JP3759945B2 - Wind power generator and wind power generation system - Google Patents

Wind power generator and wind power generation system Download PDF

Info

Publication number
JP3759945B2
JP3759945B2 JP2004187370A JP2004187370A JP3759945B2 JP 3759945 B2 JP3759945 B2 JP 3759945B2 JP 2004187370 A JP2004187370 A JP 2004187370A JP 2004187370 A JP2004187370 A JP 2004187370A JP 3759945 B2 JP3759945 B2 JP 3759945B2
Authority
JP
Japan
Prior art keywords
wind
power generation
wind receiving
power
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004187370A
Other languages
Japanese (ja)
Other versions
JP2005273644A (en
Inventor
健実 相沢
正樹 石森
憲二 熊本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2004187370A priority Critical patent/JP3759945B2/en
Publication of JP2005273644A publication Critical patent/JP2005273644A/en
Application granted granted Critical
Publication of JP3759945B2 publication Critical patent/JP3759945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は風力を利用して電気エネルギーを取り出す風力発電装置およびこれを用いた風力発電システムに関する。   The present invention relates to a wind power generation apparatus that extracts electrical energy using wind power and a wind power generation system using the same.

近年、クリーンなエネルギーを用いた発電方法として風力発電が注目されている。一般的な風力発電装置としては、プロペラを風力で回転させてモータを回し、電磁誘導により発電するものが実用化されているが、これらは装置が大型であってコストが高いことや、設置場所が制限されること、また、所定の設置間隔を取らなければ発電効率が低下する等の問題がある。   In recent years, wind power generation has attracted attention as a power generation method using clean energy. As a general wind power generation device, a propeller is rotated by wind power and a motor is rotated to generate electric power by electromagnetic induction. However, these devices are large in size and high in cost. However, there is a problem that power generation efficiency is lowered unless a predetermined installation interval is taken.

このような問題を解決するために、圧電素子を用いた発電装置が提案されている。たとえば、特許文献1には、枠状のフレーム部材と、フレーム部材の上開口面を覆う振動板と、振動板の表面に取り付けられた受風翼とを具備し、振動板に屈曲変位を生ずることにより発電するバイモルフ型等の圧電素子が取り付けられた構造を有する風力発電装置が開示されている。この風力発電装置では、受風翼が風力を受けることによって振動し、この振動が振動板に伝えられて圧電素子を屈曲させることにより、電気エネルギーを得ることができる。   In order to solve such a problem, a power generation device using a piezoelectric element has been proposed. For example, Patent Document 1 includes a frame-shaped frame member, a diaphragm that covers the upper opening surface of the frame member, and a wind receiving blade that is attached to the surface of the diaphragm, and causes bending displacement in the diaphragm. A wind power generator having a structure to which a piezoelectric element of a bimorph type or the like that generates electricity is attached is disclosed. In this wind power generator, the wind receiving blades vibrate when receiving wind force, and the vibration is transmitted to the diaphragm to bend the piezoelectric element, thereby obtaining electric energy.

しかしながら、このような風力発電装置では、振動板の振動がフレームによって抑制されることにより、発電効率が低下する問題がある。一方、このような振動板のフレームによる振動抑制を低減させるためには、フレームを大きくしなければならず、設置面積が広くなってしまう。また、屈曲型圧電素子の大きさには製造技術上の制限があるために、大電力発電を目的とする場合には、必ずしも圧電素子を用いることが適切ではない場合がある。
特開2001−231273号公報
However, in such a wind power generator, there is a problem in that the power generation efficiency decreases due to the vibration of the diaphragm being suppressed by the frame. On the other hand, in order to reduce such vibration suppression by the frame of the diaphragm, the frame must be enlarged, and the installation area is increased. In addition, since the size of the bent piezoelectric element is limited in terms of manufacturing technology, it may not always be appropriate to use a piezoelectric element for the purpose of high power generation.
JP 2001-231273 A

本発明はこのような事情に鑑みてなされたものであり、構造が単純で、高い効率で発電が可能な風力発電装置を提供することを目的とする。また、本発明は、設置面積を狭くすることができ、また設置場所の制限も少ない風力発電装置を提供することを目的とする。さらに本発明は、このような風力発電装置を用いた風力発電システムを提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a wind turbine generator that has a simple structure and can generate power with high efficiency. It is another object of the present invention to provide a wind turbine generator that can reduce the installation area and has few restrictions on the installation location. Furthermore, an object of this invention is to provide the wind power generation system using such a wind power generator.

本発明は第1発明として、バネ性を有する材料で形成され、
長尺状で、対向する短辺の長さが互いに異なる台形状の板部材が、その幅方向に45度〜135度の角度で二つ折りされた形状を有し、
前記短辺のうちの短い方の端部支持された状態で風力を受けた際に、先端側の折り曲げ部が該折り曲げ部の長さ方向軸回りに回動するようなねじれ振動を生ずる受風翼と、
前記受風翼の振動によって発電する発電部と、
を具備することを特徴とする風力発電装置、を提供する。
The present invention, as the first invention, is formed of a material having a spring property,
A long and trapezoidal plate member having different short side lengths is folded in half at an angle of 45 to 135 degrees in the width direction,
When receiving the wind force in a state where the shorter end portion of the short sides is supported , a receiving portion that generates a torsional vibration in which the bent portion on the front end side rotates about the longitudinal axis of the bent portion. Wind wings,
A power generation unit that generates power by vibration of the wind receiving blades;
The wind power generator characterized by comprising.

この風力発電装置においては、受風翼として、対向する短辺の長さが互いに異なる略短冊状の2枚の板部材が、所定の角度をなし、かつ、長手方向の一端が他端よりも幅広となるように、その長辺で接合された構造を有するものが好適に用いられる。この場合、2枚の板部材は一体であることが好ましい。   In this wind turbine generator, as a wind receiving blade, two substantially strip-shaped plate members having opposite short sides that are different from each other form a predetermined angle, and one end in the longitudinal direction is more than the other end. What has the structure joined by the long side so that it may become wide is used suitably. In this case, the two plate members are preferably integral.

上記本発明に係る風力発電装置においては、発電部として屈曲することによって発電する圧電素子を有するものが好適に用いられる。この場合、圧電素子を受風翼に取り付けてもよい。また、受風翼とこの圧電素子とを連結する連結部材をさらに設けて、受風翼のねじれ振動がこの連結部材を介して圧電素子に伝えられるようにして圧電素子を撓ませ、発電させてもよい。   In the wind power generator according to the present invention, a wind power generator having a piezoelectric element that generates power by bending is preferably used. In this case, the piezoelectric element may be attached to the wind receiving blade. Further, a connecting member for connecting the wind receiving blade and the piezoelectric element is further provided, and the piezoelectric element is deflected so that the torsional vibration of the wind receiving blade is transmitted to the piezoelectric element through the connecting member, thereby generating electric power. Also good.

一方、発電部として電磁誘導により発電する発電コイルを用いることもできる。この場合、受風翼と発電コイルとを連結する連結部材をさらに設けて、受風翼のねじれ振動をこの連結部材を介して発電コイルに伝え、発電コイルを動作させることができる。発電コイルに代えて、油圧ポンプおよび油圧発電機を用いてもよい。なお、本発明において、受風翼にはバネ性を有する金属材料や樹脂材料が好適に用いられる。   On the other hand, a power generation coil that generates power by electromagnetic induction may be used as the power generation unit. In this case, a connecting member for connecting the wind receiving blade and the power generation coil can be further provided, and the torsional vibration of the wind receiving blade can be transmitted to the power generating coil via the connecting member to operate the power generating coil. A hydraulic pump and a hydraulic generator may be used instead of the power generation coil. In the present invention, a metal material or resin material having a spring property is preferably used for the wind receiving blade.

本発明は第2発明として、上記風力発電装置を複数用いて構成される風力発電システムであって、
複数の前記受風翼が所定間隔で並べられ、
複数の前記発電部で発生する電気エネルギーを直列および/または並列で集電する集電装置を具備することを特徴とする風力発電システム、を提供する。
As a second invention, the present invention is a wind power generation system configured by using a plurality of the wind power generation devices,
A plurality of the wind receiving blades are arranged at a predetermined interval,
There is provided a wind power generation system comprising a current collector that collects electric energy generated in a plurality of the power generation units in series and / or in parallel.

このような風力発電システムにおいては、所定数の受風翼が、風を受ける面が同じ方向を向くように、縦列もしくは並列または縦並列または放射状に並べられた構成を有する受風ユニットを複数具備し、これら複数の受風ユニットが、互いに風を受ける面が異方向を向いている構成とすることが好ましい。   In such a wind power generation system, a predetermined number of wind receiving blades are provided with a plurality of wind receiving units having a configuration in which the wind receiving surfaces are arranged in tandem, in parallel, in longitudinal parallel, or radially so that the surfaces receiving the wind face in the same direction. However, it is preferable that the plurality of wind receiving units have a configuration in which the surfaces receiving the winds face in different directions.

また、所定数の受風翼が、風を受ける面が同じ方向を向くように、縦列もしくは並列または縦並列または放射状に並べられた構成を有する受風ユニットと、尾翼と、受風ユニットと尾翼とを連結する連結部材と、この連結部材を回転自在に支持する支持機構とを具備し、尾翼が風力を受けることによって受風ユニットの風を受ける面が風向きの変化に応じて風上を向く構成とすることも好ましい。   In addition, a wind receiving unit having a configuration in which a predetermined number of wind receiving blades are arranged in tandem, parallel, longitudinal parallel, or radially so that wind receiving surfaces face the same direction, a tail, a wind receiving unit, and a tail And a support mechanism for rotatably supporting the connecting member, and the wind receiving surface of the wind receiving unit receives the wind force so that the wind receiving surface faces the windward according to the change in the wind direction. A configuration is also preferable.

本発明の風力発電装置は、構造が簡単であり、1個あたりの設置面積が狭い。また、発電部に圧電素子を用いる場合には、受風翼の振動がダイレクトに伝えられることにより、高い発電効率を実現することができる。さらに、発電部として圧電素子を用いた場合と電磁誘導を用いた発電コイルを用いた場合とで、実質的に相違のない構造を実現することができるので、例えば、受風翼の大きさや設置目的等に合わせて、適切な発電部を選択することができる。このような風力発電装置を複数用いれば、電気エネルギーの使用目的に応じて低出力から大出力の様々の発電を行うことができる風力発電システムを容易に構築することができる。   The wind power generator of the present invention has a simple structure and a small installation area per unit. In addition, when a piezoelectric element is used for the power generation unit, high power generation efficiency can be realized by directly transmitting the vibration of the wind receiving blade. Furthermore, since a structure that does not substantially differ between the case where a piezoelectric element is used as the power generation unit and the case where a power generation coil using electromagnetic induction is used can be realized, for example, the size and installation of the wind receiving blades An appropriate power generation unit can be selected in accordance with the purpose and the like. If a plurality of such wind power generators are used, it is possible to easily construct a wind power generation system that can perform various types of power generation from low output to high output according to the purpose of use of electric energy.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。図1は、風力発電装置1の概略構造を示す正面図であり、図2は風力発電装置1を構成する受風翼10の斜視図である。風力発電装置1は、風力を受けることによって所定の振動を生ずる受風翼10と、受風翼10に取り付けられ、受風翼10の振動によって電気エネルギーを発生する発電部たる圧電板11a・11bと、受風翼10を保持する保持部材12と、有している。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a front view showing a schematic structure of the wind power generator 1, and FIG. 2 is a perspective view of a wind receiving blade 10 constituting the wind power generator 1. The wind power generator 1 includes a wind receiving blade 10 that generates a predetermined vibration by receiving wind force, and piezoelectric plates 11a and 11b that are attached to the wind receiving blade 10 and that generate electric energy by the vibration of the wind receiving blade 10. And a holding member 12 that holds the wind receiving blade 10.

図2に示すように、受風翼10の幅は長手方向において変化している。すなわち、受風翼10は、対向する短辺の長さがそれぞれ2L、2Lで互いに異なり(L>Lとする)、受風翼10の長さLが短辺の長さよりも極端に長い(L>>L)略台形状の板部材が、所定の角度θ(以下、「内角θ」という)で幅方向に二つ折りにされた構造を有している。保持部材12は受風翼10の短辺のうちの短い方の端部側を保持している。 As shown in FIG. 2, the width of the wind receiving blade 10 changes in the longitudinal direction. That is,受風Tsubasa 10, the length of the short sides differ from each other in 2L 1, 2L 2 respectively (the L 1> L 2) facing the length L 3 of受風Tsubasa 10 than the length of the short side Also, an extremely long (L 3 >> L 1 ) substantially trapezoidal plate member has a structure that is folded in half in the width direction at a predetermined angle θ (hereinafter referred to as “inner angle θ”). The holding member 12 holds the shorter end of the short sides of the wind receiving blade 10.

受風翼10としては、バネ性を有する金属材料または樹脂材料が好適に用いられる。ここでは、受風翼10は金属材料で構成されているとする。受風翼10の長さLに制限はなく、例えば、数センチメートル、数十センチメートル、数メートル、数十メートルと、設置場所および設置目的によって任意に設定することができる。受風翼10の形状(つまり、各辺の長さL、L、L)と厚み、内角θは、使用される材料特性を考慮して、後述する受風翼10の振動が効率的に発生するように、適宜、設定される。 As the wind receiving blade 10, a metal material or a resin material having a spring property is preferably used. Here, it is assumed that the wind receiving blade 10 is made of a metal material. Limiting the length L 3 of受風Tsubasa 10 is not, for example, several centimeters, several tens of centimeters, meters, and several tens of meters, can be arbitrarily set by the installation location and installation purposes. The shape (that is, the lengths L 1 , L 2 , L 3 of each side), the thickness, and the interior angle θ of the wind receiving blade 10 are efficient in terms of the vibration of the wind receiving blade 10 described later in consideration of the characteristics of the material used. Therefore, it is set appropriately so as to generate automatically.

なお、図2では、受風翼10として1枚の板部材を二つ折りにした形態を示したが、例えば、短辺の長さがL、Lで、長さがLの2枚の板部材をその長辺で接合することにより、受風翼10を形成してもよい。受風翼10はその厚みが薄い場合には、折り曲げ板金加工により二つ折りにすることができるが、厚みが厚いものの場合には、鋳造等により製造することができる。また、受風翼として樹脂製のものを用いる場合には、その厚みが薄い場合には、弾性フィルムを折り曲げ加工することにより、一方、その厚みが厚い場合には射出成形や押し出し成形等により、所望の受風翼を製造することができる。 In FIG. 2, a configuration in which one plate member is folded in half as the wind receiving blade 10 is illustrated. However, for example, two sheets having a short side length of L 1 and L 2 and a length of L 3 are illustrated. The wind-receiving blade 10 may be formed by joining the plate members at their long sides. When the thickness of the wind receiving blade 10 is small, the wind receiving blade 10 can be folded in half by bending sheet metal processing, but when the thickness is large, the wind receiving blade 10 can be manufactured by casting or the like. Also, when using a resin blade as the wind receiving blade, if the thickness is thin, by bending the elastic film, on the other hand, if the thickness is thick, by injection molding or extrusion molding, A desired wind receiving blade can be manufactured.

発電部たる圧電板11a・11bはそれぞれ、主面に図示しない電極膜を備えており、厚み方向に分極されている。圧電板11a・11bはそれぞれ直接に受風翼10の内角θ側の表面に、一方の電極膜が受風翼10と導通するように、接着されている。これにより、風力発電装置1では、電力を取り出すための出力電極として受風翼10を用いることができるようになっている。   Each of the piezoelectric plates 11a and 11b, which are power generation units, includes an electrode film (not shown) on the main surface and is polarized in the thickness direction. The piezoelectric plates 11 a and 11 b are directly bonded to the surface of the wind receiving blade 10 on the inner angle θ side so that one electrode film is electrically connected to the wind receiving blade 10. Thereby, in the wind power generator 1, the wind-receiving blade 10 can be used as an output electrode for taking out electric power.

風力発電装置1では、圧電板11a・11bを受風翼10の内角θ側に設けているが、圧電板11a・11bは受風翼10の外角側に設けてもよく、さらに受風翼10の各面に任意に設けてもよい。また、受風翼10が大型の場合には、受風翼10の各表面に、複数の圧電板を配置することができる。なお、受風翼10は、2枚のユニモルフ素子をその長辺で内角θが形成されるように接合した構造であると、換言することができる。   In the wind turbine generator 1, the piezoelectric plates 11 a and 11 b are provided on the inner angle θ side of the wind receiving blade 10, but the piezoelectric plates 11 a and 11 b may be provided on the outer angle side of the wind receiving blade 10, and further the wind receiving blade 10. You may provide arbitrarily in each surface. Further, when the wind receiving blade 10 is large, a plurality of piezoelectric plates can be arranged on each surface of the wind receiving blade 10. In other words, it can be said that the wind receiving blade 10 has a structure in which two unimorph elements are joined so that the inner angle θ is formed on the long side.

保持部材12は、受風翼10を保持することができる所定の硬さを有していればよく、例えば、金属材料、樹脂材料、セラミックス材料、これらの材料からなる複合材料等を用いることができる。   The holding member 12 only needs to have a predetermined hardness that can hold the wind receiving blade 10. For example, a metal material, a resin material, a ceramic material, a composite material made of these materials, or the like can be used. it can.

図3に受風翼10の振動形態を模式的に示す説明図を示す。ここで、受風翼10が静止しているときの受風翼10の長手方向、つまり受風翼10における折り曲げ部の長さ方向軸をZ軸とし、受風翼10の内角θを2等分する方向軸をX軸とし、X軸およびZ軸と直交する方向軸をY軸と定めることとする。また、受風翼10の解放端側における受風翼10の折り曲げ部をP点とする。 FIG. 3 is an explanatory diagram schematically showing the vibration form of the wind receiving blade 10. Here, the longitudinal direction of the wind receiving blade 10 when the wind receiving blade 10 is stationary, that is, the longitudinal axis of the bent portion of the wind receiving blade 10 is the Z axis, and the internal angle θ of the wind receiving blade 10 is 2 etc. The direction axis to be divided is defined as the X axis, and the direction axis orthogonal to the X axis and the Z axis is defined as the Y axis. Further, a bent portion of the wind receiving blade 10 on the release end side of the wind receiving blade 10 is defined as a point P.

受風翼10は、風がX方向から受風翼10の内角θ側の面に向けてあたるときに、最も効率よく振動する。すなわち、受風翼10が静止している状態ではP点は、X軸とY軸の交点(Z軸上)に位置している。そして、受風翼10にX方向から風力を受けると、受風翼10は受けた風を逃がそうとするために、受風翼10には、受風翼10の固定端側がバネとして機能して受風翼10の解放端側のP点がX−Y平面上のP点とP点との間を往復しながらZ軸回りに回動するような「ねじれ振動」、が生ずる。このとき、圧電板11a・11bが撓んで圧電効果によって電気を発生する。なお、P点とP点の位置は、風があたる向きや風速(風力)によって異なる。 The wind receiving blade 10 vibrates most efficiently when the wind hits the surface on the inner angle θ side of the wind receiving blade 10 from the X direction. That is, when the wind vane 10 is stationary, the point P is located at the intersection (on the Z axis) of the X axis and the Y axis. When the wind receiving blade 10 receives wind force from the X direction, the wind receiving blade 10 tries to release the received wind, and thus the fixed end side of the wind receiving blade 10 functions as a spring. "torsional oscillation" such as to rotate around the Z axis, is caused P point of the open end side of the wind receiving blades 10 reciprocates between the P 1 point and P 2 points on the X-Y plane and . At this time, the piezoelectric plates 11a and 11b are bent to generate electricity by the piezoelectric effect. The position of one point and P 2 point P is different depending on the direction and wind speed the wind hits (wind).

このようなねじれ振動を効率的に受風翼10に生じさせるためには、受風翼10はX軸について対称な構造を有していることが好ましく、また、受風翼10の内角θは、45度〜135度の間に設定することが好ましく、90度近傍とすることがより好ましい。   In order to generate such a torsional vibration efficiently in the wind receiving blade 10, the wind receiving blade 10 preferably has a symmetrical structure with respect to the X axis, and the internal angle θ of the wind receiving blade 10 is , It is preferably set between 45 degrees and 135 degrees, and more preferably in the vicinity of 90 degrees.

図4は圧電板11a・11bからの集電を行う集電回路90の一例を示す説明図である。集電回路90は、圧電板11a・11bが発生した電気(交流)を整流する整流回路91と、整流回路91によって整流された電力の一部を貯蔵するとともに、貯蔵した電力を負荷92へ供給する充放電回路93と、を有している。整流回路91は、ダイオード94がホイートストンブリッジ型に接続された構成を有する。また、充放電回路93は、電力を貯蔵/放出するコンデンサや二次電池等の電力貯蔵体95を備えている。   FIG. 4 is an explanatory diagram showing an example of a current collecting circuit 90 that collects current from the piezoelectric plates 11a and 11b. The current collecting circuit 90 rectifies the electricity (alternating current) generated by the piezoelectric plates 11a and 11b, stores part of the power rectified by the rectifying circuit 91, and supplies the stored power to the load 92. And a charge / discharge circuit 93. The rectifier circuit 91 has a configuration in which a diode 94 is connected in a Wheatstone bridge type. Further, the charge / discharge circuit 93 includes a power storage body 95 such as a capacitor or a secondary battery for storing / releasing power.

このような集電回路90によれば、整流回路91により整流された電力のうち負荷92へ必要な電力をリアルタイムに送ることができる。一方、負荷92で必要とされない余剰電力を電力貯蔵体95に貯蔵することができるために、例えば、受風翼10が動作しない無風時等には、この電力貯蔵体95に貯蔵された電力を用いて負荷92を動作させることができる。なお、発電電力が大きい場合には、例えば、電力会社へ給電することができる。   According to such a current collecting circuit 90, it is possible to send necessary power to the load 92 in real time out of the power rectified by the rectifying circuit 91. On the other hand, surplus power that is not required by the load 92 can be stored in the power storage body 95. For example, when there is no wind when the wind receiving blade 10 does not operate, the power stored in the power storage body 95 is used. The load 92 can be operated. In addition, when generated electric power is large, it can supply electric power to an electric power company, for example.

風力発電装置1の構成は種々に変形することができる。例えば、受風翼10の全面に圧電板11a・11bを設けてもよい。また、受風翼自体を圧電機能を有する樹脂材等で形成してもよい。さらに、圧電素子として単板の圧電板11a・11bを示したが、後述する風力発電装置2に用いられているバイモルフ素子21や、公知のユニモルフ素子や積層型バイモルフ素子(マルチモルフ素子)を用いてもよい。   The configuration of the wind power generator 1 can be variously modified. For example, the piezoelectric plates 11 a and 11 b may be provided on the entire surface of the wind receiving blade 10. Further, the wind receiving blade itself may be formed of a resin material having a piezoelectric function. Furthermore, although the single-plate piezoelectric plates 11a and 11b are shown as the piezoelectric elements, the bimorph element 21 used in the wind power generation apparatus 2 described later, a known unimorph element or a stacked bimorph element (multimorph element) is used. Also good.

次に、本発明の風力発電装置の別の実施形態について説明する。図5(a)に風力発電装置2の概略構造を示す正面図を示し、図5(b)にその側面図を示す。この風力発電装置2は、受風翼10と、発電部たるバイモルフ素子21と、受風翼10とバイモルフ素子21とを連結する連結部材22と、バイモルフ素子21を保持する保持部材23と、を備えている。   Next, another embodiment of the wind power generator of the present invention will be described. FIG. 5A shows a front view showing a schematic structure of the wind turbine generator 2, and FIG. 5B shows a side view thereof. The wind turbine generator 2 includes a wind receiving blade 10, a bimorph element 21 that is a power generation unit, a connecting member 22 that connects the wind receiving blade 10 and the bimorph element 21, and a holding member 23 that holds the bimorph element 21. I have.

受風翼10は図2に示したものと同じである。バイモルフ素子21は、周知の通り、金属板等の補強板21aに圧電板21b・21cが貼り付けられた構造を有している。連結部材22は、受風翼10の振動をバイモルフ素子21に伝達する部材であり、できるだけ振動を減衰させないように、例えば、金属やセラミックスで構成される。受風翼10と連結部材22との接合、連結部材22とバイモルフ素子21との接合には、これらを構成する材料を考慮して、溶接や樹脂接着剤による方法が採られる。樹脂接着剤を用いる場合には、エポキシ樹脂等の硬質樹脂を用いることが好ましい。   The wind receiving blade 10 is the same as that shown in FIG. As is well known, the bimorph element 21 has a structure in which piezoelectric plates 21b and 21c are attached to a reinforcing plate 21a such as a metal plate. The connecting member 22 is a member that transmits the vibration of the wind receiving blade 10 to the bimorph element 21 and is made of, for example, metal or ceramics so as not to attenuate the vibration as much as possible. For joining the wind receiving blade 10 and the connecting member 22 and joining the connecting member 22 and the bimorph element 21, a method using welding or a resin adhesive is adopted in consideration of the materials constituting them. When using a resin adhesive, it is preferable to use a hard resin such as an epoxy resin.

このような構造を有する風力発電装置2でも、受風翼10が風力を受けて図3に示した振動を起こすことにより、バイモルフ素子21が屈曲して発電し、これにより、電気エネルギーを得ることができる。   Even in the wind turbine generator 2 having such a structure, the wind receiving blade 10 receives the wind force and generates the vibration shown in FIG. 3, whereby the bimorph element 21 is bent to generate power, thereby obtaining electric energy. Can do.

風力発電装置2は、図6の側面図に示す風力発電装置2aの形態に変形することができる。すなわち、受風翼10の長手方向とバイモルフ素子21の主面との角度は、風力発電装置2では0度(平行)であったが、風力発電装置2aでは90度(垂直)となっている。風力発電装置2でも、受風翼10が風力を受けて図3に示した振動を起こすことにより、バイモルフ素子21に屈曲変異が生じて発電し、これにより電気エネルギーを得ることができる。   The wind power generator 2 can be modified into the form of the wind power generator 2a shown in the side view of FIG. That is, the angle between the longitudinal direction of the wind receiving blade 10 and the main surface of the bimorph element 21 is 0 degrees (parallel) in the wind power generator 2 but 90 degrees (vertical) in the wind power generator 2a. . Also in the wind power generator 2, when the wind receiving blade 10 receives the wind force and causes the vibration shown in FIG. 3, the bimorph element 21 undergoes bending mutation to generate electric power, thereby obtaining electric energy.

風力発電装置2のように、受風翼10が連結部材22で支持された構造の場合には、発電部としてバイモルフ素子21に代えて、電磁誘導により発電する発電コイルを用いることもできる。図7に発電コイル40を備えた風力発電装置5の模式図を示す。この場合、受風翼10の振動により連結部材22に生ずる往復回動運動を利用して、発電コイル40を駆動する。特に、受風翼10の長さが数メートルから数十メートルに達するような大型発電装置の場合には、受風翼10を保持するために発電部にも高い機械的強度が必要とされる。このような発電部として、発電コイル40は好適に用いられる。   In the case where the wind receiving blade 10 is supported by the connecting member 22 as in the wind power generator 2, a power generation coil that generates power by electromagnetic induction can be used as the power generation unit instead of the bimorph element 21. FIG. 7 shows a schematic diagram of the wind turbine generator 5 provided with the power generation coil 40. In this case, the power generating coil 40 is driven by utilizing the reciprocating rotational motion generated in the connecting member 22 by the vibration of the wind receiving blade 10. In particular, in the case of a large-scale power generation device in which the length of the wind receiving blade 10 reaches several meters to several tens of meters, high mechanical strength is also required for the power generation unit in order to hold the wind receiving blade 10. . The power generation coil 40 is preferably used as such a power generation unit.

発電コイル40に代えて、油圧(水圧および空気圧を含む、以下同様)を利用した油圧発電ユニットを用いることも好ましい。図8に油圧発電ユニット50の概略構成を示す説明図を示す。油圧発電ユニット50は、油圧シリンダ51と、アキュームレータ52と、油圧モータ53と、油圧モータ53へ送る油圧を調整する圧力調整弁54と、発電機55を備えている。   It is also preferable to use a hydraulic power generation unit that uses hydraulic pressure (including water pressure and air pressure, the same applies hereinafter) instead of the power generation coil 40. FIG. 8 is an explanatory diagram showing a schematic configuration of the hydraulic power generation unit 50. The hydraulic power generation unit 50 includes a hydraulic cylinder 51, an accumulator 52, a hydraulic motor 53, a pressure adjustment valve 54 that adjusts the hydraulic pressure sent to the hydraulic motor 53, and a generator 55.

受風翼10が風力を受けて振動することで連結部材22に生ずる往復回動運動が油圧シリンダ51のピストンを駆動するように、連結部材22を油圧シリンダ51のピストンで直接的または間接的に支持する。ピストンの駆動により油圧シリンダ51で発生した油圧はアキュームレータ52に蓄積される。アキュームレータ52は、公知の通り、密閉されたシェル内がゴム袋でできた窒素ガスを封入した室と油室とに分けられており、窒素ガスの圧縮比で圧油の貯蔵を行う。アキュームレータ52に蓄積された油圧は圧力調整弁54を通して引き出され、この油圧で油圧モータ53のスピンドルを回転させる。この油圧モータ53のスピンドル回転により発電機55を駆動して、電気エネルギーを発生させる。   The connecting member 22 is directly or indirectly driven by the piston of the hydraulic cylinder 51 so that the reciprocating rotational motion generated in the connecting member 22 when the wind receiving blade 10 receives the wind force and vibrates drives the piston of the hydraulic cylinder 51. To support. The hydraulic pressure generated in the hydraulic cylinder 51 by driving the piston is accumulated in the accumulator 52. As is well known, the accumulator 52 has a sealed shell divided into a chamber filled with nitrogen gas made of a rubber bag and an oil chamber, and stores pressurized oil at a compression ratio of nitrogen gas. The hydraulic pressure accumulated in the accumulator 52 is drawn through the pressure adjustment valve 54, and the spindle of the hydraulic motor 53 is rotated by this hydraulic pressure. The generator 55 is driven by the rotation of the spindle of the hydraulic motor 53 to generate electric energy.

なお、アキュームレータ52は、必要に応じて作動油に生じる衝撃圧(油撃)を吸収して圧油の脈動を減衰させたり、油圧シリンダ51を停止させて受風翼10の傾倒を防止するための油圧源としても機能する。   The accumulator 52 absorbs the impact pressure (oil hammer) generated in the hydraulic oil as necessary to attenuate the pulsation of the pressure oil, or stops the hydraulic cylinder 51 to prevent the wind receiving blade 10 from tilting. It also functions as a hydraulic power source.

図9に本発明のさらに別の実施形態である風力発電装置3の概略構造を示す斜視図を示す。この風力発電装置3が具備する受風翼30は、長尺状で、その長さ方向に垂直な断面の形状が略弧状であり、かつ、その一端の弧の長さと他端の弧の長さが異なる形状を有している。受風翼30の弧の長さが短い方の端部は、保持部材32に保持されている。受風翼30は、受風翼10と同様に、バネ性を有する金属材料または樹脂材料で構成される。   FIG. 9 is a perspective view showing a schematic structure of a wind turbine generator 3 which is still another embodiment of the present invention. The wind receiving blade 30 included in the wind power generator 3 is long and has a substantially arc shape in cross section perpendicular to the length direction, and the length of the arc at one end and the length of the arc at the other end. Have different shapes. The end of the wind receiving blade 30 with the shorter arc length is held by the holding member 32. The wind receiving blade 30 is made of a metal material or a resin material having a spring property like the wind receiving blade 10.

圧電板31a・31bは受風翼30の表面に取り付けられている。圧電板31a・31bが薄く、受風翼30の曲率が大きい場合には、圧電板31a・31bを受風翼30の曲面にそって曲げた状態で、貼り付けることができる。また、受風翼30の曲率が小さい場合には、圧電板として短冊状のものを複数貼り付けることで、これらの圧電板を受風翼30に密着させて取り付けることができる。   The piezoelectric plates 31 a and 31 b are attached to the surface of the wind receiving blade 30. When the piezoelectric plates 31 a and 31 b are thin and the wind receiving blade 30 has a large curvature, the piezoelectric plates 31 a and 31 b can be attached while being bent along the curved surface of the wind receiving blade 30. When the wind receiving blade 30 has a small curvature, the piezoelectric plates can be attached in close contact with the wind receiving blade 30 by attaching a plurality of strips as piezoelectric plates.

受風翼30の内側曲面が風力を受けることによって、受風翼30には受風翼10と同様の振動が発生し、これにより圧電板31a・31bが撓み、発電する。受風翼30の長さ、厚さ、端部の曲率および弧の長さは、このような振動が効率よく生ずるように、設定される。なお、先に説明した風力発電装置2・2aは風力発電装置1に用いられている受風翼10を備えていたが、この受風翼10に替えて受風翼30を用いてもよい。   When the inner curved surface of the wind receiving blade 30 receives wind power, the wind receiving blade 30 is vibrated in the same manner as the wind receiving blade 10, whereby the piezoelectric plates 31 a and 31 b bend and generate electricity. The length, thickness, end curvature, and arc length of the wind receiving blade 30 are set so that such vibration is efficiently generated. Although the wind power generators 2 and 2a described above include the wind receiving blades 10 used in the wind power generator 1, the wind receiving blades 30 may be used instead of the wind receiving blades 10.

ところで、本発明の風力発電装置を構成する受風翼は、上記受風翼10・30に限定されるものではなく、長手方向の一端が固定された状態で風力を受けた際に所定のねじれ振動を生ずるように、その幅が長手方向において変化していればよい。具体的には、図10(a)に斜視図で示す受風翼10aのように、端部が中心部よりも細く、幅方向で二つ折りにされた構造であってもよい。受風翼10aでは、さらにその解放端の端面が直線的でなく曲線的であってもよい。また、図10(b)に斜視図で示す受風翼30aのように、固定端から解放端に向かってその幅が徐々に広くなった後に、先細りとなるような形状を有するものであってもよい。   By the way, the wind receiving blades constituting the wind power generator of the present invention are not limited to the wind receiving blades 10 and 30, and a predetermined twist is generated when wind force is received with one end in the longitudinal direction fixed. The width may be changed in the longitudinal direction so as to generate vibration. Specifically, like the wind receiving blade 10a shown in a perspective view in FIG. 10A, the end may be narrower than the center and may be folded in half in the width direction. In the wind receiving blade 10a, the end surface of the open end may be curved instead of linear. Further, like a wind receiving blade 30a shown in a perspective view in FIG. 10 (b), it has a shape that tapers after its width gradually increases from the fixed end toward the release end. Also good.

図11に本発明のさらに別の実施形態である風力発電装置4の概略構造を示す説明図を示す。図11(a)は風力発電装置4の上面図であり、図11(b)は上面図中に示す矢視AA断面図である。この風力発電装置4では、バイモルフ素子21の補強板21aが受風翼10にブリッジするように配置されている。この構造では、バイモルフ素子21は、受風翼10の解放端側の内角側面が風力を受けることができるように、受風翼10の固定端側に配置する。風力発電装置4でも、受風翼10が風力を受けて図3に示す振動が生じることにより、バイモルフ素子21が撓んで発電する。 FIG. 11 is an explanatory diagram showing a schematic structure of a wind turbine generator 4 which is still another embodiment of the present invention. FIG. 11A is a top view of the wind turbine generator 4, and FIG. 11B is a cross-sectional view taken along the line AA shown in the top view. In the wind power generator 4, the reinforcing plate 21 a of the bimorph element 21 is arranged so as to bridge the wind receiving blade 10. In this structure, the bimorph element 21 is arranged on the fixed end side of the wind receiving blade 10 so that the inner angle side surface on the open end side of the wind receiving blade 10 can receive wind force. Also in the wind power generator 4, when the wind receiving blade 10 receives wind force and the vibration shown in FIG. 3 is generated, the bimorph element 21 is bent to generate power.

本発明に係る風力発電装置は、勿論、単体で設置することが可能であるが、複数の受風翼を所定間隔で並べて配置し、各受風翼に生ずる振動エネルギーを基にして各発電部で発生させた電気エネルギーを直列および/または並列で集電するユニットを構成し、このようなユニットを単独でまたは複数組み合わせて、風力発電システムを構成することが好ましい。   Of course, the wind power generator according to the present invention can be installed alone, but a plurality of wind receiving blades are arranged side by side at a predetermined interval, and each power generation unit is based on vibration energy generated in each wind receiving blade. It is preferable that a unit that collects the electric energy generated in the above in series and / or in parallel is configured, and such a unit is used alone or in combination to form a wind power generation system.

以下に、風力発電ユニットの実施形態について説明する。
図12に複数の受風翼10aを用いて構成された受風ユニットの種々の例を示す説明図を示す。図12(a)に示す受風ユニット61は、複数の受風翼10aが棒状の保持部材71に一列で一定の間隔で取り付けられた構造を有する。図12(b)に示す受風ユニット62は、複数の受風翼10aが全体的な形状が略扇型となるように円板状の保持部材72に放射状に取り付けられた構造を有する。図12(c)に示す受風ユニット63は、複数の受風翼10aが全体的な形状が円形となるように放射状に保持部材72に取り付けられた構造を有する。図12(d)に示す受風ユニット64は、複数の受風翼10aがフレーム73にその面内に収まるように配置された構造を有する。図12(e)に示す受風ユニット65は、複数の受風翼10aがパネル74に縦横に並べて取り付けられた構造を有する。
Hereinafter, embodiments of the wind power generation unit will be described.
FIG. 12 is an explanatory diagram showing various examples of a wind receiving unit configured using a plurality of wind receiving blades 10a. The wind receiving unit 61 shown in FIG. 12A has a structure in which a plurality of wind receiving blades 10a are attached to a rod-like holding member 71 in a row at a constant interval. The wind receiving unit 62 shown in FIG. 12B has a structure in which a plurality of wind receiving blades 10a are radially attached to a disk-shaped holding member 72 so that the overall shape is substantially a fan shape. The wind receiving unit 63 shown in FIG. 12C has a structure in which a plurality of wind receiving blades 10a are radially attached to the holding member 72 so that the overall shape is circular. The wind receiving unit 64 shown in FIG. 12 (d) has a structure in which a plurality of wind receiving blades 10 a are arranged so as to fit within the plane of the frame 73. The wind receiving unit 65 shown in FIG. 12 (e) has a structure in which a plurality of wind receiving blades 10 a are attached to the panel 74 side by side.

これら受風ユニット61〜64では、各受風翼10aはその内角側の面が同じ方向を向いていることが好ましい。また、受風ユニット65では、各受風翼10aの内角側の面が一方向を向いた構造としたが、各受風翼10aの内角側の面の向きはランダムであってもよい。なお、このような各種の発電ユニットには、その長さが数メートル〜1mまたはこれ以下の受風翼が好適に用いられる。   In these wind receiving units 61-64, it is preferable that the surface of each wind receiving blade 10a is in the same direction. Further, in the wind receiving unit 65, the inner angle side surface of each wind receiving blade 10a is oriented in one direction, but the direction of the inner angle side surface of each wind receiving blade 10a may be random. In addition, a wind receiving blade having a length of several meters to 1 m or less is suitably used for such various power generation units.

このような受風ユニット61〜64では、各受風翼が同時に同一振幅で振動することは稀であると考えられるために、ユニット集電装置としては、受風翼ごとに整流回路91が設けられ、各整流回路91から出力された電気エネルギーを直列および/または並列に接続して集電する構造のものが好適に用いられる。   In such wind receiving units 61 to 64, since it is rare that the wind receiving blades vibrate at the same amplitude at the same time, a rectifier circuit 91 is provided for each wind receiving blade as the unit current collector. In addition, a structure in which electric energy output from each rectifier circuit 91 is connected in series and / or in parallel to collect current is preferably used.

次に、このような受風ユニットを用いた発電システムの実施形態について説明する。図13に複数の受風ユニット61からなる風力発電システム80の概略構成を示す説明図を示す。図13(a)はその上面図であり、図13(b)はその鉛直断面図である。なお、図13(a)では、受風翼10aを簡略的に黒点で示しており、図13(b)では紙面後方に位置する受風ユニット61の図示を省略している。   Next, an embodiment of a power generation system using such a wind receiving unit will be described. FIG. 13 is an explanatory diagram showing a schematic configuration of a wind power generation system 80 including a plurality of wind receiving units 61. FIG. 13A is a top view thereof, and FIG. 13B is a vertical sectional view thereof. In FIG. 13A, the wind receiving blade 10a is simply indicated by a black dot, and in FIG. 13B, the wind receiving unit 61 located on the rear side of the drawing is omitted.

風力発電システム80は樹木の形態を擬したものであり、複数の受風ユニット61が支柱76の周囲に放射状に配置された構造を有している。この風力発電システム80は、図13(b)と同様にして図14に示す風力発電システム80′のように、その下部から上部に向けて、大きさの異なる受風翼(図14において、符号「10b」、「10c」、「10d」、「10e」で示し、この順番で受風翼は小さくなる)が配置された構造へ変形することも好ましい。   The wind power generation system 80 simulates the form of a tree, and has a structure in which a plurality of wind receiving units 61 are radially arranged around a support column 76. This wind power generation system 80 is similar to FIG. 13B, like a wind power generation system 80 ′ shown in FIG. 14, and wind receiving blades having different sizes from the lower part toward the upper part (in FIG. It is also preferable to deform to a structure in which “10b”, “10c”, “10d”, and “10e” are shown, and the wind receiving blades become smaller in this order).

図15に複数の受風ユニット62からなる風力発電システム81の概略構成を示す正面図を示す。風力発電システム81は、複数の受風ユニット62を、隣接する受風ユニットどうしが左右交互に位置するように、支柱77に一定の間隔で取り付けられた構造を有する。なお、風力発電システム81を、隣接する受風ユニットどうしが支柱77の長手方向から見たときに90度ずれるように支柱77に一定の間隔で取り付けられた構造へと変形することも、好ましい。   FIG. 15 is a front view showing a schematic configuration of a wind power generation system 81 including a plurality of wind receiving units 62. The wind power generation system 81 has a structure in which a plurality of wind receiving units 62 are attached to the support column 77 at regular intervals so that adjacent wind receiving units are alternately positioned on the left and right. It is also preferable to transform the wind power generation system 81 into a structure in which adjacent wind receiving units are attached to the columns 77 at regular intervals so that they are shifted by 90 degrees when viewed from the longitudinal direction of the columns 77.

図16に受風ユニット63からなる風力発電システム82の概略構成を示す説明図を示す。図16(a)はその上面図であり、図16(b)はその正面図である。風力発電システム82では、十字型で棒部の長さが異なる保持部材78b・78cが、交互に、かつ、棒部が主支柱78aの長手方向から見て45度ずれるようにして、主支柱78aの長手方向に一定の間隔で取り付けられ、これら保持部材78b・78cの棒部の各先端に受風ユニット63が取り付けられた構造を有している。   FIG. 16 is an explanatory diagram showing a schematic configuration of the wind power generation system 82 including the wind receiving unit 63. FIG. 16A is a top view thereof, and FIG. 16B is a front view thereof. In the wind power generation system 82, the main columns 78a are formed such that the holding members 78b and 78c having a cross shape and different lengths of the rods are alternately displaced from each other by 45 degrees when viewed from the longitudinal direction of the main columns 78a. The wind receiving unit 63 is attached to each end of the rod portions of the holding members 78b and 78c.

図17に受風ユニット63を用いた別の風力発電システム83の概略構成を示す説明図を示す。この風力発電システム83は、尾翼79aと、受風ユニット63と尾翼79aとを連結する連結部材79bと、連結部材79bを回転自在に支持する支持機構79cと、を具備している。この風力発電システム83では、尾翼79aが風力を受けると、尾翼79aは風下に、受風ユニット63は風上に配置される。つまり、風見鶏のような動きをする。したがって、風力発電システム83では、風向きが変わっても、受風ユニット63が常に風上側に配置され、受風翼10aが振動するために、稼働効率が高くなる。   FIG. 17 is an explanatory diagram showing a schematic configuration of another wind power generation system 83 using the wind receiving unit 63. The wind power generation system 83 includes a tail blade 79a, a connecting member 79b that connects the wind receiving unit 63 and the tail blade 79a, and a support mechanism 79c that rotatably supports the connecting member 79b. In the wind power generation system 83, when the tail blade 79a receives wind force, the tail blade 79a is disposed on the leeward side, and the wind receiving unit 63 is disposed on the windward side. In other words, it moves like a weathercock. Therefore, in the wind power generation system 83, even if the wind direction changes, the wind receiving unit 63 is always disposed on the windward side, and the wind receiving blade 10a vibrates, so that the operation efficiency is increased.

図18に上述した発電装置、受風ユニット、風力発電システムの配置形態を示す説明図を示す。受風翼の長さが数メートル〜数十メートルに及ぶ大型のものの設置場所としては、既存のプロペラ式発電装置等が設置されている場所、例えば、海岸線近くの自然の風が吹く場所、山間地の谷間等が挙げられる。この場合には、受風翼を気象経験上の最大風速における振動振幅を考慮して、その振動時に接触しない間隔で配置すればよい。   FIG. 18 is an explanatory diagram showing an arrangement form of the above-described power generation apparatus, wind receiving unit, and wind power generation system. The installation location of large-sized wind receiving blades ranging from several meters to several tens of meters includes places where existing propeller-type power generators are installed, such as places where natural wind blows near the coastline, mountains For example, the valley of the earth. In this case, considering the vibration amplitude at the maximum wind speed based on weather experience, the wind receiving blades may be arranged at intervals that do not come into contact with each other during the vibration.

樹木型の風力発電システム80′等は、例えば、海岸線や家屋の周囲に配置することができ、この場合には、防風林としての役割を担わせることができる。風力発電システム80′等を砂浜近くに配置した場合には、防砂林としても機能させることができる。また、パネル型の受風ユニット64は、道路脇や線路脇、家屋回りに配置することができ、この場合には、受風ユニット64に、ガードレールや横風防止柵、進入防止柵、防音壁等としての役割を持たせることができる。さらに受風ユニット64は、各種工場やビル、家屋等で用いられる排気設備から排出される風、例えば、ボイラーやエアコンの排気口に取り付けることができ、この場合には、自然環境に左右されない定期的かつ効率的な発電が可能となる。受風ユニット65は、例えば、家屋の屋根等に設けることができる。   The tree-type wind power generation system 80 ′ and the like can be arranged, for example, around a coastline or a house, and in this case, can play a role as a windbreak forest. When the wind power generation system 80 'or the like is arranged near the sandy beach, it can function as a sand protection forest. Further, the panel-type wind receiving unit 64 can be arranged on the side of the road, the side of the track, or around the house. In this case, the guard unit, the cross wind prevention fence, the entry prevention fence, the soundproof wall, etc. Can be given a role. Furthermore, the wind receiving unit 64 can be attached to wind exhausted from exhaust facilities used in various factories, buildings, houses, etc., for example, exhaust ports of boilers and air conditioners. And efficient power generation becomes possible. The wind receiving unit 65 can be provided, for example, on the roof of a house.

こうして所定の場所に設けられた風力発電装置等によって作り出された電気エネルギーは、好ましくはその風力発電装置等が配置されている場所の近傍における家庭用電力や道路・街頭照明用電力として、直接にまたは所定の充電装置に充電されて、用いられる。   The electrical energy produced by the wind power generators, etc. provided in the predetermined place is preferably directly used as household power or road / street lighting power in the vicinity of the place where the wind power generators are arranged. Alternatively, a predetermined charging device is charged and used.

本発明の風力発電装置および風力発電システムは、大型のものは大電力発電装置として好適であり、中・小型のものは小型発電装置として、各種電気機器の運転や充電装置として好適である。   As for the wind power generation apparatus and the wind power generation system of the present invention, a large one is suitable as a high power power generation apparatus, a medium / small one is suitable as a small power generation apparatus, and an operation and charging apparatus for various electric devices.

風力発電装置の概略構造を示す正面図。The front view which shows schematic structure of a wind power generator. 図1に示す風力発電装置を構成する受風翼の斜視図。The perspective view of the wind receiving blade which comprises the wind power generator shown in FIG. 図1に示す受風翼の振動形態を模式的に示す説明図。Explanatory drawing which shows typically the vibration form of the wind receiving blade shown in FIG. 圧電板からの集電を行う集電回路の一例を示す説明図。Explanatory drawing which shows an example of the current collection circuit which collects current from a piezoelectric plate. 別の風力発電装置の概略構造を示す正面図および側面図。The front view and side view which show schematic structure of another wind power generator. さらに別の風力発電装置の概略構造を示す側面図。Furthermore, the side view which shows schematic structure of another wind power generator. さらに別の風力発電装置の概略構造を示す正面図。Furthermore, the front view which shows schematic structure of another wind power generator. 油圧発電ユニットの概略構成を示す説明図。Explanatory drawing which shows schematic structure of a hydraulic power generation unit. さらに別の風力発電装置の概略構造を示す斜視図。Furthermore, the perspective view which shows schematic structure of another wind power generator. 別の受風翼の概略構造を示す斜視図。The perspective view which shows schematic structure of another wind receiving blade. さらに別の風力発電装置の概略構成を示す説明図。Furthermore, explanatory drawing which shows schematic structure of another wind power generator. 複数の受風翼を用いて構成された受風ユニットの種々の例を示す説明図。Explanatory drawing which shows the various examples of the wind receiving unit comprised using the several wind receiving blade. 風力発電システムの概略構成を示す説明図。Explanatory drawing which shows schematic structure of a wind power generation system. 別の風力発電システムの概略構成を示す説明図。Explanatory drawing which shows schematic structure of another wind power generation system. さらに別の風力発電システムの概略構成を示す説明図。Furthermore, explanatory drawing which shows schematic structure of another wind power generation system. さらに別の風力発電システムの概略構成を示す説明図。Furthermore, explanatory drawing which shows schematic structure of another wind power generation system. さらに別の風力発電システムの概略構成を示す説明図。Furthermore, explanatory drawing which shows schematic structure of another wind power generation system. 発電装置、受風ユニット、風力発電システムの配置形態を模式的に示す説明図。Explanatory drawing which shows typically the arrangement | positioning form of a power generator, a wind receiving unit, and a wind power generation system.

符号の説明Explanation of symbols

1・2・2a・3・4・5;風力発電装置
10・10a〜10e・30・30a;受風翼
11a・11b・21b・21c・31a・31b;圧電板
12・23・32;保持部材
21;圧電バイモルフ素子
21a;補強板
22;連結部材
40;発電コイル
50;油圧発電ユニット
51;油圧シリンダ
52;アキュームレータ
53;油圧モータ
54;油圧調整弁
55;発電機
61・62・63・64・65;受風ユニット
71・72・78b・78c;保持部材
73;フレーム
74;パネル
76・77;支柱
78a;主支柱
79a;尾翼
79b;連結部材
79c;支持機構
80・80′・81・82・83;風力発電システム
90;集電回路
91;整流回路
92;負荷
93;充放電回路
94;ダイオード
95;電力貯蔵体
1, 2, 2a, 3, 4, 5; wind power generators 10, 10a to 10e, 30, 30a; wind receiving blades 11a, 11b, 21b, 21c, 31a, 31b; piezoelectric plates 12, 23, 32; 21; Piezoelectric bimorph element 21a; Reinforcing plate 22; Connecting member 40; Power generation coil 50; Hydraulic power generation unit 51; Hydraulic cylinder 52; Accumulator 53; Hydraulic motor 54; Hydraulic pressure adjustment valve 55: Generators 61, 62, 63, 64, 65; Wind receiving unit 71, 72, 78b, 78c; Holding member 73; Frame 74; Panel 76, 77; Column 78a; Main column 79a; Tail 79b; Connecting member 79c; Support mechanism 80/80 '/ 81/82 / 83; wind power generation system 90; current collecting circuit 91; rectifier circuit 92; load 93; charge / discharge circuit 94; diode 95;

Claims (9)

バネ性を有する材料で形成され、
長尺状で、対向する短辺の長さが互いに異なる台形状の板部材が、その幅方向に45度〜135度の角度で二つ折りされた形状を有し、
前記短辺のうちの短い方の端部が支持された状態で風力を受けた際に、先端側の折り曲げ部が該折り曲げ部の長さ方向軸回りに回動するようなねじれ振動を生ずる受風翼と、
前記受風翼の振動によって発電する発電部と、
を具備することを特徴とする風力発電装置。
Formed of springy material,
A long and trapezoidal plate member having different short side lengths is folded in half at an angle of 45 to 135 degrees in the width direction,
When receiving the wind force in a state where the shorter end portion of the short sides is supported , a receiving portion that generates a torsional vibration in which the bent portion on the front end side rotates about the longitudinal axis of the bent portion. Wind wings,
A power generation unit that generates power by vibration of the wind receiving blades;
The wind power generator characterized by comprising.
前記受風翼は、対向する短辺の長さが互いに異なる略短冊状の2枚の板部材が、所定の角度をなし、かつ、長手方向の一端が他端よりも幅広となるように、その長辺で接合された構造を有することを特徴とする請求項1に記載の風力発電装置。   In the wind receiving blade, two substantially strip-shaped plate members having opposite short sides having different lengths form a predetermined angle, and one end in the longitudinal direction is wider than the other end. The wind power generator according to claim 1, wherein the wind power generator has a structure joined at its long side. 前記2枚の板部材は一体であることを特徴とする請求項2に記載の風力発電装置。   The wind turbine generator according to claim 2, wherein the two plate members are integrated. 前記発電部は屈曲することによって発電する圧電素子を有し、
前記圧電素子は、前記受風翼に取り付けられていることを特徴とする請求項1から請求項3のいずれか1項に記載の風力発電装置。
The power generation unit has a piezoelectric element that generates power by bending,
The wind power generator according to any one of claims 1 to 3 , wherein the piezoelectric element is attached to the wind receiving blade.
前記受風翼と前記発電部とを連結する連結部材をさらに具備し、かつ、前記発電部は屈曲することによって発電する圧電素子を有し、
前記受風翼のねじれ振動を、前記連結部材を介して前記圧電素子に伝えることによって、前記圧電素子を撓ませて発電させることを特徴とする請求項1から請求項3のいずれか1項に記載の風力発電装置。
And further comprising a connecting member for connecting the wind receiving blade and the power generation unit, and the power generation unit includes a piezoelectric element that generates power by bending,
The torsional vibration of the wind receiving blades by transmitting to the piezoelectric element via the coupling member, to any one of claims 1 to 3, characterized in that power is generated by bending the piezoelectric element The wind power generator described.
前記受風翼と前記発電部とを連結する連結部材をさらに具備し、かつ、前記発電部は電磁誘導により発電する発電コイル、または、油圧ポンプおよび油圧発電機を有し、
前記受風翼のねじれ振動を、前記連結部材を介して前記発電コイルまたは前記油圧ポンプおよび油圧発電機に伝えることによって、前記発電コイルまたは前記油圧ポンプおよび油圧発電機を動作させて発電させることを特徴とする請求項1から請求項3のいずれか1項に記載の風力発電装置。
A connecting member that connects the wind-receiving blade and the power generation unit; and the power generation unit includes a power generation coil that generates power by electromagnetic induction, or a hydraulic pump and a hydraulic power generator,
Transmitting the torsional vibration of the wind-receiving blade to the power generation coil or the hydraulic pump and the hydraulic power generator via the connecting member, thereby operating the power generation coil or the hydraulic pump and the hydraulic power generator to generate power. The wind power generator according to any one of claims 1 to 3 , wherein the wind power generator is characterized.
請求項1から請求項5のいずれかに記載の風力発電装置を複数用いて構成される風力発電システムであって、
複数の前記受風翼が所定間隔で並べられ、
複数の前記発電部で発生する電気エネルギーを直列および/または並列で集電する集電装置を具備することを特徴とする風力発電システム。
A wind power generation system configured by using a plurality of wind power generation devices according to any one of claims 1 to 5 ,
A plurality of the wind receiving blades are arranged at a predetermined interval,
A wind power generation system comprising a current collector that collects electric energy generated in a plurality of the power generation units in series and / or in parallel.
所定数の前記受風翼が、風を受ける面が同じ方向を向くように、縦列もしくは並列または縦並列または放射状に並べられた構成を有する受風ユニットを複数具備し、
前記複数の受風ユニットは、互いに風を受ける面が異方向を向いていることを特徴とする請求項7に記載の風力発電システム。
A plurality of wind receiving units having a configuration in which a predetermined number of the wind receiving blades are arranged in tandem, in parallel, in longitudinal parallel, or radially so that wind receiving surfaces face the same direction,
The wind power generation system according to claim 7 , wherein surfaces of the plurality of wind receiving units that receive wind from each other face in different directions.
所定数の前記受風翼が、風を受ける面が同じ方向を向くように、縦列もしくは並列または縦並列または放射状に並べられた構成を有する受風ユニットと、
尾翼と、
前記受風ユニットと前記尾翼とを連結する連結部材と、
前記連結部材を回転自在に支持する支持機構と、
を具備し、
前記尾翼が風力を受けることによって前記受風ユニットの風を受ける面が風向きの変化に応じて風上を向くことを特徴とする請求項7に記載の風力発電システム。
A wind receiving unit having a configuration in which a predetermined number of the wind receiving blades are arranged in a row, in a parallel, in a longitudinal parallel, or in a radial manner so that surfaces receiving wind are directed in the same direction;
The tail,
A connecting member for connecting the wind receiving unit and the tail,
A support mechanism for rotatably supporting the connecting member;
Comprising
The wind power generation system according to claim 7 , wherein the wind receiving surface of the wind receiving unit faces the windward according to a change in wind direction when the tail blade receives wind force.
JP2004187370A 2004-02-25 2004-06-25 Wind power generator and wind power generation system Expired - Fee Related JP3759945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004187370A JP3759945B2 (en) 2004-02-25 2004-06-25 Wind power generator and wind power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004049550 2004-02-25
JP2004187370A JP3759945B2 (en) 2004-02-25 2004-06-25 Wind power generator and wind power generation system

Publications (2)

Publication Number Publication Date
JP2005273644A JP2005273644A (en) 2005-10-06
JP3759945B2 true JP3759945B2 (en) 2006-03-29

Family

ID=35173576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004187370A Expired - Fee Related JP3759945B2 (en) 2004-02-25 2004-06-25 Wind power generator and wind power generation system

Country Status (1)

Country Link
JP (1) JP3759945B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102217184A (en) * 2008-09-29 2011-10-12 马来西亚微电子系统有限公司 A device for maximum detection of vibrating energy for harvesting energy

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590641B2 (en) * 2004-10-19 2010-12-01 国立大学法人京都大学 Energy converter, flag type energy converter
US7360996B2 (en) * 2005-12-07 2008-04-22 General Electric Company Wind blade assembly and method for damping load or strain
JP4792296B2 (en) * 2006-01-24 2011-10-12 太平洋セメント株式会社 Wind power generator
ATE500622T1 (en) * 2006-03-28 2011-03-15 Fiat Ricerche AUTONOMOUS POWER SUPPLY APPARATUS AND METHOD FOR ROAD BEACONS
MY146160A (en) * 2008-09-18 2012-06-29 Mimos Berhad An energy harvester
KR100994706B1 (en) * 2010-06-28 2010-11-25 주식회사 승화이엔씨 Vibration energy harvester using wind
CN101915205B (en) * 2010-09-03 2012-11-07 许士泉 Frontal area adjustable wind machine blade
JP5685719B2 (en) * 2010-10-01 2015-03-18 パナソニックIpマネジメント株式会社 Vibration power generation element and vibration power generation apparatus using the same
CN103321838B (en) * 2013-06-30 2015-06-03 嵊州市远见机械科技有限公司 Double-transmission single-blade wind-driven generator
CN103758701B (en) * 2014-01-17 2016-04-06 吉林大学 A kind of wind generating unit based on direct piezoelectric effect
KR101562788B1 (en) 2014-02-27 2015-10-23 가톨릭관동대학교산학협력단 Wind power generator
CN106846852B (en) * 2016-12-23 2023-04-07 长沙理工大学 Self-powered traffic light system based on wind pressure
CN107061131B (en) * 2017-03-29 2020-03-13 天津大学 Folding vortex-induced vibration tidal current energy power generation device
CN107634676A (en) * 2017-10-24 2018-01-26 重庆大学 A kind of miniature energy gathers piezoelectricity tree
CN111852771B (en) * 2020-07-29 2022-03-08 西南石油大学 Small wind power generation device and method adaptive to wind direction and wind speed

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102217184A (en) * 2008-09-29 2011-10-12 马来西亚微电子系统有限公司 A device for maximum detection of vibrating energy for harvesting energy
CN102217184B (en) * 2008-09-29 2014-04-02 马来西亚微电子系统有限公司 A device for maximum detection of vibrating energy for harvesting energy

Also Published As

Publication number Publication date
JP2005273644A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
WO2006109362A1 (en) Wind turbine generator and wind turbine generating system
JP3759945B2 (en) Wind power generator and wind power generation system
JP4651015B2 (en) Wind power generator
CN106555727B (en) Ocean wave energy piezoelectric power generation device and working mode thereof
CN102790547B (en) Bistable state double cantilever beam piezoelectric generating device
US20120169055A1 (en) Novel electrical generators for use in unmoored buoys and the like platforms with low-frequency and time-varying oscillatory motions
CN103299534A (en) Bladeless wind power generator
JP2006291842A (en) Wind power generation device
WO2010043617A2 (en) Generator for converting fluid energy to electrical energy
CN102170246B (en) Vibrating type miniature wind driven generator with flexible beam structure
CN107994808A (en) Alternation flexion type wind-force piezoelectric energy collector
CN108847788B (en) One kind being based on multistable piezoelectric harvester
JP2008180118A (en) Wind power generation device using piezoelectric element
JP2007097278A (en) Power information providing terminal device being mobile generating set, and power feed information providing service system
JP4562617B2 (en) Wind power generator
JP4588801B2 (en) Power generator
TWI590578B (en) Piezoelectric pumping device
JP2008245483A (en) Piezoelectric power plant
JP2006226153A (en) Wind power generation light emission device
JP2008099489A (en) Energy converter
JP2007051562A (en) Wind turbine generator and wind power generation system
JP2011024315A (en) Wave power generator
JP2001180575A (en) Wave force power generating buoy
CN207460030U (en) A kind of three-dimensional multidirectional broadband energy collecting device
JP2011193665A (en) Power generation system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees