. 6 (1) and (2), by making the sliding plate of the rolling bearing body and the sliding bearing body the same surface as the concrete frame surface, the frame shape becomes a perfect flat plate shape (the simplest form) As a result, if a strong seismic motion input exceeding the design conditions is received, large deformation exceeding the design value can be followed without any problem, resulting in a seismically isolated structure system with potentially high safety. 6 (1) shows that when the sliding support body can be inserted and installed from above the upper concrete, FIG. 6 (2) shows that the sliding plates 61 are arranged above and below the sliding support body 62, so This is the case when sliding.
[0041]
FIG. 7 (1) shows a configuration in which the upper and lower surfaces shown in the configuration 4 are sliding surfaces. In the left side of the figure, the sliding support is a rigid body, and on the right side, the sliding support is a laminated rubber. When the applied horizontal force is equal to or less than the sliding friction, the laminated rubber body is deformed and the sliding starts when the sliding friction is reached.
[0042]
Configuration 5 defines the installation method of the rubber leaf spring that bears the restoring force. As shown in FIG. 7 (2), the rubber plate spring is attached as horizontally as possible so that the angle formed with the horizontal plane is θ ≦ 30 °. The installation conditions for rubber leaf springs are (1) installation angle, (2) mounting with a pin so that the rubber leaf spring does not bend, and balancing the planar arrangement to prevent torsional vibration. is there.
[0043]
The installation angle θ ≦ 30 ° of the rubber leaf spring is a simple but extremely important condition. FIG. 8 shows the physical meaning. 8 (1) shows the ratio of the resistance force To generated on the rubber plate depending on the installation angle to the horizontal resistance force TH, that is, the horizontal resistance efficiency = TH / To, and FIG. 8 (2) shows the rubber plate resistance force. It shows the ratio of the vertical component. When θ = 0 ° and the rubber plate is horizontally installed, the efficiency is 1.0, and no vertical resistance force is generated, which is an ideal arrangement. Conversely, when the rubber plate is installed vertically (θ = 90 °), it can be seen that most of the resistance acts in the vertical direction in a region where the horizontal deformation is small and does not function as the horizontal resistance. As can be seen from FIGS. 8 (1) and (2), it can be seen that, under the condition of θ ≦ 30 °, most of the rubber plate resistance force can be effectively applied as the horizontal resistance force, and the ratio of the vertical component can be suppressed small. FIG. 8 (3) shows the relationship between the horizontal resistance force and the horizontal displacement, and succeeded in setting the restoring force characteristic of the rubber leaf spring to “an almost perfect linear spring” under the condition of θ ≦ 30 °. ing.
[0044]
FIG. 9 shows a method of connecting rubber leaf springs connecting the upper structure and the lower structure. FIG. 9 (1) shows a “basic connection method” in which the upper and lower structures are simply linearly connected. When the rubber plate extends, a resistance force is generated, and when the rubber plate moves in the contracting direction, the rubber plate. Indicates that no resistance is generated. Therefore, when this basic connection method is adopted, as shown in FIGS. 2 to 4, as a two-to-one pair, one of the rubber plates always extends with respect to movement in both the left and right (or positive and negative) directions. Arrangement is the basic principle.
[0045]
On the other hand, Configuration 6 shows an arrangement method in which one rubber plate can exert an even resistance regardless of whether the relative movement of the upper and lower structures moves to the left or right (positive or negative). That is, as shown in FIG. 9 (2), a rubber plate is attached vertically downward near the upper structure, bent to a horizontal angle of 30 ° or less just below it, and a cylindrical member (lower structure) is fixed to the lower structure. To be fixed). Thus, the cylindrical member is circumscribed on one surface of the rubber plate. By this method, when the upper structure moves in the direction opposite to the lower structure fixed side, the rubber leaf spring simply stretches and deforms, and conversely when it moves to the fixed side, the rubber plate is centered on the cylindrical member. Can be bent, and similarly can exert a horizontal resistance.
[0046]
The configuration 7 is an extension of the configuration 6, and as shown in FIG. 9 (3), a cylindrical member so as to sandwich the rubber plate on both sides of the rubber plate directly below the upper structure fixing position of the rubber plate spring. By arranging, a horizontal resistance force can be effectively generated in the upper structure regardless of the fixing direction of the rubber leaf spring below it. Incidentally, the rubber plate of the connecting portion to the upper structure is in the vertical direction (θ = 90 °), but the presence of the cylindrical member immediately below it makes it different from θ = 90 ° in FIG. An extremely high value is ensured for the horizontal resistance efficiency. Further, by disposing the cylindrical members on both sides of the rubber plate, the rubber plate exhibits a high torsion resistance against the torsional displacement of the upper structure.
[0047]
FIGS. 10 (1) to 10 (4) show examples of the configuration 8 in which the fixing hardware is attached to the end of the rubber plate. FIG. 10 (4) shows that the fixing hardware is pulled out from the rubber plate. A cylindrical protrusion is provided at the outer end of the hardware so as to be difficult.
[0048]
FIG. 10 (5) shows the fixing method of Configuration 9, and a method of fixing by attaching a cylindrical metal piece to the end of the rubber plate and inserting it into a cylindrical member fixed to the upper and lower structures. It is. The merit of this method is that it can easily follow the change in the installation angle θ that changes with the expansion and deformation of the rubber plate, and that the rubber plate spring can be easily attached and detached.
[0049]
FIG. 10 (6) shows the configuration 10. This is a method in which a rubber leaf spring is manufactured as a cylindrical rubber and is crushed flat and attached. The production of cylindrical rubber (rubber ring) is an excellent method that can be produced at a very low cost by producing a long hose-like rubber body and cutting it into an appropriate length.
[0050]
FIG. 11 shows a configuration method of a seismic isolation device in which the rubber leaf spring of Configuration 11 and a sliding bearing or a rolling bearing supporting the building weight are combined and integrated. As a composite seismic isolation device that integrates the seismic isolation system shown in configurations 1 to 10 by connecting the upper and lower sliding bearings or rolling bearings from both the upper structure and the lower structure with rubber leaf springs. Can be arranged.
[0051]
【The invention's effect】
As described above, the present invention has a very simple flat rubber plate device compared to the laminated rubber, which is a representative of conventional seismic isolation devices, and enables high performance and performance of detached houses and small-scale buildings. It is a seismic isolation system that can be realized as a high safety seismic isolation building and has the following effects and advantages.
(1) Since it is a very simple device called a rubber plate, the manufacturing cost is extremely low.
(2) A large deformation performance of 80 cm or more, or 1 m or more can be easily secured even for a lightweight structure, and a linear restoring force characteristic can be realized over the entire region.
(3) Periodic characteristics, damping performance, and allowable deformation performance can be set freely by the seismic isolation system of “rolling bearing + sliding bearing + rubber plate”.
{Circle around (4)} Torsional vibration can be suppressed by the arrangement of the rubber plate and the arrangement of the columnar member immediately below it.
(5) Since the sliding plate and rolling bearing are set to the same level as the surface of the concrete frame, the sliding plate has a very wide range of movement, and the rubber plate has an effective length of only 30 cm. Even if set, since it has a deformation performance of 100 cm or more, its potential safety performance is extremely high.
(6) The seismic isolation devices for rolling bearings, sliding bearings, and rubber plates are simple and clear, so their reliability and durability are sufficient, but they can be easily replaced as needed. It is also possible to do.
(7) Since the height of the seismic isolation layer can be adjusted to the height of the rolling bearing body or sliding bearing body, the bottom of the foundation can be made shallow, and the first floor above the seismic isolation layer Since the floor can be set at a position that is not high from the ground surface, it is not only economical, but also an easy-to-use seismic isolation house can be realized.
[0052]
As described above, if this seismic isolation system is adopted, lightweight buildings such as detached houses can be made extremely high, "safe for seismic intensity 7 and no damage to seismic motion exceeding the maximum speed of 100 kine (cm / s)." It can be economically realized as a seismically isolated building with high performance and ultra-high safety performance. The present invention is expected to promote the spread of high-performance small-scale base-isolated buildings and greatly contribute to the construction of a safe society.
[Brief description of the drawings]
[Fig. 1] Configuration example of seismic isolation layer of a small base isolation building. Typical existing seismic isolation system as a premise of the present invention
(1) Cross-sectional configuration diagram of seismic isolation layer
(2) Seismic isolation device layout and concrete foundation plan view
FIG. 2 shows an apparatus arrangement example of the seismic isolation system of the present invention: “Rolling bearing + flat rubber plate” system
(1) Cross-sectional configuration diagram of seismic isolation layer
(2) Seismic isolation device layout and concrete foundation plan view
FIG. 3 shows an example of device arrangement of the seismic isolation system of the present invention: “sliding bearing body + flat rubber plate” system.
(1) Cross-sectional configuration diagram of seismic isolation layer
(2) Seismic isolation device layout and concrete foundation plan view
FIG. 4 shows an apparatus arrangement example of the seismic isolation system of the present invention: “rolling bearing body + sliding bearing body + flat rubber plate” system
(1) Cross-sectional configuration diagram of seismic isolation layer
(2) Seismic isolation device layout and concrete foundation plan view
[Fig.5] Cross-sectional configuration diagram of seismic isolation layer and installation guideline
(1) General cross-sectional configuration when conventional laminated rubber, spherical rolling bearings and sliding bearings are used
(2) Cross-sectional configuration when the flat rubber plate, spherical rolling bearing and sliding bearing of the present invention are used
FIG. 6 is a cross-sectional configuration diagram of the seismic isolation layer of the present invention and an installation procedure diagram of the seismic isolation device.
(1) When sliding support is retrofitted from a hole in the concrete top
(2) When the upper and lower surfaces of the sliding bearing body are sliding surfaces
[Fig. 7] Installation guideline of seismic isolation device of the present invention
(1) Two types of sliding bearings with sliding on both sides:
Left: When the sliding bearing is a rigid body, Right: When the sliding bearing is made of laminated rubber
(2) Explanatory diagram of how to attach the flat rubber plate: The inclination angle with the horizontal plane is θ ≦ 30 °.
FIG. 8 is an explanatory diagram of physical meaning that the flat rubber plate of the present invention should be installed at an inclination angle of 30 ° or less.
(1) The generation efficiency of horizontal resistance force (= horizontal force / rubber plate resistance force) is limited to an area of 90% or more.
(2) The vertical component, which is a wasteful force, can be suppressed as small as possible.
(3) Restoring force characteristics due to flat rubber plate (Relationship between horizontal force and horizontal displacement)
An almost complete linear spring is realized over the entire region of horizontal displacement.
FIG. 9 is an explanatory view of a mounting method and deformation state of a flat rubber plate.
(1) Basic connection method arranged linearly between upper and lower structures:
Since a resistance force is generated in the direction of elongation and deformation but a resistance force is not generated in the reverse direction displacement, they are arranged as a set of two sheets whose directions are reversed.
(2) Method of arranging a columnar member on the rubber piece side just below the upper structure:
Even when the displacement is in the opposite direction of elongation, the rubber bends and becomes deformed to generate horizontal resistance.
(3) Method of arranging cylindrical members on both sides of the rubber directly under the upper structure:
The rubber bends and generates a horizontal resistance against displacement in both the left and right directions.
In addition, the restraining effect of torsional deformation is dramatically increased.
FIG. 10 is an explanatory view of a method for fixing a flat rubber plate end.
(1) Method of fixing a fixing hardware (steel plate with a hole) at the end of the rubber plate and fixing it with bolts
(2) Shape configuration example of the rubber plate:
The length of the rubber plate is set according to the deformation performance, and the width of the rubber plate is set according to the required resistance and rigidity.
(3) Example of fixing method of rubber plate end: Method of fastening by fixing steel plates on top and bottom
(4) Configuration example of fixing hardware at the end of the rubber plate:
When a cylindrical member for preventing slipping is attached to the end of the embedded steel plate
(5) A method of fixing the metal fitting for fixing at the end of the rubber plate into a cylindrical shape and inserting it into the cylindrical member.
(6) A method of fixing a rubber plate material with a cylindrical member (ring shape) with a fixing hardware sandwiched inside
FIG. 11 shows a composite seismic isolation device composed of a flat rubber plate, a sliding bearing and a rolling bearing.
(1) Upper and lower double-sided sliding support and rubber plate installation state (cross-sectional view)
(2) Deformation state of the above device
(3) Seismic isolation device combined with rolling bearing and rubber plate (cross section)
[Explanation of symbols]
1: Ground
2: Concrete foundation board
21: Seismic isolation device mounting base (lower side)
3: Concrete top plate
31: Seismic isolation device mounting base (upper side)
32: Driving hardware for seismic isolation devices
4: Upper building
5: Rolling base isolation body
51: Rolling body receiving flat plate
52: Rolling body (= sphere)
6: Sliding bearing body
61: Sliding plate
62: Sliding bearing body (with built-in laminated rubber)
63: Sliding bearing body (rigid body type)
7: Laminated rubber seismic isolation device
71: Mounting flange
8: Flat rubber plate
80: Cylindrical rubber plate
81: Fixed hardware for fixing
82: Rubber plate end fixing hardware
83: Fixing hole
84: Cylindrical metal fitting for fixing rubber plate ends
85: Cylindrical hardware for fixing
86: Fixing bolt
9: Rubber plate composite seismic isolation device
91: Rubber plate + sliding bearing composite device
92: Rubber plate + rolling bearing complex device

Claims (8)

地盤もしくは基礎構造体あるいは上部重量を支える支持構造体(以下、下部構造体と呼ぶ)と、前記下部構造体に対して水平方向に相対移動可能に支持された免震構造物(以下、上部構造体と呼ぶ)と、前記上部構造体と前記下部構造体の間に配置され、前記上部構造体の重量を支える転がり支承体又はすべり支承体と、前記上部構造体と前記下部構造体に連結され、前記構造体の重量を支持しない、平板状のゴム板を備えた免震構造システムにおいて、
前記平板状のゴム板を、下部構造体との接続点近傍では水平面に対して30°以内の傾斜角で取り付け、
前記平板状のゴム板を、上部構造体との接続点近傍ではほぼ鉛直方向に取り付け、
前記下部構造体の、前記上部構造体へのゴム板取り付け位置の直下近傍に、前記平板状のゴム板に外接する円柱状部材を配設したことを特徴とする免震構造システム。
Support structure (hereinafter referred to as the lower structure) that supports the ground or foundation structure or upper weight, and a seismic isolation structure (hereinafter referred to as the upper structure) supported so as to be movable relative to the lower structure in the horizontal direction. And a rolling bearing or a sliding bearing disposed between the upper structure and the lower structure and supporting the weight of the upper structure, and connected to the upper structure and the lower structure. In the seismic isolation system having a flat rubber plate that does not support the weight of the structure,
The flat rubber plate is attached at an inclination angle of 30 ° or less with respect to the horizontal plane in the vicinity of the connection point with the lower structure,
The flat rubber plate is attached in a substantially vertical direction in the vicinity of the connection point with the upper structure,
A seismic isolation structure system, wherein a columnar member circumscribing the flat rubber plate is disposed in the vicinity of the lower structure immediately below a position where the rubber plate is attached to the upper structure.
請求項1に記載の免震構造システムにおいて、
前記平板状のゴム板の端部に固定用金物が取り付けられており、前記固定用金物に設けられた穴に挿入したボルトにより、前記平板状のゴム板を前記上部構造体と前記下部構造体のいずれか一方または双方に固定したことを特徴とする免震構造システム。
In the seismic isolation structure system according to claim 1,
Fixing hardware is attached to the end of the flat rubber plate, and the flat rubber plate is attached to the upper structure and the lower structure by bolts inserted into holes provided in the fixing metal. A seismic isolation system characterized by being fixed to either or both.
請求項1又は2に記載の免震構造システムにおいて、
前記平板状のゴム板の端部に固定用の円柱状部材が取り付けられており、前記円柱状部材を、上部構造体と下部構造体のいずれか一方または双方に固定された円筒形部材内に挿入して、前記平板状のゴム板を、前記上部構造体と前記下部構造体のいずれか一方または双方に固定したことを特徴とする免震構造システム。
In the seismic isolation structure system according to claim 1 or 2,
A columnar member for fixing is attached to an end of the flat rubber plate, and the columnar member is placed in a cylindrical member fixed to one or both of the upper structure and the lower structure. A seismic isolation system, wherein the flat rubber plate is inserted and fixed to one or both of the upper structure and the lower structure.
請求項1乃至3のいずれかに記載の免震構造システムにおいて、
前記平板状のゴム板が円筒形ゴムから構成されたことを特徴とする免震構造システム。
In the seismic isolation system in any one of Claims 1 thru | or 3,
A base-isolated structure system, wherein the flat rubber plate is made of cylindrical rubber.
請求項1乃至4のいずれかに記載の免震構造システムにおいて、
前記上部構造体と下部構造体を連結する平板状のゴム板が2枚以上設けられていることを特徴とする免震構造システム。
In the seismic isolation structure system in any one of Claims 1 thru | or 4,
2. A seismic isolation structure system comprising two or more flat rubber plates for connecting the upper structure and the lower structure.
請求項1乃至5のいずれかに記載の免震構造システムにおいて、
前記平板状のゴム板は、端部に固定用金物が取り付けられており、前記上部構造体と前記下部構造体のいずれか一方または双方にゴム板端部を固定するためのボルトを挿入する穴を、前記固定用金物に設けたものであることを特徴とする免震構造システム。
In the seismic isolation system in any one of Claims 1 thru | or 5,
The flat rubber plate has a fixing hardware attached to the end, and a hole for inserting a bolt for fixing the end of the rubber plate to one or both of the upper structure and the lower structure. Is provided on the fixing hardware.
請求項1乃至6のいずれかに記載の免震構造システムにおいて、
前記平板状のゴム板は、端部に、前記上部構造体と前記下部構造体のいずれか一方または双方に固定された円筒形部材内に挿入される、円柱状部材が取り付けられたものであることを特徴とする免震構造システム。
The base isolation structure system according to any one of claims 1 to 6,
The flat rubber plate is attached with a columnar member inserted into a cylindrical member fixed to one or both of the upper structure and the lower structure at the end. Seismic isolation system characterized by that.
請求項1乃至7のいずれかに記載の免震構造システムにおいて、
前記平板状のゴム板は、前記上部構造体と前記下部構造体のいずれか一方または双方に固定される部分に、ゴム板端部固定用金物を挟み込んだものであることを特徴とする免震構造システム。
In the seismic isolation system in any one of Claims 1 thru | or 7,
The flat rubber plate has a rubber plate end fixing hardware sandwiched between portions fixed to one or both of the upper structure and the lower structure. Structural system.
JP2002114159A 2002-04-17 2002-04-17 Seismic isolation system Expired - Fee Related JP3763568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002114159A JP3763568B2 (en) 2002-04-17 2002-04-17 Seismic isolation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002114159A JP3763568B2 (en) 2002-04-17 2002-04-17 Seismic isolation system

Publications (2)

Publication Number Publication Date
JP2003307045A JP2003307045A (en) 2003-10-31
JP3763568B2 true JP3763568B2 (en) 2006-04-05

Family

ID=29396079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002114159A Expired - Fee Related JP3763568B2 (en) 2002-04-17 2002-04-17 Seismic isolation system

Country Status (1)

Country Link
JP (1) JP3763568B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104141719A (en) * 2014-06-27 2014-11-12 北京工业大学 Anti-torsion type three-dimensional cultural relic shock isolation device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4522091B2 (en) * 2003-12-26 2010-08-11 鹿島建設株式会社 Tower crane mast horizontal support device
JP4878894B2 (en) * 2006-03-31 2012-02-15 ブリヂストンフローテック株式会社 Seismic isolation device
JP5012346B2 (en) * 2007-09-11 2012-08-29 株式会社大林組 Isolation device
JP5240341B2 (en) * 2011-10-03 2013-07-17 株式会社大林組 Isolation device
JP5240340B2 (en) * 2011-10-03 2013-07-17 株式会社大林組 Isolation device
JP5240338B2 (en) * 2011-10-03 2013-07-17 株式会社大林組 Isolation device
JP5240339B2 (en) * 2011-10-03 2013-07-17 株式会社大林組 Isolation device
CN102912857A (en) * 2012-11-07 2013-02-06 沈阳建筑大学 Inner round platform frictional sliding isolation bearing
JP6031632B1 (en) * 2016-06-27 2016-11-24 黒沢建設株式会社 Displacement limiting device used for seismic isolation structure and method of introducing pre-compression
CN108716248A (en) * 2018-06-27 2018-10-30 佛山科学技术学院 A kind of two-sided roller support
JP6949257B1 (en) * 2021-01-28 2021-10-13 日鉄エンジニアリング株式会社 Seismic isolation structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035084A (en) * 1998-07-17 2000-02-02 Ohbayashi Corp Base isolation device
JP2000110403A (en) * 1998-08-06 2000-04-18 Takaharu Miyazaki Ventilation type base isolation restoring device
JP3825923B2 (en) * 1998-09-01 2006-09-27 横浜ゴム株式会社 Seismic isolation device
JP4238432B2 (en) * 1999-09-27 2009-03-18 オイレス工業株式会社 Seismic isolation structure fixing device
JP2001227198A (en) * 2000-02-16 2001-08-24 Takaharu Miyazaki Apparatus for restoring deviation of seismically-isolated house, caused by earthquake
JP2001263417A (en) * 2000-03-21 2001-09-26 Toyo Tire & Rubber Co Ltd Base isolation device for lightweight structure
JP2002039266A (en) * 2000-07-25 2002-02-06 Kawaguchi Metal Industries Co Ltd Base isolation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104141719A (en) * 2014-06-27 2014-11-12 北京工业大学 Anti-torsion type three-dimensional cultural relic shock isolation device
CN104141719B (en) * 2014-06-27 2018-05-25 北京工业大学 A kind of antitorque transition three-dimensional antique vibration isolation device

Also Published As

Publication number Publication date
JP2003307045A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
JP3763568B2 (en) Seismic isolation system
US8156696B2 (en) Seismically stable flooring
JP2994281B2 (en) Integrated horizontal-vertical seismic isolation bearing
US20060174555A1 (en) Sliding Pendulum Seismic Isolation System
US8789320B1 (en) Large displacement isolation bearing
US8926180B2 (en) Disc and spring isolation bearing
KR0169706B1 (en) Shakeproof bearing
JP3871393B2 (en) Insulating support device and seismic isolation structure using this support device
WO2002084030A1 (en) Combination-type earthquake-proof apparatus
CN111218999A (en) Metal and spring rubber composite damper
CN216552506U (en) Self-resetting seismic isolation support with vertical and multidirectional horizontal seismic isolation capabilities
CN113107124B (en) Shock insulation floor with tuned mass damper function
JP5721333B2 (en) Sliding foundation structure
KR20190023332A (en) Seismic equipment for mechanical structures
JP4439694B2 (en) High-damping frame of high-rise building
JP3671317B2 (en) Seismic isolation mechanism
JP3875228B2 (en) Seismic isolation device
JPS62121279A (en) Earthquake damping structure
CN219825687U (en) Self-resetting tuned inertial mass damper for adjacent structure
CN218580912U (en) Shock insulation support
JP2927357B2 (en) Seismic isolation support device
CN219732961U (en) Three-dimensional shock insulation device
CN216973947U (en) Composite energy dissipation extension arm for preventing external instability of amplification device
CN219773255U (en) Variable-order metal yield damper
JP2907310B2 (en) Vibration isolation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060116

R150 Certificate of patent or registration of utility model

Ref document number: 3763568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees