JP3759583B2 - Method and apparatus for dissolving solid drug - Google Patents

Method and apparatus for dissolving solid drug Download PDF

Info

Publication number
JP3759583B2
JP3759583B2 JP2001357757A JP2001357757A JP3759583B2 JP 3759583 B2 JP3759583 B2 JP 3759583B2 JP 2001357757 A JP2001357757 A JP 2001357757A JP 2001357757 A JP2001357757 A JP 2001357757A JP 3759583 B2 JP3759583 B2 JP 3759583B2
Authority
JP
Japan
Prior art keywords
solid drug
solid
concentration
solution
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001357757A
Other languages
Japanese (ja)
Other versions
JP2003154241A (en
Inventor
晶 飯村
正紹 天野
和彦 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001357757A priority Critical patent/JP3759583B2/en
Publication of JP2003154241A publication Critical patent/JP2003154241A/en
Application granted granted Critical
Publication of JP3759583B2 publication Critical patent/JP3759583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Accessories For Mixers (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として冷却水系に用いることができる固型薬剤の溶解方法及び装置に関する。
【0002】
【従来の技術】
従来、冷却水を循環する循環水系では、一般に、水処理薬剤が用いられている。このような水処理薬剤は、冷却水中のスケール、スライム、又は腐食障害の発生を防止するために用いられている。係る水処理薬剤には、液体型及び固型のものがある。ここで、液体型薬剤は、漏洩の問題があり、漏洩対策を施す必要があった。また、固型薬剤は、溶解速度が不均一で濃度管理が難しく、その取り扱いが煩雑であった。
【0003】
【発明が解決しようとする課題】
本発明は、上記事情に対して、固型薬剤の濃度管理を簡便かつ安定に行うことができるようにした固型薬剤の溶解方法及び装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記目的を達成するために、本発明は、冷却塔を有する循環冷却水系の固型薬剤の溶解方法において、冷却塔内に透水性の容器内に固型薬剤を収納し、上記容器内に溶解液を供給し、供給された溶解液によって固型薬剤を溶解し、固型薬剤を含む溶解液を循環水系に流入させ、該循環水系中の固型薬剤濃度を監視し、固型薬剤濃度に応じて、上記容器への溶解液の供給状態を制御するようにしたことを特徴とする。ここで、上記固形薬剤濃度の監視手段としては、酸化還元電位の測定手段を挙げることができる。
【0005】
上記透水性の容器は、網状の部材を用いた箱型形状として構成したものを用いることが好適である。上記固形薬剤としては、スケール防止剤、防食剤、スライムコントロール剤、消泡剤のうちいずれか一又は二以上を用いることが好適である。
【0006】
また、本発明は、別の側面において、固型薬剤の溶解装置であり、冷却塔を有する循環冷却水系の固型薬剤の溶解装置において、冷却塔内に固型薬剤を収納するための透水性の容器と、該容器内に溶解液を供給するための溶解液供給手段と、固定薬剤を含む溶解液が流入する循環水系中の固型薬剤濃度を監視するための監視手段と、該監視手段からの情報に基づいて、上記容器への溶解液の供給状態を制御するための溶解液制御手段とを含むことを特徴とする。ここで、上記固形薬剤濃度の監視手段としては、酸化還元電位の測定手段を挙げることができる。
【0007】
前記した溶解方法と同様、好ましくは、上記透水性の容器を、網状の部材を用いた箱型形状として構成する。また、上記固形薬剤としては、スケール防止剤、防食剤、スライムコントロール剤、消泡剤のうちいずれか一又は二以上を設置することが好適である。
【0008】
【発明の実施の形態】
以下に添付図面に示した実施の形態を参照しながら、本発明に係る固型薬剤の溶解方法及び装置をさらに詳細に説明する。
図1は、本発明に係る固型薬剤の溶解装置の一実施の形態を含む冷却水の循環システムを示す。
この循環システムは、循環水系本体100と、薬剤供給系200とを含んでいる。
【0009】
循環水系本体100は、熱交換器102と冷却水循環ポンプ104とを含む。循環水系本体100は、冷却塔106から上記熱交換器102に冷却水を循環するための冷却水系を構成している。循環する冷却水によって冷却される対象としては、圧縮式冷凍機、吸収式冷凍機、コンプレッサー等を挙げることができる。しかし、特にこれらに限定されるものではない。
【0010】
薬剤供給系200は、透水性の容器202、水中ポンプ204、酸化還元電位計(以下、ORP計ともいう)206、濃度制御装置208とを含む。
【0011】
透水性の容器202は、固型薬剤を収納するためのものである。容器202は、一般に、網状の部材を用いて、箱型形状に構成することが好適である。もっとも、本発明の目的に反しない限り、円筒状、角柱状、網袋状等でも良く、箱型状に限定されるものではない。また、透水性であれば、網状以外にも、多孔性の部材であって、設置される固型薬剤が溶解される前に排出されない部材であれば採用することができる。また、このような部材自体の材質は、設置される固型薬剤によって腐食されない材質で構成する。したがって、設置される固型薬剤によって異なるが、一般的には、樹脂、プラスチックを用いることが好ましい。
【0012】
透水性の容器202に設置される固型薬剤としては、スケール防止剤、防食剤、スライムコントロール剤、消泡剤のうちいずれか一又は二以上である。具体的には、トリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム等のクロルイソシアヌル酸化合物、次亜塩素酸カルシウムのいずれか一又は二以上を打錠成型した固型薬剤が好適である。なお、本発明の目的に反しない限り、冷却水中のスケール、スライム、又は腐食障害の発生を防止するために用いられる固型薬剤であれば、これらに限定されるものではなく、また、それぞれの薬剤の打錠成型薬剤を混合して使用してもよい。
【0013】
水中ポンプ204は、上記透水性の容器202に、溶解液を供給するための溶解液供給手段を構成する。溶解液は、循環水系本体100によって循環される冷却水そのものである。しかし、このように水中ポンプ204によって供給される溶解液以外に、外部から溶解液(一般的には水)を供給するようにすることもできる。薬剤濃度監視手段としては、使用する薬剤が酸化剤のものであれば、酸化剤濃度とORPとの関係を把握することにより、ORPにより濃度管理をすることができる。
【0014】
この意味で、ORP計206は、固型薬剤を含む溶解液が流入する循環水系中の固型薬剤濃度を監視するための監視手段を構成する。ORP計206は、検出部を水系に接触させ、循環水系すなわち、貯留水108中の固型薬剤濃度を検出する。本実施の形態では、ORP計206を用いている。しかし、本発明の目的に反しない限り、測定対象となる固型薬剤の種類に応じて、他にもDPD(N,N−ジエチルフェニレンジアミン)法、ポーラログラフ法等を採用することができ、特にこれに限定されるものではない。また、場合によって複数の濃度計を併用することとしても良い。
【0015】
濃度制御装置208は、ORP計206からの情報(検出信号)に基づいて、上記容器202への溶解液の供給状態を制御するための溶解液制御手段を構成する。濃度制御装置208は、一般的には、コンピュータ装置であり、ORP計206からの検出信号に基づいて、水中ポンプ204に制御信号を送ってその稼動状態を適正に保つ。濃度制御装置208の構成、それを機能させるためのソフトウエア、制御の手順等は、本発明の目的に反しない限り、当業者にとって公知のものを採用することができる。制御方法としては、フィードバック制御、フィードフォーワード制御、ファジー制御等、本発明の目的に反しない限り、当業者にとって公知のものを採用することができる。
【0016】
次に上記構成とした固型薬剤の溶解装置の一実施の形態を含む冷却水の循環システムについて、その作用を説明することにより、本発明に係る固型薬剤の溶解方法の一実施の形態を説明する。
【0017】
循環水系本体100では、貯留水108から冷却水循環ポンプ104によって、冷却水を熱交換器102に送る。熱交換器102では、熱交換を行って、冷却対象物の冷却を行う。熱交換器102を経た冷却水は、冷却塔106の上部から冷却塔106内に戻される。このような手順を繰り返して、冷却水を循環させている。このような冷却水の循環系では、スケール、スライム、又は腐食障害の発生を防ぐことが必要である。
また、冷却塔106の上部には送風機110が設けられ、冷却塔106内の空気(水蒸気を含む)を排出することによって、冷却水を冷却する。
【0018】
一方、薬剤供給系200では、水中ポンプ204から、貯留水108の一部を溶解液として、透水性の容器202に送る。上記したように容器202内には、固型薬剤が設置されており、供給された溶解液によって、固型薬剤の一部が溶解する。固型薬剤を含む溶解液は、容器202から送出され、貯留水108の一部となる。
【0019】
ここで、ORP計206によって、貯留水108の固形薬剤濃度を監視し、検出する。固型薬剤の濃度信号は、濃度制御装置208に送られる。濃度制御装置208では、固型薬剤の濃度が設定値に保たれるよう、水中ポンプ204の稼動状態を制御する。フィードバック制御を例に取ると、濃度が高すぎると判断される場合は、供給水量を減少させ、低すぎると判断される場合には、供給水量を増加させる等のように制御する。
このようにして、固型薬剤の濃度管理を簡便かつ安定に行うことができ、スケール、スライム、又は腐食障害の発生を防止することができる。
なお、固型薬剤の設定濃度は、使用する固型薬剤の種類、冷却水自体の性状に応じて設定する。
【0020】
【実施例】
実施例1,2
以下の条件で、図1に概要を示した装置を用いて、試験を行った。
▲1▼冷却塔規模:100RT
▲2▼固型薬剤:トリクロロイソシアヌル酸ナトリウムを用いた。
▲3▼濃度測定方法:ORP計を用いた。
▲4▼スライム付着量の測定:ゴム板法によった。この方法では、3cm×5cm×1mmのゴム板を用い、これを貯留水中にいれ、スライムの付着量を直接測定した。
【0021】
実施例1では、トリクロロイソシアヌル酸ナトリウムを3kg、箱型網状の透水性の容器202に充填し、残留塩素濃度が0.3mg/L(ORPで400mVに相当する)となるように設定した。循環水系内の残留塩素濃度の推移を表1に示す。
実施例2では、トリクロロイソシアヌル酸ナトリウムを6kg、実施例1と同じ透水性の容器202に充填し、残留塩素濃度0.3mg/Lとなるように設定した。循環水系内の残留塩素濃度の推移を表1に示す。
表1に示すように、実施例1,2とも1ケ月間安定して、循環水中に残留塩素濃度を維持することができ、トリクロロイソシアヌル酸ナトリウムの濃度を維持することができたことが了解される。
【0022】
比較例1,2
以下の条件で、図1に概要を示した装置を用いて、試験を行った。
▲1▼冷却塔規模:100RT
▲2▼固型薬剤:トリクロロイソシアヌル酸ナトリウムを用いた。
▲3▼濃度測定:濃度制御は行わず、単に固型薬剤を実施例1と同じ容器に入れ、ピットに浸漬した。
▲4▼スライム付着量の測定:ゴム板法によった。この方法では、3cm×5cm×1mmのゴム板を用い、これを貯留水中にいれ、スライムの付着量を直接測定した。
【0023】
比較例1では、トリクロロイソシアヌル酸ナトリウムを3kg、実施例1と同じ透水性の容器202に充填した。循環水系内の残留塩素濃度の推移を表1に示す。
比較例2では、トリクロロイソシアヌル酸ナトリウムを6kg、実施例1と同じ透水性の容器202に充填した。循環水系内の残留塩素濃度の推移を表1に示す。
表1に示すように、比較例1,2とも、残留塩素濃度を安定に維持することはできなかった。
【0024】
【表1】

Figure 0003759583
【0025】
他の実施の形態
本発明に係る固型薬剤の溶解方法及び装置は、上記の実施の形態について説明したが、本発明は、このような実施の形態に限定されるものではなく、当業者にとって自明な修飾・変更・付加は、全て本発明の技術的範囲に含まれる。
例えば、上記図1の実施の形態は、開放循環冷却水系で用いているが、有機性排ガススクラバー水系で用いることもできる。
【0026】
【発明の効果】
上記したところから明らかなように、本発明によれば、固型薬剤の濃度管理を簡便かつ安定に行うことができるようにした固型薬剤の溶解方法及び装置が提供される。
【図面の簡単な説明】
【図1】本発明に係る固型薬剤の溶解装置の一実施の形態を含む冷却水の循環システムを説明する概念図である。
【符号の説明】
100 循環水系本体
102 熱交換器
104 冷却水循環ポンプ
106 冷却塔
108 貯留水
110 送風機
200 薬剤供給系
202 透水性の容器
204 水中ポンプ
206 酸化還元電位計
208 濃度制御装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for dissolving a solid drug that can be used mainly in a cooling water system.
[0002]
[Prior art]
Conventionally, a water treatment chemical is generally used in a circulating water system for circulating cooling water. Such water treatment chemicals are used to prevent the occurrence of scale, slime, or corrosion damage in cooling water. Such water treatment chemicals include liquid type and solid type. Here, the liquid type medicine has a problem of leakage, and it is necessary to take measures against leakage. In addition, the solid drug has a non-uniform dissolution rate, is difficult to control the concentration, and is difficult to handle.
[0003]
[Problems to be solved by the invention]
In view of the above circumstances, an object of the present invention is to provide a solid drug dissolution method and apparatus capable of easily and stably controlling the concentration of a solid drug.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for dissolving a circulating cooling water type solid medicine having a cooling tower, wherein the solid medicine is accommodated in a water-permeable container in the cooling tower and dissolved in the container. Supply the solution, dissolve the solid drug with the supplied solution, flow the solution containing the solid drug into the circulating water system, monitor the solid drug concentration in the circulating water system, and adjust the solid drug concentration to Accordingly, the supply state of the solution to the container is controlled. Here, as the solid drug concentration monitoring means, a redox potential measuring means can be exemplified.
[0005]
As the water-permeable container, it is preferable to use a container configured as a box shape using a net-like member. As said solid chemical | medical agent, it is suitable to use any one or two or more among a scale inhibitor, an anticorrosive, a slime control agent, and an antifoamer.
[0006]
Further, in another aspect, the present invention is a solid drug dissolving apparatus, and in a circulating cooling water-based solid drug dissolving apparatus having a cooling tower, the water permeability for storing the solid drug in the cooling tower . , A solution supply means for supplying the solution into the container, a monitoring means for monitoring the concentration of the solid drug in the circulating water system into which the solution containing the fixed drug flows, and the monitoring means And a solution control means for controlling the supply state of the solution to the container based on the information from the above. Here, as the solid drug concentration monitoring means, a redox potential measuring means can be exemplified.
[0007]
Similar to the above-described dissolution method, the water-permeable container is preferably configured as a box shape using a net-like member. Moreover, as said solid chemical | medical agent, it is suitable to install any one or two or more among a scale inhibitor, an anticorrosive, a slime control agent, and an antifoamer.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the solid drug dissolving method and apparatus according to the present invention will be described in more detail with reference to embodiments shown in the accompanying drawings.
FIG. 1 shows a cooling water circulation system including an embodiment of a solid drug dissolving apparatus according to the present invention.
This circulation system includes a circulation water system main body 100 and a medicine supply system 200.
[0009]
The circulating water system main body 100 includes a heat exchanger 102 and a cooling water circulation pump 104. The circulating water system main body 100 constitutes a cooling water system for circulating the cooling water from the cooling tower 106 to the heat exchanger 102. Examples of the object cooled by the circulating cooling water include a compression refrigerator, an absorption refrigerator, and a compressor. However, it is not particularly limited to these.
[0010]
The drug supply system 200 includes a water-permeable container 202, a submersible pump 204, an oxidation-reduction potentiometer (hereinafter also referred to as an ORP meter) 206, and a concentration control device 208.
[0011]
The water-permeable container 202 is for storing a solid medicine. In general, the container 202 is preferably configured in a box shape using a net-like member. However, as long as it is not contrary to the object of the present invention, it may be cylindrical, prismatic, mesh bag, etc., and is not limited to a box shape. Moreover, as long as it is water-permeable, it can employ | adopt as long as it is a porous member besides the net shape, and is not discharged | emitted before the solid chemical | medical agent to be installed is melt | dissolved. Moreover, the material of such a member itself is comprised with the material which is not corroded by the solid chemical | medical agent installed. Accordingly, it is generally preferable to use a resin or plastic, although it varies depending on the solid drug to be installed.
[0012]
As a solid chemical | medical agent installed in the water-permeable container 202, it is any one or two or more among a scale inhibitor, an anticorrosive, a slime control agent, and an antifoamer. Specifically, a solid drug obtained by tableting and molding one or more of chloroisocyanuric acid compounds such as trichloroisocyanuric acid and sodium dichloroisocyanurate, and calcium hypochlorite is preferable. As long as it is not contrary to the object of the present invention, it is not limited to these as long as it is a solid chemical used for preventing the occurrence of scale, slime, or corrosion failure in cooling water, You may mix and use the tableting chemical | medical agent of a chemical | medical agent.
[0013]
The submersible pump 204 constitutes a solution supply means for supplying the solution to the water-permeable container 202. The solution is the cooling water itself circulated by the circulating water system main body 100. However, in addition to the solution supplied by the submersible pump 204 as described above, a solution (generally water) can be supplied from the outside. As the drug concentration monitoring means, if the drug to be used is an oxidizing agent, the concentration can be managed by the ORP by grasping the relationship between the oxidizing agent concentration and the ORP.
[0014]
In this sense, the ORP meter 206 constitutes a monitoring unit for monitoring the concentration of the solid drug in the circulating water system into which the solution containing the solid drug flows. The ORP meter 206 makes the detection unit contact the water system, and detects the concentration of the solid drug in the circulating water system, that is, the stored water 108. In this embodiment, an ORP meter 206 is used. However, as long as the object of the present invention is not violated, other methods such as DPD (N, N-diethylphenylenediamine) method, polarographic method, etc. can be adopted depending on the type of solid drug to be measured. However, the present invention is not limited to this. In some cases, a plurality of densitometers may be used in combination.
[0015]
The concentration control device 208 constitutes a solution control means for controlling the supply state of the solution to the container 202 based on information (detection signal) from the ORP meter 206. The concentration control device 208 is generally a computer device, and sends a control signal to the submersible pump 204 based on the detection signal from the ORP meter 206 to keep its operating state properly. As the configuration of the density control device 208, software for causing it to function, control procedures, and the like, those known to those skilled in the art can be employed as long as they do not contradict the purpose of the present invention. As a control method, a method known to those skilled in the art can be employed as long as it does not contradict the object of the present invention, such as feedback control, feedforward control, and fuzzy control.
[0016]
Next, the operation of the cooling water circulation system including one embodiment of the solid drug dissolution apparatus having the above-described configuration will be described to explain one embodiment of the solid drug dissolution method according to the present invention. explain.
[0017]
In the circulating water system main body 100, the cooling water is sent from the stored water 108 to the heat exchanger 102 by the cooling water circulation pump 104. The heat exchanger 102 performs heat exchange and cools the object to be cooled. The cooling water that has passed through the heat exchanger 102 is returned into the cooling tower 106 from the upper part of the cooling tower 106. Such a procedure is repeated to circulate the cooling water. In such a cooling water circulation system, it is necessary to prevent the occurrence of scale, slime, or corrosion failure.
In addition, a blower 110 is provided above the cooling tower 106, and the cooling water is cooled by discharging the air (including water vapor) in the cooling tower 106.
[0018]
On the other hand, in the medicine supply system 200, a part of the stored water 108 is sent from the submersible pump 204 to the water-permeable container 202 as a solution. As described above, the solid drug is installed in the container 202, and a part of the solid drug is dissolved by the supplied solution. The solution containing the solid drug is delivered from the container 202 and becomes a part of the stored water 108.
[0019]
Here, the ORP meter 206 monitors and detects the solid drug concentration in the stored water 108. The concentration signal of the solid medicine is sent to the concentration controller 208. The concentration control device 208 controls the operating state of the submersible pump 204 so that the concentration of the solid drug is maintained at a set value. Taking feedback control as an example, if it is determined that the concentration is too high, the amount of supplied water is decreased, and if it is determined that the concentration is too low, the amount of supplied water is increased.
In this way, the concentration control of the solid drug can be performed easily and stably, and the occurrence of scale, slime, or corrosion failure can be prevented.
The set concentration of the solid medicine is set according to the type of the solid medicine to be used and the properties of the cooling water itself.
[0020]
【Example】
Examples 1 and 2
The test was performed using the apparatus outlined in FIG. 1 under the following conditions.
(1) Cooling tower scale: 100RT
(2) Solid drug: Sodium trichloroisocyanurate was used.
(3) Concentration measuring method: An ORP meter was used.
(4) Measurement of slime adhesion amount: According to rubber plate method. In this method, a rubber plate having a size of 3 cm × 5 cm × 1 mm was used, and this was put in stored water, and the amount of slime adhered was directly measured.
[0021]
In Example 1, 3 kg of sodium trichloroisocyanurate was filled into a box-type net-like water-permeable container 202, and the residual chlorine concentration was set to 0.3 mg / L (corresponding to 400 mV in ORP). Table 1 shows the transition of residual chlorine concentration in the circulating water system.
In Example 2, 6 kg of sodium trichloroisocyanurate was filled in the same water-permeable container 202 as in Example 1, and the residual chlorine concentration was set to 0.3 mg / L. Table 1 shows the transition of residual chlorine concentration in the circulating water system.
As shown in Table 1, it was understood that both Examples 1 and 2 were able to maintain the residual chlorine concentration in the circulating water stably for one month and maintain the concentration of sodium trichloroisocyanurate. The
[0022]
Comparative Examples 1 and 2
The test was performed using the apparatus outlined in FIG. 1 under the following conditions.
(1) Cooling tower scale: 100RT
(2) Solid drug: Sodium trichloroisocyanurate was used.
(3) Concentration measurement: Concentration control was not performed, and the solid drug was simply placed in the same container as in Example 1 and immersed in a pit.
(4) Measurement of slime adhesion amount: According to rubber plate method. In this method, a rubber plate having a size of 3 cm × 5 cm × 1 mm was used, and this was put in stored water, and the amount of slime adhered was directly measured.
[0023]
In Comparative Example 1, 3 kg of sodium trichloroisocyanurate was filled in the same water-permeable container 202 as in Example 1. Table 1 shows the transition of residual chlorine concentration in the circulating water system.
In Comparative Example 2, 6 kg of sodium trichloroisocyanurate was filled in the same water-permeable container 202 as in Example 1. Table 1 shows the transition of residual chlorine concentration in the circulating water system.
As shown in Table 1, in both Comparative Examples 1 and 2, the residual chlorine concentration could not be stably maintained.
[0024]
[Table 1]
Figure 0003759583
[0025]
Other Embodiments Although the solid drug dissolving method and apparatus according to the present invention have been described with respect to the above-described embodiments, the present invention is not limited to such embodiments, and those skilled in the art will understand. All obvious modifications, changes and additions are included in the technical scope of the present invention.
For example, although the embodiment of FIG. 1 is used in an open circulation cooling water system, it can also be used in an organic exhaust gas scrubber water system.
[0026]
【The invention's effect】
As is apparent from the above description, according to the present invention, there is provided a method and an apparatus for dissolving a solid drug, which enables simple and stable concentration control of the solid drug.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram illustrating a cooling water circulation system including an embodiment of a solid drug dissolving apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 100 Circulating water system main body 102 Heat exchanger 104 Cooling water circulation pump 106 Cooling tower 108 Reservation water 110 Blower 200 Chemical supply system 202 Water-permeable container 204 Submersible pump 206 Oxidation reduction potential meter 208 Concentration control apparatus

Claims (6)

冷却塔を有する循環冷却水系の固型薬剤の溶解方法において、
冷却塔内に透水性の容器内に固型薬剤を収納し、
上記容器内に溶解液を供給し、
供給された溶解液によって固型薬剤を溶解し、
固型薬剤を含む溶解液を循環水系に流入させ、
該循環水系中の固型薬剤濃度を監視し、
固型薬剤濃度に応じて、上記容器への溶解液の供給状態を制御するようにしたことを特徴とする固型薬剤の溶解方法。
In a method for dissolving a solid drug in a circulating cooling water system having a cooling tower,
The solid drug is stored in a water-permeable container in the cooling tower ,
Supply the solution into the container,
Dissolve the solid drug with the supplied solution,
Let the solution containing the solid drug flow into the circulating water system,
Monitoring the concentration of solid drug in the circulating water system;
A solid drug dissolution method, wherein the supply state of the solution to the container is controlled in accordance with the solid drug concentration.
固形薬剤濃度の監視手段として酸化還元電位測定手段を用いることを特徴とする請求項1の固型薬剤の溶解方法。  2. The solid drug dissolution method according to claim 1, wherein a redox potential measuring means is used as the solid drug concentration monitoring means. 上記固形薬剤として、スケール防止剤、防食剤、スライムコントロール剤、消泡剤のうちいずれか一又は二以上を用いることを特徴とする請求項1又は2の固型薬剤の溶解方法。  The method for dissolving a solid drug according to claim 1 or 2, wherein one or more of a scale inhibitor, an anticorrosive, a slime control agent, and an antifoaming agent are used as the solid drug. 冷却塔を有する循環冷却水系の固型薬剤の溶解装置において、
冷却塔内に固型薬剤を収納するための透水性の容器と、
該容器内に溶解液を供給するための溶解液供給手段と、
固定薬剤を含む溶解液が流入する循環水系中の固型薬剤濃度を監視するための監視手段と、
該監視手段からの情報に基づいて、上記容器への溶解液の供給状態を制御するための溶解液制御手段とを含むことを特徴とする固型薬剤の溶解装置。
In an apparatus for dissolving a solid drug in a circulating cooling water system having a cooling tower,
A water-permeable container for storing the solid drug in the cooling tower ;
A solution supply means for supplying the solution into the container;
A monitoring means for monitoring the concentration of the solid drug in the circulating water system into which the solution containing the fixed drug flows,
A solid-solution dissolving apparatus comprising: a dissolution liquid control means for controlling a supply state of the dissolution liquid to the container based on information from the monitoring means.
固型薬剤濃度の上記監視手段として酸化還元電位測定手段を用いることを特徴とする請求項4の固型薬剤の溶解装置。  5. The solid medicine dissolving apparatus according to claim 4, wherein an oxidation-reduction potential measuring means is used as said solid medicine concentration monitoring means. 上記固形薬剤として、スケール防止剤、防食剤、スライムコントロール剤、消泡剤のうちいずれか一又は二以上を設置することを特徴とする請求項4又は5の固型薬剤の溶解方法。  6. The method for dissolving a solid drug according to claim 4, wherein any one or more of a scale inhibitor, an anticorrosive, a slime control agent, and an antifoaming agent are installed as the solid drug.
JP2001357757A 2001-11-22 2001-11-22 Method and apparatus for dissolving solid drug Expired - Fee Related JP3759583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357757A JP3759583B2 (en) 2001-11-22 2001-11-22 Method and apparatus for dissolving solid drug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357757A JP3759583B2 (en) 2001-11-22 2001-11-22 Method and apparatus for dissolving solid drug

Publications (2)

Publication Number Publication Date
JP2003154241A JP2003154241A (en) 2003-05-27
JP3759583B2 true JP3759583B2 (en) 2006-03-29

Family

ID=19169052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357757A Expired - Fee Related JP3759583B2 (en) 2001-11-22 2001-11-22 Method and apparatus for dissolving solid drug

Country Status (1)

Country Link
JP (1) JP3759583B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246172A (en) * 2004-03-02 2005-09-15 Permachem Asia Ltd Chemical injection method
KR101852650B1 (en) * 2011-03-04 2018-06-04 아쿠이스 바써-루프트-시스테메 게엠베하, 린다우, 쯔바이그니더라숭 렙슈타인 Water conditioner for preventing or reducing mineral precipitation
JP5811621B2 (en) * 2011-06-17 2015-11-11 三浦工業株式会社 Water treatment system
JP6434201B2 (en) * 2013-02-27 2018-12-05 株式会社安藤・間 Method and system for cleaning contaminated soil
JP5935741B2 (en) * 2013-03-29 2016-06-15 栗田工業株式会社 Open circulation cooling system
JP6524759B2 (en) * 2015-04-01 2019-06-05 栗田工業株式会社 Method and apparatus for dosing an open circulation cooling water system
JP6759883B2 (en) * 2016-09-05 2020-09-23 三浦工業株式会社 Water treatment system

Also Published As

Publication number Publication date
JP2003154241A (en) 2003-05-27

Similar Documents

Publication Publication Date Title
JP4583530B2 (en) Heat exchange water and its supply device
JP3759583B2 (en) Method and apparatus for dissolving solid drug
ES2741651T3 (en) Method and device to monitor and control the status of a process stream
JPS62186860A (en) Automatic sterilizing method and apparatus
JP5736607B2 (en) Chemical injection control method and chemical injection control device
TW200536624A (en) Circulated type gas-soluble water supplying device and the running method of said device
JP2004526565A (en) Solid material melting equipment
JP2012106224A (en) Ballast water control method and ballast water treatment system
JP6161223B2 (en) Ship equilibrium water treatment equipment using sodium isocyanurate dichloride
JP2019529095A (en) Water treatment system and method
JP2018038942A (en) Water treatment system
JP2002343393A (en) Fuel cell electric power generating device
JP2019076821A (en) Device and method for dissolving solid bactericide
WO2020138300A1 (en) Ballast water treatment device
JP6455201B2 (en) Water treatment system
WO2024100922A1 (en) Hydrogen peroxide decomposition system, hydrogen peroxide decomposition device, and decomposition method for hydrogen peroxide
JP2016119940A (en) Disinfection method using ozone water, and disinfecting machine using ozone water
JP2004223404A (en) Ozone water manufacturing system
JP2002224690A (en) Apparatus for oxidizing organic liquid to be treated and method for removing scale therein
JP2006223953A (en) Medical liquid manufacturing method, medicine injecting apparatus and medical liquid compounding apparatus
JP2001066090A (en) Method and apparatus for suppressing proliferation of microorganism in circulation cooling water
KR101775471B1 (en) Ballast water treatment system for ships
KR101690212B1 (en) Manufacturing Device for Sterilized Water Tissue
WO2021112245A1 (en) Dialysate solution supplying apparatus
JP2005066386A (en) Circulating water sterilization system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3759583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees