JP3760501B2 - Method for filling a filler containing an ion exchanger - Google Patents

Method for filling a filler containing an ion exchanger Download PDF

Info

Publication number
JP3760501B2
JP3760501B2 JP06478396A JP6478396A JP3760501B2 JP 3760501 B2 JP3760501 B2 JP 3760501B2 JP 06478396 A JP06478396 A JP 06478396A JP 6478396 A JP6478396 A JP 6478396A JP 3760501 B2 JP3760501 B2 JP 3760501B2
Authority
JP
Japan
Prior art keywords
filler
chamber
ion exchanger
exchange membrane
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06478396A
Other languages
Japanese (ja)
Other versions
JPH09253458A (en
Inventor
洋 戸田
徹 星
純治郎 岩元
健 小松
一郎 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP06478396A priority Critical patent/JP3760501B2/en
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to PCT/JP1997/000896 priority patent/WO1997034696A1/en
Priority to AU19433/97A priority patent/AU1943397A/en
Priority to DE69716852T priority patent/DE69716852T2/en
Priority to US08/952,218 priority patent/US5961805A/en
Priority to CA002221709A priority patent/CA2221709C/en
Priority to KR1019970708217A priority patent/KR100441461B1/en
Priority to EP97907381A priority patent/EP0837729B1/en
Priority to TW086103470A priority patent/TW426644B/en
Priority to CN97190214A priority patent/CN1080594C/en
Priority to AT97907381T priority patent/ATE227162T1/en
Priority to MYPI97001177A priority patent/MY125056A/en
Priority to IN500CA1997 priority patent/IN182200B/en
Priority to ARP970101149A priority patent/AR006347A1/en
Publication of JPH09253458A publication Critical patent/JPH09253458A/en
Priority to US09/338,570 priority patent/US6228240B1/en
Application granted granted Critical
Publication of JP3760501B2 publication Critical patent/JP3760501B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気透析槽の脱塩室にイオン交換体を配置して連続的に脱イオンを行う装置の脱塩室(希釈室)にイオン交換体を含む充填材を充填するための方法に関する。
【0002】
【従来の技術】
従来、超純水製造用の装置として、希釈室内にイオン交換体を有することを特徴とする電気透析槽が、特公平4−72567号公報、米国特許4632745号明細書などにより提案されている。これら充填されたイオン交換体は、各部屋に均一に充填され、かつ液の流れがショートパスする空間を生ずることのないことが求められる。しかし、電気透析槽中の複数の希釈室内に、イオン交換体を均一かつ隙間なく充填することは、一般的に難しい。
【0003】
たとえば、超純水製造用電気透析槽(EDI)に用いられるビーズ状イオン交換体の各希釈室への充填法として、電槽組立前または組立時に各対毎に充填する方法、組立後に液供給のための共通ダクトやイオン交換体の充填専用ノズルなどから充填する方法が一般的に知られている。
【0004】
しかし、各対毎に充填する方法では、ユニット化のために室枠の構造が複雑になったり、電槽の対数が多くなると組立に時間がかかるなどの問題がある。一方、共通ダクトやイオン交換体の充填専用ノズルなどから充填する方法では、各部屋への供給時間は短縮されるが、室枠の構造が複雑になるだけでなく、各部屋へのイオン交換体の充填度を制御するのが難しく、かつ充填量の確認が難しいという問題がある。
【0005】
さらに充填できるイオン交換体量の上限も、高々通常の最密充填(空間率=0.636)程度またはそれ以下にしかならないため、液のショートパスを防ぐためには、下降流を選択せざるを得ない。このため、希釈室系内のガス抜き対策や、停止時の液保有対策が必要となってくる。
【0006】
【発明が解決しようとする課題】
本発明は、希釈室の入口から出口へのショートパスする可能性のある空間の発生を防ぎ、複数の中空部にも同時に均一量のイオン交換体を確実に収納することを可能にし、イオン交換体の充填密度を高く充填することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、陽極を備える陽極室と、陰極を備える陰極室との間に、複数枚の陽イオン交換膜と陰イオン交換膜とを交互に配列して構成した電気透析槽内に、陽極側が陰イオン交換膜で区画され、陰極側が陽イオン交換膜で区画された希釈室と、陰極側が陰イオン交換膜で区画され、陽極側が陽イオン交換膜で区画された濃縮室を交互に形成した電気透析装置の希釈室に、イオン交換体を含む充填を充填する方法であって、
イオン交換体を含む充填材を、その使用状態よりもみかけの体積が収縮した状態で希釈室内に収納し、かつ、濃縮室内に実質的に変形しない透水性の材料を充填し、使用環境における上記充填材の体積膨張に伴う寸法変化を、希釈室を構成する陰イオン交換膜および陽イオン交換膜によって機械的に制限し、上記充填材と希釈室を構成する各イオン交換膜との間に発生する圧力を0.1〜20kgw/cmの範囲で増大させることを特徴とするイオン交換体を含む充填材の充填方法を提供する。
【0008】
充填材とは、希釈室中に配置されて希釈室中の液体とのイオン交換作用を発現する材料である。充填材は、イオン交換体のみからなるものだけでなく、イオン交換体以外の材料を含むこともできる。充填材は、互いに分離した材料の集積体であっても成形体であってもよい。互いに分離した材料の集積体というのは、たとえばイオン交換樹脂の粒子の集積体を指し、それぞれの材料は粒状物だけでなく繊維状や比較的大きなブロック状のものも含む。成形体とは、連続した材料からなるものをいう。
【0009】
本発明では、充填材はその状態を変化させ希釈室中に充填される。以下、本明細書においては充填材の状態を次のような用語で説明することにする。「使用状態」とは、充填材を希釈室中で実際に使用しているときの状態であり、使用時の環境と平衡になった状態をいう。「収縮状態」とは、何らかの方法で充填材のみかけの体積を収縮させた状態をいう。「自由状態」とは、使用する環境と平衡な状態であるが、希釈室を構成する陰イオン交換膜および陽イオン交換膜による拘束のない状態をいう。
【0010】
【発明の実施の形態】
充填材が集積体である場合、個々の材料の形状としては特に限定されないが、球状、ペレット状、繊維状、プレート状、シート状などの形状が採用できる。これらの形状は、1種単独でもよく、2種以上を組み合わせて用いてもよい。大きさについても特に制限はなく、種々の大きさのものを採用できる。
【0011】
充填材が成形体である場合、液体の液流れ方向に関するショートパス形成の防止だけでなく、装置組立手段の簡便化にも寄与できるので好ましい。成形体は、イオン交換体粒子をバインダを用いて多孔質状に結合成形したものが好ましい。イオン交換体粒子としては充填材が集積体である場合と同様なものを使用でき、特に球状またはペレット状のイオン交換体が好ましい。
【0012】
バインダの使用量は、イオン交換体の0.1〜20重量%、特に1〜5重量%とすることが、加工性や取り扱い性の向上の理由により望ましい。バインダとしては、種々の有機高分子化合物を好適に使用できる。特に、ポリオレフィン系、好ましくはポリエチレン系またはポリプロピレン系を使用することが、イオン交換体との混練の際の温度を150℃以下とすることができ、かつ機械的強度上の理由から好ましい。
【0013】
イオン交換体としては、各種の有機イオン交換体または無機イオン交換体をそれぞれ単独でまたは2種以上混合して使用できる。有機イオン交換体として、スチレン−ジビニルベンゼン共重合体、アクリレート系重合体などの有機高分子にイオン交換基を導入したイオン交換樹脂が挙げられる。無機イオン交換体として、ゼオライトが挙げられる。
【0014】
充填材を「収縮状態」にする方法は、充填材の特性に応じて選択する必要があるが、イオン交換体として通常のイオン交換樹脂を用いる場合、イオン交換樹脂は含水率が大きくなるにしたがい体積が増大するので、含水率を減少させることによって「収縮状態」にするのが好ましい。充填材の含水率として、1重量%以上、特には10重量%以上低減させることで、体積を収縮させるのが好ましい。あらかじめ「使用状態」または「自由状態」に近いものから脱水して「収縮状態」にする場合だけでなく、製造の際に「使用状態」より少ない含水率のものとして得られる場合も含む。体積の変化するものであれば含水率以外の物性、たとえば温度などを制御することにより「収縮状態」にすることもできる。
【0015】
含水率を低下させる、すなわち乾燥させる手段としては、加熱乾燥が好ましい。イオン交換体としてイオン交換樹脂を用いる場合は、劣化を防ぐため、温度120℃以下、特には95℃以下、さらには30〜60℃の範囲で加熱乾燥するのが好ましい。さらに時間を短縮または含水率変化を大きくする理由のため、大気圧以下の圧力下で減圧乾燥する方法が利用できる。また、同様にイオン交換体の含水率を低減させる方法として、充填材のまわりの液の濃度、組成、種類を変える方法や、イオン交換体の対イオンを変化させる方法も利用できる。
【0016】
充填材は希釈室内に収納された後、たとえば液体に浸漬されると徐々に膨張し「使用状態」になる。本発明においては、充填材は希釈室を構成する陰イオン交換膜および陽イオン交換膜によって膨張が制限されるため「使用状態」は「自由状態」より体積が小さくなる。これにより、充填材と希釈室を構成する各イオン交換膜の間に圧力が発生する。
【0017】
充填材と希釈室を構成する各イオン交換膜との間に発生する圧力は、0.1kgw/cm2 以上とする。圧力が0.1kgw/cm2 未満の場合は、本発明の効果が充分に発現せず、充填材と希釈室を構成する各イオン交換膜の隙間にショートパスが形成され、そこを被処理流体が流れてしまい充填材のイオン交換能が有効に発現しないおそれがあり、好ましくない。圧力が0.5kgw/cm2 以上である場合は特に好ましい。圧力が大きくなるほど、ショートパスを抑制する効果は大きいが、希釈室の強度や充填材自体の強度の関係から実際上20kgw/cm2 以下とし、特に10kgw/cm2 以下とするのが好ましい。イオン交換膜のように比較的強度の低いものが希釈室を構成する場合は、イオン交換膜の破損を防ぐ理由で0.1〜3kgw/cm2 程度が好ましい。
【0018】
充填材と希釈室を構成する各イオン交換膜との間に発生する圧力は、「自由状態」と「使用状態」での充填材の大きさの差異および充填材の弾性的性質によって決定される。イオン交換体としてイオン交換樹脂を用いる場合には、「自由状態」の体積を基準としたときの「使用状態」の体積は30〜97%であることが好ましい。特に好ましい範囲は50〜95%である。
【0019】
「収縮状態」の充填材の体積が「使用状態」の体積を基準として30〜99%である場合は、体積の膨張した時点で発生する希釈室内の圧力を、ある程度の精度で制御できるという点で望ましい。より好ましい範囲は50〜95%である。
【0020】
「収縮状態」の充填材の体積は、「自由状態」の体積を基準として20〜95%であることが好ましい。より好ましい範囲は40〜90%である。「収縮状態」から「自由状態」に膨張する際に等方的に膨張する場合、「収縮状態」の充填材の寸法は、「自由状態」の寸法を基準として50〜98%が好ましい。より好ましい範囲は70〜97%である。
【0021】
充填材は、希釈室内に格納した状態で透水性である必要がある。好ましくは、水透過性が100kg・cm・kgw-1・h-1以上であることが好ましい。100kg・cm・kgw-1・h-1より小さいと、流路中に充填材を配置して用いる場合の流路抵抗が大きくなり、処理量が減少するか、または運転に高い圧力が必要となるので好ましくない。水透過性が500kg・cm・kgw-1・h-1以上である場合は特に好ましい。
【0022】
水透過性は、互いに平行な2つの底面を有する柱状体(たとえば角柱または円柱)の試料を作製し、側面から水が漏れ出ないようにして一方の底面からP(kgw/cm2 )の圧力で水を導入し、他方の底面から流出する水の質量を測定して求める。このとき底面の面積をA(cm2 )、柱状体の高さ、すなわち底面間の間隔をL(cm)、1時間あたりの水の透過量をW(kg/h)としたとき、水透過性はWL/PA(kg・cm・kgw-1・h-1)で表される。A、L、Pは任意に定めうるが、Aは1〜1000cm2 程度、Lは1〜100cm程度、Pは0.1〜1kgw/cm2 程度が好ましい。
【0023】
「使用状態」の充填材の空隙率は1〜40容量%が好ましく、希釈室内での液流れ方向に対するショートパスを回避して効率的なイオン交換を行い、かつ希釈室内の圧力損失を低くするためには、5〜30容量%が好ましい。
【0024】
イオン交換体としてイオン交換樹脂を使用する場合、希釈室内での充填密度は0.2〜2.0g乾燥樹脂/cm3 であると、希釈室内での液流れ方向に対するショートパスを回避して効率的なイオン交換を行い、かつ希釈室内の圧力損失を低くすることができるので好ましい。イオン交換樹脂の充填密度が0.5〜1.5g乾燥樹脂/cm3 である場合はさらに好ましい。
【0025】
充填材が成形体である場合、その形状は希釈室の形状に対応して種々の形状が利用できる。充填材の形状が、希釈室の形状と相似形またはそれに近い形状である場合は、充填材と希釈室を構成する各イオン交換膜の各部との間に発生する圧力を均一にできる。たとえば直方体状の希釈室には、イオン交換体も直方体であってかつ各辺の長さも直方体状希釈室の各辺の長さの比と同じか、それに近い形状であれば各面で発生する圧力が等しくなり、充填材の変形も等方的になる。形状が希釈室の形状と大きく異なる場合は、イオン交換体内部の歪が大きくなって、各部に発生する圧力に不均一が生じるなとの不都合がある。ただし、希釈室の強度や希釈室を構成する各イオン交換膜で発生させる圧力を制御するために、意図的に異形のものを使用することもできる。イオン交換体自体の膨張に異方性のある場合も同様である。
【0026】
充填材が成形体である場合、希釈室内に1つの連続した充填材を配置することは、ショートパスを防ぐ意味で好ましいが、適宜分割して配置してもよい。また、全体が均一な充填材である必要はなく、たとえば、イオン交換体として陰イオン交換体のみを含む部分と、イオン交換体として陽イオン交換体のみを含む部分が、モザイク状に配置されているものでもよい。陰イオン交換基のみを含む多孔質体と、陽イオン交換基のみを含む充填材を適宜分割して配置してもよい。
【0027】
希釈室は、単独でもよく、連通管または共通ダクトによってその一部を共有している形式でもよい。希釈室を構成する壁はイオン交換膜であり、選択性のある隔膜であ
【0028】
本発明において、希釈室は、イオン交換膜を用いた電気透析装置の希釈室である。電気透析装置は、陽極を備える陽極室と、陰極を備える陰極室との間に、複数枚の陽イオン交換膜と陰イオン交換膜とを交互に配列して構成した電気透析槽内に、陽極側が陰イオン交換膜で区画され、陰極側が陽イオン交換膜で区画された希釈室と、陰極側が陰イオン交換膜で区画され、陽極側が陽イオン交換膜で区画された濃縮室を交互に形成した形式である
【0029】
希釈室は、充填材の膨張を抑制して圧力を発生させるために容易に変形しないものである必要がある。希釈室を区画する壁がイオン交換膜のような場合、それ自体に充分な剛性および強度を付与するのが困難であるので、たとえば充填材を希釈室に配置する場合、濃縮室側から充分な圧力を発生させるために、濃縮室内にも実質的に変形しない透水性の材料を充填するなどの手段をとる必要がある。
【0030】
【実施例】
[充填材の製造]
平均直径500μmの球状陽イオン交換樹脂(三菱化学製、商品名ダイヤイオンSK1B)および平均直径500μmの球状陰イオン交換樹脂(三菱化学製、商品名ダイヤイオンSA10A)を体積比50/50で混合し、50℃にて乾燥した。乾燥により、もとの重量の55重量%まで減量した。これにバインダとして直径2〜6mm、長さ4〜9mmのペレット状のポリオレフィン系樹脂(ポリオレフィンプラストマー)を、バインダとイオン交換樹脂の合計量に対してバインダ量が表1に示す量になるように加え、ニーダーにて140℃で40分混練した。この混練物を、開口面が250mm×150mmの直方体の金属製の型に入れ、120℃×25kgw/cm2 の条件にてプレスすることによって直方体の多孔質成形体を得た。
【0031】
このとき金型に充填する量を変えることにより、各混合比の混練物から表1に示すように、それぞれ厚さ6.7mm、7mm、7.5mmの成形体を得た。成形体の幅と長さを、長さ:幅:厚さの比が140:100:8になるように、厚さに応じて切断して、充填材1〜9を得た。これらの充填材は、室温中純水に8時間浸漬すると、長さ・幅・厚み方向にほぼ同じ割合で膨張し、平衡に達した。元の長さに対する長さの増加量を膨張率として表1に示す。
【0032】
【表1】

Figure 0003760501
【0033】
[膨張圧力の測定]
図1に示すような直方体の金属容器11(底面幅100mm、底面長さ140mmの)中に、乾燥状態にある充填材13(この13は図1中の符号である)を入れ、金属板12をその上に置いて、充填材13が膨張して厚さが8mmになったときにロードセル14の先端が金属板12に接するようにロードセルの位置を設定する。すなわち、充填材13が乾燥状態のとき、ロードセル14の先端と金属板12の間隙aと充填材13の厚さbの和が8mmになるよう設定する。次に、水注入口5から水を注入し、水の吸収が平衡となったときにロードセル14にかかる荷重から、充填材13と金属板12の間の圧力を求めた。次に、自由状態に対する使用状態の体積比=(使用状態体積/自由状態体積)×100%を求めた。これらの結果を表2に示す。この結果を用いれば、長さ・幅・厚み方向のサイズを調整することで、適当な容器内圧力を選択できる。
【0034】
【表2】
Figure 0003760501
【0035】
[電気透析による評価]
充填材1〜9を、図2に示す構成の電気透析槽の希釈室27に入れ、規定寸法まで締め付けた。希釈室27の形状は直方体で、水流方向の長さが140mm、幅が100mm、陰陽イオン交換膜の間隔は8mmである。2つの濃縮室26には、それぞれポリプロピレン製のスペーサーネットを充填して、希釈室27内の充填材が膨張した場合にも陰陽イオン交換膜の間隔が実質的に変化しないようにした。したがって、この希釈室内においても各充填材は表2に示したのと同じ圧力を発生する。また、比較のため充填材10として、充填材1〜9と同様に作成したバインダ量が2重量%で、111mm×79.4mm×6.3mmの成形体を、水を充分吸収させて希釈室27と同一の寸法にしたものを充填した。
【0036】
その後、希釈室に導電率が約10μS/cmの純水を0.18リットル/h、濃縮室に導電率が約1mS/cmの水を20リットル/h、陽極室および陰極室に導電率が約200μS/cmの水を1リットル/hずつ1時間流通させながら、同条件にて1.0Aの電流を通電した。40時間連続して運転し、安定したところで、希釈室の流速を28.8リットル/hとし、電気透析槽の希釈室上端部および下端部における圧力損失、希釈室から排出される脱イオン水の電気電導度、希釈室の比抵抗を測定した。結果を表3に示す。
【0037】
【表3】
Figure 0003760501
【0038】
充填材1〜9では高純度の脱イオン水を安定して得ることができ、かつ電気抵抗も低かった。また、図2に示した圧力の高い充填材ほど特性が良好となる傾向がみられる。これに対し、充填材10では、希釈水の純度は高くなかった。圧力損失の測定から、希釈室の入口から出口に向かって、イオン交換体と室枠間あるいはイオン交換体とイオン交換膜間に、隙間が生じたことが原因と思われる。
【0039】
充填材1〜9では、ショートパスが実質的に生じていないと考えられるので、上記の圧力損失から充填材の水透過性を計算する表4のとおりとなる。充填材10は、同様に水透過性を計算すると著しく高い値となるが、これはショートパスを通じて多量の水が流れているためで、充填材の水透過性の値ではない。
【0040】
【表4】
Figure 0003760501
【0041】
【発明の効果】
本発明の充填方法により、希釈室の入口から出口への供給水がショートパスする可能性のある空間の発生を防ぎ、複数の中空部に同時に均一量のイオン交換体を含む充填材を確実に収納し、イオン交換体を含む充填材の充填密度を高くし、かつ、イオン交換体を含む充填材を短時間で充填できる。
【図面の簡単な説明】
【図1】充填材と容器壁の間の圧力の測定方法を示す説明図
【図2】実施例で用いた電気透析槽の構成を示す説明図
【符号の説明】
11:金属容器
12:金属板
13:充填材
14:ロードセル
15:水注入口
21:陰極
22:陽極
23:陰極室
24:陽極室
25:陽イオン交換膜
26:濃縮室
27:希釈室
28:陰イオン交換膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for filling a filler comprising electrical dialysis cell ion exchanger in the desalting compartment (dilution chamber) desalting compartment by placing the ion exchanger is continuously performed deionized the apparatus About.
[0002]
[Prior art]
Conventionally, as an apparatus for producing ultrapure water, an electrodialysis tank having an ion exchanger in a dilution chamber has been proposed in Japanese Patent Publication No. 4-72567, US Pat. No. 4,632,745, and the like. These filled ion exchangers are required to be uniformly filled in each room and not to create a space in which the liquid flow short-passes. However, it is generally difficult to fill the ion exchanger uniformly and without gaps in a plurality of dilution chambers in the electrodialysis tank.
[0003]
For example, as a method for filling each dilution chamber of a bead-shaped ion exchanger used in an electrodialysis tank (EDI) for producing ultrapure water, a method of filling each pair before or during assembly of the battery tank, and supply of liquid after assembly Generally, a method of filling from a common duct for filling and an exclusive nozzle for filling an ion exchanger is known.
[0004]
However, in the method of filling each pair, there is a problem that the structure of the chamber frame becomes complicated due to unitization, and the assembly takes time when the number of pairs of battery cases increases. On the other hand, in the method of filling from a common duct or a dedicated nozzle for ion exchanger filling, the supply time to each room is shortened, but not only the structure of the room frame is complicated, but also the ion exchanger to each room. There is a problem that it is difficult to control the degree of filling and it is difficult to confirm the filling amount.
[0005]
Furthermore, since the upper limit of the amount of ion exchangers that can be filled is at most about the normal close-packing (space ratio = 0.636) or less, it is necessary to select a downward flow in order to prevent a short path of the liquid. I don't get it. For this reason, countermeasures for degassing the dilution chamber system and countermeasures for holding liquid at the time of stopping are necessary.
[0006]
[Problems to be solved by the invention]
The present invention prevents the occurrence of a short path from the entrance to the exit of the dilution chamber , and enables a uniform amount of ion exchanger to be securely stored in a plurality of hollow portions at the same time. The purpose is to fill the body with a high packing density.
[0007]
[Means for Solving the Problems]
The present invention provides an electrodialysis tank in which a plurality of cation exchange membranes and anion exchange membranes are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode. A diluting chamber partitioned by an anion exchange membrane, the cathode side partitioned by a cation exchange membrane, and an enrichment chamber partitioned alternately by an anion exchange membrane on the cathode side and partitioned by a cation exchange membrane on the cathode side the dilution chamber of the dialyzer, a method of filling a filler comprising an ion exchanger,
The filler containing the ion exchanger is stored in the dilution chamber in a state in which the apparent volume is contracted compared to the usage state, and the concentration chamber is filled with a water-permeable material that does not substantially deform, and the above in the use environment. The dimensional change accompanying the volume expansion of the filler is mechanically limited by the anion exchange membrane and cation exchange membrane constituting the dilution chamber, and is generated between the filler and each ion exchange membrane constituting the dilution chamber. A method for filling a filler containing an ion exchanger, characterized in that the pressure to be increased in the range of 0.1 to 20 kgw / cm 2 is provided.
[0008]
And the filler is a material which exhibits an ion exchange action of the liquid in the dilution chamber is disposed in the dilution chamber. The filler can include not only an ion exchanger but also a material other than the ion exchanger. The filler may be an aggregate of materials separated from each other or a molded body. The aggregate of materials separated from each other refers to, for example, an aggregate of ion exchange resin particles, and each material includes not only particles but also fibers and relatively large blocks. The molded body refers to a material made of a continuous material.
[0009]
In the present invention, the filling material changes its state and is filled into the dilution chamber . Hereinafter, in this specification, the state of the filler will be described using the following terms. The “use state” is a state when the filler is actually used in the dilution chamber , and means a state that is in equilibrium with the environment during use. “Shrinked state” refers to a state in which the apparent volume of the filler is shrunk by some method. The “free state” means a state that is in equilibrium with the environment in which it is used, but is not constrained by the anion exchange membrane and cation exchange membrane constituting the dilution chamber .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
When the filler is an aggregate, the shape of each material is not particularly limited, but shapes such as a spherical shape, a pellet shape, a fiber shape, a plate shape, and a sheet shape can be employed. These shapes may be used alone or in combination of two or more. There is no restriction | limiting in particular also about a magnitude | size, The thing of various magnitude | sizes is employable.
[0011]
When the filler is a molded body, it is preferable because it can contribute not only to prevention of short path formation in the liquid flow direction but also to simplification of the apparatus assembly means. The molded body is preferably one in which ion exchanger particles are bonded and molded into a porous shape using a binder. As the ion exchanger particles, particles similar to those used when the filler is an aggregate can be used, and spherical or pellet ion exchangers are particularly preferable.
[0012]
The amount of the binder used is preferably 0.1 to 20% by weight, particularly 1 to 5% by weight of the ion exchanger, for reasons of improving workability and handleability. As the binder, various organic polymer compounds can be suitably used. In particular, it is preferable to use a polyolefin, preferably polyethylene or polypropylene, because the temperature at the time of kneading with the ion exchanger can be 150 ° C. or less, and for reasons of mechanical strength.
[0013]
As the ion exchanger, various organic ion exchangers or inorganic ion exchangers can be used alone or in admixture of two or more. Examples of the organic ion exchanger include an ion exchange resin in which an ion exchange group is introduced into an organic polymer such as a styrene-divinylbenzene copolymer and an acrylate polymer. An example of the inorganic ion exchanger is zeolite.
[0014]
The method for bringing the filler into a “shrinked state” needs to be selected according to the characteristics of the filler. However, when a normal ion exchange resin is used as the ion exchanger, the ion exchange resin has a higher moisture content. Since the volume increases, it is preferable to “shrink” by reducing the moisture content. It is preferable to reduce the volume by reducing the water content of the filler by 1% by weight or more, particularly 10% by weight or more. This includes not only the case of dehydrating from the “nearly used” or “free state” in advance to the “shrinked state”, but also the case where the water content is less than the “used state” at the time of production. As long as the volume changes, the “contracted state” can be obtained by controlling physical properties other than the water content, such as temperature.
[0015]
As a means for reducing the moisture content, ie, drying, heat drying is preferable. When an ion exchange resin is used as the ion exchanger, it is preferably heat-dried at a temperature of 120 ° C. or lower, particularly 95 ° C. or lower, more preferably 30 to 60 ° C., in order to prevent deterioration. Furthermore, for the reason of shortening the time or increasing the moisture content change, a method of drying under reduced pressure under a pressure below atmospheric pressure can be used. Similarly, as a method of reducing the moisture content of the ion exchanger, a method of changing the concentration, composition, and type of the liquid around the filler and a method of changing the counter ion of the ion exchanger can be used.
[0016]
After the filler is contained in the dilution chamber, for example gradually expands when it is immersed in the liquid becomes the "use status". In the present invention, since the expansion of the filler is limited by the anion exchange membrane and the cation exchange membrane constituting the dilution chamber, the volume of the “use state” is smaller than the “free state”. Thereby, a pressure is generated between the ion exchange membranes constituting the filler and the dilution chamber .
[0017]
The pressure generated between each ion-exchange membrane constituting the dilute chamber and the filler shall be 0.1kgw / cm 2 or more. When the pressure is less than 0.1 kgw / cm 2 , the effect of the present invention is not sufficiently exerted, and a short path is formed in the gap between each of the ion exchange membranes constituting the filler and the dilution chamber. Is not preferable since the ion exchange capacity of the filler may not be effectively expressed. It is particularly preferable when the pressure is 0.5 kgw / cm 2 or more. The greater the pressure, but the effect of suppressing the short-path is large, and the relationship between the intensity of the strength and the filling material itself of the dilution chamber and practice 20kgw / cm 2 or less, particularly preferably with 10kgw / cm 2 or less. Ion-If those having a relatively low intensity as exchange membrane constituting the dilute chamber is about 0.1~3kgw / cm 2 for reasons of preventing damage to the ion exchange membrane is preferred.
[0018]
The pressure generated between the filler and each ion exchange membrane constituting the dilution chamber is determined by the difference in the size of the filler between the “free state” and the “use state” and the elastic properties of the filler. . When an ion exchange resin is used as the ion exchanger, the volume of the “use state” is preferably 30 to 97% based on the volume of the “free state”. A particularly preferred range is 50 to 95%.
[0019]
When the volume of the filler of "contracted state" is 30 to 99% based on the volume of the "use state" is the pressure in the dilution chamber occurring at the time of the expansion of the volume that can be controlled with some precision Desirable in terms. A more preferable range is 50 to 95%.
[0020]
The volume of the filler in the “shrinked state” is preferably 20 to 95% based on the volume in the “free state”. A more preferable range is 40 to 90%. In the case of expanding isotropically when expanding from the “shrinked state” to the “free state”, the size of the filler in the “shrinked state” is preferably 50 to 98% based on the size of the “free state”. A more preferable range is 70 to 97%.
[0021]
Filler must be permeable in a state stored in the dilution chamber. The water permeability is preferably 100 kg · cm · kgw −1 · h −1 or more. If it is smaller than 100 kg · cm · kgw −1 · h −1 , the flow resistance when a filler is placed in the flow path is increased, the processing amount is reduced, or high pressure is required for operation. This is not preferable. It is particularly preferable when the water permeability is 500 kg · cm · kgw −1 · h −1 or more.
[0022]
For water permeability, a sample of a columnar body (for example, a prism or a cylinder) having two bottom surfaces parallel to each other is prepared, and P (kgw / cm 2 ) pressure is applied from one bottom surface so that water does not leak from the side surface. Introduce water and measure the mass of water flowing out from the other bottom surface. At this time, assuming that the area of the bottom surface is A (cm 2 ), the height of the columnar body, that is, the distance between the bottom surfaces is L (cm), and the permeation amount of water per hour is W (kg / h) Sex is expressed by WL / PA (kg · cm · kgw −1 · h −1 ). A, L, although P can arbitrarily determined, A is about 2 1~1000cm, L is about 1 to 100 cm, P is preferably about 0.1~1kgw / cm 2.
[0023]
The porosity of the filler "used state" is preferably 1 to 40% by volume, with efficient ion exchange by avoiding short pass for the liquid flow direction in the dilution chamber, and the pressure loss in the diluting chamber In order to make it low, 5-30 volume% is preferable.
[0024]
When using an ion exchange resin as an ion exchanger, packing density in the dilution chamber If it is 0.2~2.0g dry resin / cm 3, to avoid short-path to the liquid flow direction in the dilution chamber with efficient ion exchange Te, and it is possible to reduce the pressure loss in the dilution chamber preferable. More preferably, the packing density of the ion exchange resin is 0.5 to 1.5 g dry resin / cm 3 .
[0025]
If filler is molded bodies, the shape can be used the shape of the seed corresponding to the shape of the dilution chamber s is. The shape of the filler, if a shape close to a shape similar to or the shape of the dilution chamber can uniformly the pressure generated between the respective portions of each ion-exchange membrane constituting the dilute chamber and the filler. For example, in a rectangular parallelepiped dilution chamber , if the ion exchanger is also a rectangular parallelepiped and the length of each side is the same as or close to the ratio of the lengths of each side of the rectangular parallelepiped dilution chamber , it occurs on each surface. The pressure is equal and the deformation of the filler is isotropic. When the shape is significantly different from the shape of the dilution chamber, there is an inconvenience that the distortion inside the ion exchanger increases and the pressure generated in each part is not uniform. However, the strength of and the dilution chamber, for controlling the pressure to be generated in the ion-exchange membrane constituting the dilute chamber, it is also possible to intentionally use a profiled. The same applies to the case where the expansion of the ion exchanger itself is anisotropic.
[0026]
If filler is molded bodies, placing one continuous filler in the dilution chamber are preferably in the sense of preventing the short pass may be arranged appropriately divided and. Moreover, the whole need not be a uniform filler. For example, a portion including only an anion exchanger as an ion exchanger and a portion including only a cation exchanger as an ion exchanger are arranged in a mosaic pattern. It may be what you have. A porous body containing only an anion exchange group and a filler containing only a cation exchange group may be appropriately divided and arranged.
[0027]
The dilution chamber may be a single dilution chamber , or a part of the dilution chamber may be shared by a communication pipe or a common duct. Wall constituting the dilute chamber is an ion exchange membrane, Ru diaphragm der having selectivity.
[0028]
In the present invention, the dilution chamber, Ru dilution chamber der electrodialysis apparatus using an ion-exchange membrane. Electrodialysis equipment comprises an anode compartment comprising an anode, between the cathode chamber comprising a cathode, a plurality of cation exchange membranes and anion exchange membranes and constructed by arranging alternately electrodialysis tank, Dilution chamber with the anode side partitioned by anion exchange membrane, cathode side partitioned by cation exchange membrane, and concentration chamber partitioned by cathode anion exchange membrane and anode side partitioned by cation exchange membrane are alternately formed is the format.
[0029]
The dilution chamber needs to be not easily deformed in order to suppress the expansion of the filler and generate pressure. When the wall that defines the dilution chamber is an ion exchange membrane, it is difficult to impart sufficient rigidity and strength to the wall itself. For example, when a filler is placed in the dilution chamber, it is sufficient from the concentration chamber side. In order to generate the pressure, it is necessary to take measures such as filling the concentration chamber with a water-permeable material that does not substantially deform.
[0030]
【Example】
[Manufacture of fillers]
A spherical cation exchange resin having an average diameter of 500 μm (trade name: Diaion SK1B, manufactured by Mitsubishi Chemical) and a spherical anion exchange resin having an average diameter of 500 μm (trade name, made by Mitsubishi Chemical, trade name: Diaion SA10A) were mixed at a volume ratio of 50/50. And dried at 50 ° C. The weight was reduced to 55% by weight by drying. As a binder, a pellet-shaped polyolefin resin (polyolefin plastomer) having a diameter of 2 to 6 mm and a length of 4 to 9 mm is used, so that the amount of the binder is as shown in Table 1 with respect to the total amount of the binder and the ion exchange resin. In addition, the mixture was kneaded at 140 ° C. for 40 minutes with a kneader. The kneaded product was placed in a rectangular metal mold having an opening surface of 250 mm × 150 mm, and pressed under the conditions of 120 ° C. × 25 kgw / cm 2 to obtain a rectangular porous molded body.
[0031]
At this time, as shown in Table 1, molded bodies having thicknesses of 6.7 mm, 7 mm, and 7.5 mm were obtained from the kneaded materials having respective mixing ratios by changing the amount filled in the mold. The widths and lengths of the molded bodies were cut according to the thickness so that the ratio of length: width: thickness was 140: 100: 8 to obtain fillers 1-9. When these fillers were immersed in pure water at room temperature for 8 hours, they expanded at substantially the same rate in the length, width, and thickness directions and reached equilibrium. The amount of increase in length relative to the original length is shown in Table 1 as the expansion rate.
[0032]
[Table 1]
Figure 0003760501
[0033]
[Measurement of expansion pressure]
In a rectangular parallelepiped metal container 11 (having a bottom surface width of 100 mm and a bottom surface length of 140 mm) as shown in FIG. 1, a filler 13 in a dry state (this 13 is a symbol in FIG. 1) is placed. And the position of the load cell is set so that the tip of the load cell 14 contacts the metal plate 12 when the filler 13 expands to a thickness of 8 mm. That is, when the filler 13 is in a dry state, the sum of the gap a between the tip of the load cell 14 and the metal plate 12 and the thickness b of the filler 13 is set to 8 mm. Next, water was injected from the water injection port 5, and the pressure between the filler 13 and the metal plate 12 was obtained from the load applied to the load cell 14 when the water absorption reached equilibrium. Next, the volume ratio of the used state to the free state = (used state volume / free state volume) × 100% was determined. These results are shown in Table 2. If this result is used, an appropriate pressure in the container can be selected by adjusting the size in the length, width, and thickness direction.
[0034]
[Table 2]
Figure 0003760501
[0035]
[Evaluation by electrodialysis]
The fillers 1 to 9 were put in the dilution chamber 27 of the electrodialysis tank having the configuration shown in FIG. The shape of the dilution chamber 27 is a rectangular parallelepiped, the length in the water flow direction is 140 mm, the width is 100 mm, and the interval between the anion and cation exchange membranes is 8 mm. The two concentrating chambers 26 were each filled with a spacer net made of polypropylene so that the space between the anion and cation exchange membranes was not substantially changed even when the filler in the dilution chamber 27 expanded. Therefore, each filler generates the same pressure as shown in Table 2 even in this dilution chamber. In addition, as a filler 10 for comparison, a molded body of 111 mm × 79.4 mm × 6.3 mm having a binder amount of 2% by weight prepared in the same manner as the fillers 1 to 9 is sufficiently absorbed in the dilution chamber. The same size as 27 was filled.
[0036]
After that, pure water having a conductivity of about 10 μS / cm is 0.18 liter / h in the dilution chamber, water having a conductivity of about 1 mS / cm is 20 liter / h in the concentration chamber, and the conductivity is in the anode chamber and the cathode chamber. A current of 1.0 A was applied under the same conditions while flowing about 200 μS / cm of water at 1 liter / h for 1 hour. When it has been operated continuously for 40 hours and stabilized, the flow rate of the dilution chamber is set to 28.8 liter / h, pressure loss at the upper and lower ends of the dilution chamber of the electrodialysis tank, and deionized water discharged from the dilution chamber. The electric conductivity and the specific resistance of the dilution chamber were measured. The results are shown in Table 3.
[0037]
[Table 3]
Figure 0003760501
[0038]
In the fillers 1 to 9, high-purity deionized water could be stably obtained, and the electrical resistance was low. Moreover, the tendency for a characteristic to become favorable is seen, so that the filler with a high pressure shown in FIG. On the other hand, in the filler 10, the purity of the dilution water was not high. From the measurement of the pressure loss, it is considered that a gap is formed between the ion exchanger and the chamber frame or between the ion exchanger and the ion exchange membrane from the inlet to the outlet of the dilution chamber.
[0039]
In the fillers 1 to 9, since it is considered that a short path does not substantially occur, the water permeability of the filler is calculated from the above pressure loss as shown in Table 4. Similarly, the water permeability of the filler 10 is remarkably high when the water permeability is calculated. This is because a large amount of water flows through the short path, and is not the value of the water permeability of the filler.
[0040]
[Table 4]
Figure 0003760501
[0041]
【The invention's effect】
By the filling method of the present invention, it is possible to prevent the generation of a space in which the supply water from the inlet to the outlet of the dilution chamber may short-pass, and to ensure a filler containing a uniform amount of ion exchangers in a plurality of hollow portions at the same time. It can be accommodated, the packing density of the filler containing the ion exchanger can be increased, and the filler containing the ion exchanger can be filled in a short time.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a method for measuring a pressure between a filler and a container wall. FIG. 2 is an explanatory diagram showing a configuration of an electrodialysis tank used in the examples.
11: Metal container 12: Metal plate 13: Filler 14: Load cell 15: Water injection port 21: Cathode 22: Anode 23: Cathode chamber 24: Anode chamber 25: Cation exchange membrane 26: Concentration chamber 27: Dilution chamber 28: Anion exchange membrane

Claims (4)

陽極を備える陽極室と、陰極を備える陰極室との間に、複数枚の陽イオン交換膜と陰イオン交換膜とを交互に配列して構成した電気透析槽内に、陽極側が陰イオン交換膜で区画され、陰極側が陽イオン交換膜で区画された希釈室と、陰極側が陰イオン交換膜で区画され、陽極側が陽イオン交換膜で区画された濃縮室を交互に形成した電気透析装置の希釈室に、イオン交換体を含む充填を充填する方法であって、
イオン交換体を含む充填材を、その使用状態よりもみかけの体積が収縮した状態で希釈室内に収納し、かつ、濃縮室内に実質的に変形しない透水性の材料を充填し、使用環境における上記充填材の体積膨張に伴う寸法変化を、希釈室を構成する陰イオン交換膜および陽イオン交換膜によって機械的に制限し、上記充填材と希釈室を構成する各イオン交換膜との間に発生する圧力を0.1〜20kgw/cmの範囲で増大させることを特徴とするイオン交換体を含む充填材の充填方法。
In an electrodialysis tank constructed by alternately arranging a plurality of cation exchange membranes and anion exchange membranes between an anode chamber having an anode and a cathode chamber having a cathode, the anode side is an anion exchange membrane. Dilution of an electrodialyzer that is alternately formed with a dilution chamber partitioned by a cation exchange membrane on the cathode side and a concentration chamber partitioned by an anion exchange membrane on the cathode side and partitioned by a cation exchange membrane on the cathode side the chamber, a method of filling a filler comprising an ion exchanger,
The filler containing the ion exchanger is stored in the dilution chamber in a state in which the apparent volume is contracted compared to the usage state, and the concentration chamber is filled with a water-permeable material that does not substantially deform, and the above in the use environment. The dimensional change accompanying the volume expansion of the filler is mechanically limited by the anion exchange membrane and cation exchange membrane constituting the dilution chamber, and is generated between the filler and each ion exchange membrane constituting the dilution chamber. The method of filling a filler containing an ion exchanger, wherein the pressure to be increased is in the range of 0.1 to 20 kgw / cm 2 .
体積収縮の手段が乾燥である請求項1記載のイオン交換体を含む充填材の充填方法。Filling method of the filler means a volume shrinkage comprises an ion exchanger of claim 1 wherein the Drying. 使用状態の充填材の体積が、自由に体積膨張させた場合の体積の30〜97%である請求項1または2記載のイオン交換体を含む充填材の充填方法。The volume of filler used state, filling method of filling material freely including an ion exchanger according to claim 1 or 2, wherein a 30 to 97% of the volume when allowed to volume expansion. 体積膨張させた状態における充填材の空隙率が、1〜40容量%である請求項1、2または3記載のイオン交換体を含む充填材の充填方法。The method for filling a filler containing an ion exchanger according to claim 1 , 2 or 3, wherein a porosity of the filler in a volume expanded state is 1 to 40% by volume.
JP06478396A 1996-03-21 1996-03-21 Method for filling a filler containing an ion exchanger Expired - Lifetime JP3760501B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP06478396A JP3760501B2 (en) 1996-03-21 1996-03-21 Method for filling a filler containing an ion exchanger
AT97907381T ATE227162T1 (en) 1996-03-21 1997-03-19 METHOD AND APPARATUS FOR PRODUCING DEIONIZED WATER
DE69716852T DE69716852T2 (en) 1996-03-21 1997-03-19 METHOD AND DEVICE FOR PRODUCING DEIONIZED WATER
US08/952,218 US5961805A (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
CA002221709A CA2221709C (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
KR1019970708217A KR100441461B1 (en) 1996-03-21 1997-03-19 Method and Apparatus for Producing Deionized Water
EP97907381A EP0837729B1 (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
TW086103470A TW426644B (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
PCT/JP1997/000896 WO1997034696A1 (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
AU19433/97A AU1943397A (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
CN97190214A CN1080594C (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
MYPI97001177A MY125056A (en) 1996-03-21 1997-03-20 Method and apparatus for producing deionized water
IN500CA1997 IN182200B (en) 1996-03-21 1997-03-20
ARP970101149A AR006347A1 (en) 1996-03-21 1997-03-21 METHOD AND APPARATUS FOR PRODUCING DEIONIZED WATER
US09/338,570 US6228240B1 (en) 1996-03-21 1999-06-23 Method and apparatus for producing deionized water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06478396A JP3760501B2 (en) 1996-03-21 1996-03-21 Method for filling a filler containing an ion exchanger

Publications (2)

Publication Number Publication Date
JPH09253458A JPH09253458A (en) 1997-09-30
JP3760501B2 true JP3760501B2 (en) 2006-03-29

Family

ID=13268175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06478396A Expired - Lifetime JP3760501B2 (en) 1996-03-21 1996-03-21 Method for filling a filler containing an ion exchanger

Country Status (2)

Country Link
JP (1) JP3760501B2 (en)
AR (1) AR006347A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5738505B2 (en) * 2001-07-10 2015-06-24 ジーイー ウォーター アンド プロセス テクノロジーズ カナダ Method for filling a filler containing an ion exchanger
JP5015989B2 (en) * 2009-03-25 2012-09-05 オルガノ株式会社 Method for producing electric deionized water production apparatus
JP5246116B2 (en) * 2009-09-09 2013-07-24 日本錬水株式会社 Ion exchange resin filling method and electric regenerative pure water production apparatus

Also Published As

Publication number Publication date
JPH09253458A (en) 1997-09-30
AR006347A1 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
US5961805A (en) Method and apparatus for producing deionized water
US5891328A (en) Membrane-frame for processes including electrodialysis
US5759373A (en) Porous ion exchanger and method for producing deionized water
US6334941B1 (en) Apparatus for producing deionized water
JP2751090B2 (en) Pure water production equipment
USRE25265E (en) Kollsman
JP2001104960A (en) Electric deionizing apparatus
JPH10258289A (en) Apparatus for producing deionized water
JP3644182B2 (en) Deionized water production equipment
JP3305139B2 (en) Method for producing deionized water by electrodeionization method
JP3760501B2 (en) Method for filling a filler containing an ion exchanger
JP4049170B2 (en) Method for producing deionized water production apparatus
JP5233798B2 (en) Electric regenerative pure water production equipment
JP2010264361A (en) Electric deionized-water producing apparatus
JP5738505B2 (en) Method for filling a filler containing an ion exchanger
JPH10192716A (en) Porous ion exchanger and production of demineralized water
JP5246116B2 (en) Ion exchange resin filling method and electric regenerative pure water production apparatus
JP5110020B2 (en) Ion exchange resin filling method and electric regenerative pure water production apparatus
JP5586979B2 (en) Electric deionized water production apparatus and operation method thereof
JPH10244169A (en) Porous ion exchanger and production of demineralized water
JP2001062312A (en) Production of porous ion exchanger
JP3906540B2 (en) Method for producing deionized water
JP7374400B1 (en) Electrodeionized water production equipment and pure water production method
WO2023228606A1 (en) Apparatus for producing electrodeionized water, and method for producing pure water
JP2001353490A (en) Production method of deionized water

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term