JP3759691B2 - Optical communication device - Google Patents

Optical communication device Download PDF

Info

Publication number
JP3759691B2
JP3759691B2 JP2000189628A JP2000189628A JP3759691B2 JP 3759691 B2 JP3759691 B2 JP 3759691B2 JP 2000189628 A JP2000189628 A JP 2000189628A JP 2000189628 A JP2000189628 A JP 2000189628A JP 3759691 B2 JP3759691 B2 JP 3759691B2
Authority
JP
Japan
Prior art keywords
communication
lines
line
capacity
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000189628A
Other languages
Japanese (ja)
Other versions
JP2002009802A (en
Inventor
正志 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000189628A priority Critical patent/JP3759691B2/en
Publication of JP2002009802A publication Critical patent/JP2002009802A/en
Application granted granted Critical
Publication of JP3759691B2 publication Critical patent/JP3759691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、異なるリングネットワークのノード装置間の通信に利用する光通信装置に関するものである。
【0002】
【従来の技術】
図4は、従来のリングネットワークのノード装置間通信における光通信装置を示す構成図であり、図において、1及び2は各々リングネットワーク、A1及びB1はリングネットワーク1のノード装置、A2及びB2はリングネットワーク2のノード装置、3はノード装置A1−A2ルートの通信回線、4はノード装置B1−B2ルートの通信回線である。
【0003】
次に動作について説明する。
リングネットワーク1及び2間のノード装置間通信は次のようにして行われる。予めノード装置間の通信容量M〔b/s〕を現用と予備に分けておき、障害発生時に予備容量を用いて冗長系ルートを構成するようにしている。すなわち、図4(b)に示すように、通信回線3及び4の通信容量Mを、現用容量がM/2、予備容量がM/2となるようにに分けておき、平常時は通信回線3及び4の各々でM/2の通信容量で通信する。そして、通信回線3に障害が発生すると、ノード装置A1→B1→通信回線4を通るルートを用いて予備容量M/2を送信することでバックアップする。同様に、通信回線4に障害が発生すると、ノード装置B1→A1→通信回線3を通るルートを用いて予備容量M/2を送信してバックアップする。
【0004】
【発明が解決しようとする課題】
従来の光通信装置は以上のように構成されているので、1ルート当たりの現用系の通信容量はM/2であり、回線利用効率は50%という低利用率となるという課題があった。
この発明は上記のような課題を解決するためになされたもので、現用系の通信容量を減らすことなく、回線利用効率の高い冗長系を有する光通信装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
この発明に係る光通信装置は、通信回線で送信可能な最大値の通信容量Mを送信し、前記通信回線の障害発生時にバックアップするように該通信回線で接続されていないノード装置間を接続する予備回線を備え、通信回線は2回線であり、予備回線は2回線であり、前記通信回線の各々で通信容量Mを送信し、前記予備回線の各々で現用のM/2の通信容量を送信し、前記通信回線のいずれかの障害発生時に前記予備回線の各々で予備のM/2の通信容量を送信するようにしたことを特徴とするものである。
0006
この発明に係る光通信装置は、通信回線で送信可能な最大値の通信容量Mを送信し、前記通信回線の障害発生時にバックアップするように該通信回線で接続されていないノード装置間を接続する予備回線を備え、通信回線は3回線であり、予備回線は4回線であり、通信回線の各々で通信容量Mを送信し、前記予備回線の各々で現用の3M/4の通信容量を送信し、前記通信回線のいずれかの障害発生時に前記予備回線の各々で予備のM/4の通信容量を送信するようにしたことを特徴とするものである。
0007
【発明の実施の形態】
以下、この発明の実施の一形態を説明する。
実施の形態1.
図1(a)は、この発明の実施の形態1による光通信装置を示す概略構成図であり、図1(a)において、1及び2はリングネットワーク、A1及びB1はリングネットワーク1のノード装置、A2及びB2はリングネットワーク2のノード装置、3はノード装置A1−A2ルートの通信回線、4はノード装置B1−B2ルートの通信回線、5はノード装置B1−A2で予備系ルートを構成する予備回線である。
0008
次に動作について説明する。
リングネットワーク1及び2間のノード装置間通信は次のようにして行われる。すなわち、平常時はノード装置A1−A2ルートの通信回線3及びノード装置B1−B2ルートの通信回線4を使用し、各々通信容量Mをもって通信する。なお、この通信容量Mとは通信回線3及び4で送信可能な最大容量のことである(以下同じ)。そして、通信回線3又は4に障害が発生すると、ノード装置A1→B1→予備回線5を通るルートを用いてバックアップする。
0009
この状態を図1(b)の図表に示している。この図表に示すように、通信回線3及び4で現用の通信容量Mで通信が行われ、そのとき予備回線5は使用されていない。そして、通信回線3又は4に障害が発生すると、予備回線5を用いて通信容量Mで通信が行われる。
0010
すなわち、実施の形態1では、3本の回線3,4,5のうちの2本の回線で2Mの通信容量で通信が行われることになるので、1ルート当たりの平均通信容量は2M/3となる。したがって、現用系の通信容量Mを減らすことなく冗長系の構成が可能となり、従来に比べて回線利用効率が向上する。
0011
実施の形態2.
図2(a)はこの発明の実施の形態2による光通信装置を示す概略構成図であり、前記図1(a)と同一部分には同一符号を附して重複説明を省略する。図2(a)において、5は実施の形態1と同じノード装置B1−A2の予備系ルートを構成する予備回線、6はノード装置A1−B2の予備系ルートを構成する予備回線である。
0012
次に動作について説明する。
平常時は現用系の通信回線3,4を使用し、各々現用の通信容量Mで通信すると共に、予備回線5,6の各々でも現用のM/2の通信容量で通信する。そして、通信回線3又は4に障害が発生すると、予備回線5及び6の各々でさらに予備のM/2の通信容量を加えて送信してバックアップする。
0013
この状態を図2(b)の図表に示している。この図表に示すように、通信回線3及び4で現用の通信容量Mで通信が行われると共に、予備回線5及び6でもM/2の現用系の通信容量で送信される。そして、通信回線3又は4に障害が発生すると、予備回線5及び6の各々に予備のM/2の通信容量が加わり、両回線5,6を合わせて2Mの通信容量で通信が行われる。
0014
すなわち、実施の形態2では、2本の通信回線3,4を用いて通信容量Mで通信が行われ、かつ予備回線5,6を用いて各々で現用のM/2の通信容量で通信が行われる。つまり、4本の回線3,4,5,6で計3Mの通信容量で通信が行われることになるので、1ルート当たりの平均通信容量は3M/4となる。したがって、現用系の通信容量Mを減らすことなく冗長系の構成が可能となり、従来に比べて回線利用効率がより向上する。
0015
実施の形態3.
図3(a)はこの発明の実施の形態3による光通信装置を示す概略構成図であり、前記図2(a)と同一部分には同一符号を附して重複説明を省略する。図3(a)において、C1及びC2は各々リングネットワーク1及び2のノード装置、7はノード装置C1−C2ルートの通信回線、8はノード装置B1−C2で予備系ルートを構成する予備回線、9はノード装置C1−B2で予備系ルートを構成する予備回線である。
0016
次に動作について説明する。
平常時は通信回線3,4及び7を使用し、各々通信容量Mで通信すると共に、予備回線5,6,8,9で各々現用の3M/4の通信容量で通信する。そして、通信回線3,4又は7のいずれかに障害が発生すると、予備回線5,6,8,9を用いてバックアップする。
0017
この状態を図3(b)の図表に示している。この図表に示すように、通信回線3,4,7で現用系の通信容量Mで通信が行われ、そのとき予備回線5,6,8,9の各々で現用の3M/4の通信容量で通信が行われる。そして、通信回線3,4,7のいずれかに障害が発生すると、予備回線5,6,8,9を用いて各々予備のM/4の通信容量を加えて通信が行われる。
0018
すなわち、実施の形態3では、3本の通信回線3,4,7を用いて各々通信容量Mで通信が行われ、かつ予備回線5,6,8,9を用いて各々M/4の通信容量で通信が行われる。つまり、7本の回線3〜9で計6Mの通信容量で通信が行われることになるので、1ルート当たりの平均通信容量は6M/7となる。したがって、現用系の通信容量Mを減らすことなく冗長系の構成が可能となり、従来に比べて回線利用効率がさらに向上する。
0019
【発明の効果】
以上のように、この発明によれば、通信回線で接続されていないノード装置間に予備ルートを構成したので、現用系の通信容量Mを減らすことなく回線利用効率の高い冗長系の構成が可能となる。
また、2回線の通信回線に2回線の予備回線を設けたので、平均通信容量は3M/4となり、回線利用効率のより高い冗長系の構成が可能となる。
0020
この発明によれば、3回線の通信回線に4回線の予備回線を設けたので、平均通信容量は6M/7となり、回線利用効率のさらに高い冗長系の構成が可能となる。
【図面の簡単な説明】
【図1】 (a)はこの発明の実施の形態1による構成図、(b)はルートと通信容量の関係を示す図表である。
【図2】 (a)はこの発明の実施の形態2による構成図、(b)はルートと通信容量の関係を示す図表である。
【図3】 (a)はこの発明の実施の形態3による構成図、(b)はルートと通信容量の関係を示す図表である。
【図4】 (a)は従来の光通信装置の構成図、(b)はルートと通信容量の関係を示す図表である。
【符号の説明】
1,2 リングネットワーク、3,4,7 通信回線、5,6,8,9, 予備回線、A1,A2,B1,B2,C1,C2 ノード装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical communication device used for communication between node devices of different ring networks.
[0002]
[Prior art]
FIG. 4 is a configuration diagram showing an optical communication device in communication between node devices of a conventional ring network. In FIG. 4, 1 and 2 are ring networks, A1 and B1 are node devices of the ring network 1, and A2 and B2 are The node device 3 of the ring network 2 is a communication line of the route of the node device A1-A2, and 4 is a communication line of the route of the node device B1-B2.
[0003]
Next, the operation will be described.
Communication between node devices between the ring networks 1 and 2 is performed as follows. The communication capacity M [b / s] between the node devices is divided in advance into active and spare, and a redundant route is configured using the spare capacity when a failure occurs. That is, as shown in FIG. 4B, the communication capacity M of the communication lines 3 and 4 is divided so that the working capacity is M / 2 and the standby capacity is M / 2. Each of 3 and 4 communicates with a communication capacity of M / 2. When a failure occurs in the communication line 3, the backup capacity M / 2 is transmitted by using a route passing through the node devices A 1 → B 1 → communication line 4. Similarly, when a failure occurs in the communication line 4, the backup capacity M / 2 is transmitted and backed up using a route passing through the node equipment B1->A1-> communication line 3.
[0004]
[Problems to be solved by the invention]
Since the conventional optical communication apparatus is configured as described above, there is a problem that the communication capacity of the active system per route is M / 2 and the line utilization efficiency is a low utilization rate of 50%.
The present invention has been made to solve the above-described problems, and an object thereof is to provide an optical communication apparatus having a redundant system with high line utilization efficiency without reducing the communication capacity of the active system.
[0005]
[Means for Solving the Problems]
The optical communication apparatus according to the present invention transmits a maximum communication capacity M that can be transmitted through a communication line, and connects node apparatuses that are not connected through the communication line so as to back up when a failure occurs in the communication line. A spare line is provided , there are two communication lines, two spare lines, the communication capacity M is transmitted on each of the communication lines, and the current M / 2 communication capacity is transmitted on each of the spare lines. However, when a failure occurs in any of the communication lines, a spare M / 2 communication capacity is transmitted on each of the spare lines .
[ 0006 ]
The optical communication apparatus according to the present invention transmits a maximum communication capacity M that can be transmitted through a communication line, and connects node apparatuses that are not connected through the communication line so as to back up when a failure occurs in the communication line. A spare line is provided, there are three communication lines, four spare lines, and each of the communication lines transmits a communication capacity M, and each of the spare lines transmits a current 3M / 4 communication capacity. A spare M / 4 communication capacity is transmitted on each of the spare lines when a failure occurs in any of the communication lines .
[ 0007 ]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below.
Embodiment 1 FIG.
FIG. 1A is a schematic configuration diagram illustrating an optical communication apparatus according to Embodiment 1 of the present invention. In FIG. 1A, reference numerals 1 and 2 denote ring networks, and A1 and B1 denote node apparatuses of the ring network 1. , A2 and B2 are node devices of the ring network 2, 3 is a communication line for the route of the node device A1-A2, 4 is a communication line for the route of the node device B1-B2, and 5 is a standby route composed of the node devices B1-A2. It is a protection line.
[ 0008 ]
Next, the operation will be described.
Communication between node devices between the ring networks 1 and 2 is performed as follows. That is, in the normal time, the communication line 3 of the node device A1-A2 route and the communication line 4 of the node device B1-B2 route are used, and each communicates with the communication capacity M. The communication capacity M is the maximum capacity that can be transmitted through the communication lines 3 and 4 (the same applies hereinafter). When a failure occurs in the communication line 3 or 4, backup is performed using a route passing through the node equipment A 1 → B 1 → the backup line 5.
[ 0009 ]
This state is shown in the chart of FIG. As shown in this chart, communication is performed on the communication lines 3 and 4 with the current communication capacity M, and at this time, the protection line 5 is not used. When a failure occurs in the communication line 3 or 4, communication is performed with the communication capacity M using the backup line 5.
[ 0010 ]
That is, in the first embodiment, communication is performed with a communication capacity of 2M on two of the three lines 3, 4, and 5. Therefore, the average communication capacity per route is 2M / 3. It becomes. Therefore, it is possible to configure a redundant system without reducing the communication capacity M of the working system, and the line utilization efficiency is improved as compared with the conventional system.
[ 0011 ]
Embodiment 2. FIG.
FIG. 2A is a schematic configuration diagram showing an optical communication apparatus according to Embodiment 2 of the present invention. The same parts as those in FIG. In FIG. 2A, 5 is a protection line constituting the protection route of the same node apparatus B1-A2 as in the first embodiment, and 6 is a protection line constituting the protection system route of the node apparatus A1-B2.
[ 0012 ]
Next, the operation will be described.
In normal times, the working communication lines 3 and 4 are used to communicate with the working communication capacity M, and each of the protection lines 5 and 6 communicates with the working communication capacity of M / 2. When a failure occurs in the communication line 3 or 4, the backup lines 5 and 6 further add a backup M / 2 communication capacity, and transmit and back up.
[ 0013 ]
This state is shown in the chart of FIG. As shown in this chart, communication is performed with the working communication capacity M on the communication lines 3 and 4, and transmission is also performed with the working communication capacity of M / 2 on the protection lines 5 and 6. When a failure occurs in the communication line 3 or 4, a spare M / 2 communication capacity is added to each of the spare lines 5 and 6, and both lines 5 and 6 are combined to perform communication with a 2M communication capacity.
[ 0014 ]
That is, in the second embodiment, communication is performed with the communication capacity M using the two communication lines 3 and 4, and communication is performed with the communication capacity of the current M / 2 using the protection lines 5 and 6 respectively. Done. That is, since communication is performed with a total of 3M communication capacity on the four lines 3, 4, 5, and 6, the average communication capacity per route is 3M / 4. Therefore, it is possible to configure a redundant system without reducing the communication capacity M of the working system, and the line utilization efficiency is further improved as compared with the conventional system.
[ 0015 ]
Embodiment 3 FIG.
FIG. 3A is a schematic configuration diagram showing an optical communication apparatus according to Embodiment 3 of the present invention. The same parts as those in FIG. In FIG. 3A, C1 and C2 are node devices of the ring networks 1 and 2, respectively, 7 is a communication line of the node devices C1-C2 route, 8 is a protection line that forms a backup route with the node devices B1-C2, Reference numeral 9 denotes a protection line constituting a protection system route with the node equipment C1-B2.
[ 0016 ]
Next, the operation will be described.
During normal operation, communication lines 3, 4 and 7 are used to communicate with each other with a communication capacity M, and with backup lines 5, 6, 8 and 9, each with a current 3M / 4 communication capacity. When a failure occurs in any of the communication lines 3, 4 or 7, backup is performed using the protection lines 5, 6, 8 and 9.
[ 0017 ]
This state is shown in the chart of FIG. As shown in this chart, communication is carried out with the communication capacity M of the active system on the communication lines 3, 4, and 7, and at that time, the communication capacity of 3M / 4 of the active line is used with each of the protection lines 5, 6, 8, and 9. Communication takes place. When a failure occurs in any of the communication lines 3, 4, and 7, communication is performed using the backup lines 5, 6, 8, and 9, and adding a spare M / 4 communication capacity.
[ 0018 ]
That is, in the third embodiment, communication is performed with the communication capacity M using the three communication lines 3, 4, and 7, and M / 4 communication is performed using the protection lines 5, 6, 8, and 9. Communication is performed by capacity. That is, since communication is performed with a total communication capacity of 6M through the seven lines 3 to 9, the average communication capacity per route is 6M / 7. Therefore, it is possible to configure a redundant system without reducing the communication capacity M of the working system, and the line utilization efficiency is further improved as compared with the conventional system.
[ 0019 ]
【The invention's effect】
As described above, according to the present invention, since the backup route is configured between the node devices not connected by the communication line, it is possible to configure a redundant system with high line utilization efficiency without reducing the communication capacity M of the active system. It becomes.
Further, since two standby lines are provided for the two communication lines, the average communication capacity is 3M / 4, and a redundant system configuration with higher line utilization efficiency is possible.
[ 0020 ]
According to the present invention, since four standby lines are provided for three communication lines, the average communication capacity is 6M / 7, and a redundant system configuration with higher line utilization efficiency is possible.
[Brief description of the drawings]
1A is a configuration diagram according to Embodiment 1 of the present invention, and FIG. 1B is a chart showing a relationship between a route and a communication capacity.
FIG. 2A is a configuration diagram according to Embodiment 2 of the present invention, and FIG. 2B is a chart showing the relationship between routes and communication capacity.
3A is a configuration diagram according to Embodiment 3 of the present invention, and FIG. 3B is a chart showing a relationship between routes and communication capacity.
4A is a configuration diagram of a conventional optical communication apparatus, and FIG. 4B is a chart showing a relationship between a route and a communication capacity.
[Explanation of symbols]
1, 2, ring network, 3, 4, 7 communication line, 5, 6, 8, 9, standby line, A1, A2, B1, B2, C1, C2 node device.

Claims (2)

異なるリングネットワークのノード装置間に接続される複数の通信回線を介して光通信を行う光通信装置において、前記通信回線で送信可能な最大値の通信容量Mを送信し、前記通信回線の障害発生時にバックアップするように該通信回線で接続されていないノード装置間を接続する予備回線を備え、前記通信回線は2回線であり、前記予備回線は2回線であり、前記通信回線の各々で通信容量Mを送信し、前記予備回線の各々で現用のM/2の通信容量を送信し、前記通信回線のいずれかの障害発生時に前記予備回線の各々で予備のM/2の通信容量を送信するようにしたことを特徴とする光通信装置。In an optical communication device that performs optical communication via a plurality of communication lines connected between node devices of different ring networks, the maximum communication capacity M that can be transmitted on the communication line is transmitted, and a failure of the communication line occurs. In some cases, a backup line for connecting node devices not connected by the communication line is provided to back up , the communication line is two lines, the spare line is two lines, and each of the communication lines has a communication capacity. M is transmitted, the active M / 2 communication capacity is transmitted on each of the protection lines, and the spare M / 2 communication capacity is transmitted on each of the protection lines when a failure occurs in any of the communication lines. An optical communication apparatus characterized in that it is configured as described above . 異なるリングネットワークのノード装置間に接続される複数の通信回線を介して光通信を行う光通信装置において、前記通信回線で送信可能な最大値の通信容量Mを送信し、前記通信回線の障害発生時にバックアップするように該通信回線で接続されていないノード装置間を接続する予備回線を備え、前記通信回線は3回線であり、前記予備回線は4回線であり、前記通信回線の各々で通信容量Mを送信し、前記予備回線の各々で現用の3M/4の通信容量を送信し、前記通信回線のいずれかの障害発生時に前記予備回線の各々で予備のM/4の通信容量を送信するようにしたことを特徴とする光通信装置。 In an optical communication device that performs optical communication via a plurality of communication lines connected between node devices of different ring networks, the maximum communication capacity M that can be transmitted on the communication line is transmitted, and a failure of the communication line occurs. In some cases, a backup line for connecting node devices not connected by the communication line is provided to back up, the communication line is three lines, the spare line is four lines, and each of the communication lines has a communication capacity. M is transmitted, the active 3M / 4 communication capacity is transmitted on each of the protection lines, and the spare M / 4 communication capacity is transmitted on each of the protection lines when any failure occurs in the communication line. An optical communication apparatus characterized in that it is configured as described above .
JP2000189628A 2000-06-23 2000-06-23 Optical communication device Expired - Fee Related JP3759691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000189628A JP3759691B2 (en) 2000-06-23 2000-06-23 Optical communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000189628A JP3759691B2 (en) 2000-06-23 2000-06-23 Optical communication device

Publications (2)

Publication Number Publication Date
JP2002009802A JP2002009802A (en) 2002-01-11
JP3759691B2 true JP3759691B2 (en) 2006-03-29

Family

ID=18689234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000189628A Expired - Fee Related JP3759691B2 (en) 2000-06-23 2000-06-23 Optical communication device

Country Status (1)

Country Link
JP (1) JP3759691B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5949255B2 (en) 2012-07-18 2016-07-06 富士通株式会社 Communication control apparatus and communication control method

Also Published As

Publication number Publication date
JP2002009802A (en) 2002-01-11

Similar Documents

Publication Publication Date Title
CN102325037B (en) A kind of changing method of pseudo-line dual homed network, system and dual-homed Provider Equipment
CA2270597A1 (en) Path-based restoration for mesh networks
CN101697626A (en) Communication fault detection method and system based on two-way forwarding detection protocol
FI20000212A0 (en) Connection negotiation in a telecommunications system
JP2002247038A (en) Method for forming ring in network, method for restoring fault and method for adding node address at the time of forming ring
CN101427499A (en) System and method of multi-nodal APS control protocol signalling
CN101242254B (en) Virtual redundant router system and method for transmitting virtual redundant routing protocol packet
JPH02121547A (en) Local area network
CN104040973B (en) Aggregation group link negotiation method, device and system
JP3759691B2 (en) Optical communication device
CN102271045A (en) Virtual private network (VPN)-instance-based inter-equipment backup method, equipment and system
JP3990196B2 (en) How to avoid communication interruption due to spanning tree reconfiguration
CN102255741B (en) User service information backup method and device
CN102801630B (en) Method and equipment for implementing virtual connection
JP2561006B2 (en) Routing control method
JP2003143171A (en) Transmission/communication system, transmission device and method for by-passing communication pass
JP2001053772A (en) Branch insertion node, ring network connecting the plural nodes, and fault restoration method for the ring network
JPS63114335A (en) State supervisory method
JPH01241227A (en) Transmission line switching and controlling method
JPH0758965B2 (en) Network system
JPH01241937A (en) Standby line constitution system
JP2000069032A (en) Atm communication network
JPH0438172B2 (en)
JPS6394301A (en) Plant supervisory and controlling system
JPH0344134A (en) Terminal controller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees