JP3759279B2 - Bidirectional optical communication module - Google Patents

Bidirectional optical communication module Download PDF

Info

Publication number
JP3759279B2
JP3759279B2 JP09200697A JP9200697A JP3759279B2 JP 3759279 B2 JP3759279 B2 JP 3759279B2 JP 09200697 A JP09200697 A JP 09200697A JP 9200697 A JP9200697 A JP 9200697A JP 3759279 B2 JP3759279 B2 JP 3759279B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
light receiving
transmission path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09200697A
Other languages
Japanese (ja)
Other versions
JPH10285122A (en
Inventor
治夫 田中
淳 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP09200697A priority Critical patent/JP3759279B2/en
Publication of JPH10285122A publication Critical patent/JPH10285122A/en
Application granted granted Critical
Publication of JP3759279B2 publication Critical patent/JP3759279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は光ファイバを用いた光通信などに用いられる時分割双方向の光通信モジュールに関する。
【0002】
【従来の技術】
従来の双方向光通信用モジュールは、たとえば図3に示されるように、送信信号光を発生する半導体レーザなどの発光素子21と、受信信号光をハーフミラー23を介して受光するフォトダイオード、フォトトランジスタなどからなる受光素子22と、送信信号光を光ファイバなどの光伝送路25に結合させる集光レンズ24と、集光した光を伝送する光伝送路25と、光伝送路25から出射してハーフミラー23により反射する受信信号光を受光素子22に集光する集光レンズ26とからなっている。この構成で、発光素子21から送信信号光がハーフミラー23を介して光伝送路25に入射し、相手方に送られる。また、相手方から送られた信号を受信する場合は、光伝送路25からの受信信号光をハーフミラー23により反射して受光素子22により電気信号に変換することにより受信することができ、光通信が行われる。この場合、時分割により送信と受信とが交互に切り替えて行われ、相互間の干渉は起こらない。
【0003】
この構成では、ハーフミラーを介して発光素子と受光素子とをそれぞれ独立に集光レンズの光軸に合せて組み立てなければならず、精度よく組み立てるのが非常にむつかしい。そのため、図4に示されるように、ハーフミラーを使用しないで、受光素子22の受光面を半分程度反射面として受光すると共に発光素子21からの光を反射させて集光レンズ24や図示しない光伝送路と結合する構成のものも、たとえば特開平8−114726号公報などに開示されている。
【0004】
【発明が解決しようとする課題】
前述の構成の光通信用モジュールでは、発光素子から光伝送路に入射する光は、ハーフミラーまたは受光素子により約50%になり、しかも戻り光が反射して光伝送路に入らないように発光素子の発光面を光ビームの軸に対して傾ける(50%程度のロス)必要があり、発光素子の出射光の25%(0.5×0.5)程度に減衰する。また、光伝送路から受光素子に入射する受信信号光も、ハーフミラーまたは受光素子の受光面に形成される反射面により約50%に減衰する。ハーフミラーを使用する構成では、発光素子の場合と同様に受光素子による反射光が光伝送路に戻らないように受信信号光のビームに対して受光面を傾けなければならず、全体で25%程度に減衰する。そのため、発光素子や受光素子と光伝送路との間の結合効率が低くなり、出力の大きい発光素子や、感度のよい受光素子を使用しなければならず、コストアップの要因となっている。
【0005】
本発明はこのような問題を解決するためになされたもので、発光素子や受光素子と光伝送路との結合効率を向上させると共に、部品点数を減らして組立性を簡略化し、安価で特性の安定した双方向光通信用モジュールを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明による双方向光通信用モジュールは、送信信号を発生させる発光素子と、該発光素子からの送信信号光を光伝送路に結合させる集光レンズと、前記光伝送路からの受信信号光を受信する受光素子とからなり、前記発光素子からの送信信号光が前記集光レンズを介して直接前記光伝送路と結合するように前記発光素子が設けられ、前記光伝送路からの受信信号光の前記発光素子の発光面での反射光を受光できる位置に前記受光素子が設けられている。
【0007】
この構成にすることにより、発光素子や受光素子をビームに対して傾けることによる減衰はあるものの、発光素子から出射する光は50%程度の減衰部品を経由しない。また、光伝送路からの受信信号光は、発光素子の発光面で反射した光を受光するため、一部減衰するが、発光面の反射率を50%より高くすることができるため、発光素子および受光素子の両方共に光伝送路との結合効率を高くすることができる。
【0008】
具体的には、前記発光素子は、前記集光レンズの光軸上で、かつ、その発光面が前記光軸に対して斜めになるように設けられ、前記受光素子は、その受光面が前記光伝送路からの受信信号光の前記発光素子による反射ビームに対して斜めになるように設けられることにより、形成される。
【0009】
前記発光素子の発光面に多層絶縁膜が形成され、該多層絶縁膜により前記発光面における反射率が30〜90%に調整されることにより、発光素子および受光素子の両方の結合効率を上昇させることができる。なお、発光面の反射率を高くすると、発光素子で発光した光の出射率が低下するが、発光素子のレーザ共振器内での発振が強くなり発振開始電流(Ith)を下げることができる。
【0010】
【発明の実施の形態】
つぎに、図面を参照しながら本発明の双方向光通信用モジュールについて説明をする。
【0011】
本発明の光通信用モジュールは、図1にその一実施形態の側面説明図が示されるように、送信信号を発生させる発光素子1と、発光素子1からの送信信号光を光伝送路5に結合させる集光レンズ4と、前記光伝送路5からの受信信号光を受信する受光素子2とからなっており、光伝送路5からの受信信号光の発光素子1による反射光を受光できる位置に受光素子2が設けられている。図1に示される例では、リード8が固定されたステム7にマウント台6が固定され、そのマウント台6に発光素子1および受光素子2が固着されており、その相互の位置関係はマウント台6に両素子を固着するだけで得られる構造になっている。
【0012】
発光素子1は、たとえばその端面である発光面AからレーザビームBを出射する半導体レーザチップ1aがシリコン基板などからなるサブマウント1bに固着されることにより形成されている。半導体レーザは、その発光面である端面が劈開などにより鏡面にされると共に、アモルファスSiやAl2 3 などの無機物からなる多層膜が形成されることにより発振波長に対する反射率が適当に設定されるようになっており、発光層と端面の多層膜とにより共振器が形成されて共振器内で発振し得る構造になっている。したがって、この多層膜の調整により反射率を調整することができ、共振器内での発振強度を調整することができると共に、受信信号光の反射率もこの多層膜により調整することができる。通常の光通信用モジュールとして使用される発光素子では、この端面での反射率が30%程度になるように多層膜が調整されるが、この反射率を30〜90%程度にしても共振器から出射する光の割合は小さくなるものの、充分に発振してその強度が大きくなるため、トータル的な光の強度は下がらず、受光素子による受光量を増やすことができる。この反射率は好ましくは50〜90%程度、さらに好ましくは60〜90%程度に調整される。
【0013】
この発光素子1のサブマウント1bをマウント台6にInなどの低融点金属などにより固着することにより集光レンズ4の光軸に対して発光面Aが所定の角度傾いて光軸上に位置するように取り付けられている。この発光面Aが光軸に対して傾けて取り付けられる理由は、光伝送路5からの受信信号光が発光面Aで反射して再度光伝送路5に戻らないようにすると共に、その反射光を受光素子2により受光できるようにするためである。したがって、反射光が集光レンズに入らない程度に傾けられればよく、図2に発光素子1および受光素子2の部分の拡大説明図が示されるように、発光素子1の発光面Aと直角の底面が光軸の方向である鉛直方向となす角度αが、たとえば11.5゜程度になるように傾けられる。
【0014】
受光素子2は、たとえばフォトダイオードや、フォトトランジスタ、光電池などからなり、その受光面が発光素子1の発光面Aにより反射した光伝送路5からの受信信号光を受光することができるように取り付けられている。この受光面が発光面Aからの反射ビームに対して直角にならないで傾くように、受光素子2が配設されている。その理由は、受光素子2の受光面で反射した光が発光面に戻ってさらに光伝送路5に戻らないようにするためである。したがって、受光面による反射光が発光面に戻らなければよく、図2に示される例では、受光素子2の受光面と平行な底面が鉛直方向とのなす角度βが、たとえば30゜程度になるように傾けられる。
【0015】
マウント台6は、たとえば鉄、銅合金などからなり、その発光素子1の載置面および受光素子2の載置面が前述の角度になるように予め形成されることにより、発光素子1および受光素子2をその載置面に接着するだけで簡単に前述の関係に組み立てられる。このステム上に前述の集光レンズ4が取り付けられたキャップ(図示せず)が被せられることにより、集光レンズ4の光軸と位置合わせされる発光素子1および受光素子2が組み立てられた光通信用モジュールが得られる。
【0016】
つぎに、本発明の光通信用モジュールの作用について説明をする。まず、信号を送る場合は、発光素子1から信号により変調された光ビームが発せられ、集光レンズ4を介して光伝送路5に入射する。この際、発光素子1の発光面Aが集光レンズ4の光軸に対して傾いて設けられているため、発光素子1で発光する光の50%程度の光が集光レンズ4と結合する。しかし他に減衰する部品がないため、発光する光の50%程度の強さで光伝送路を経て相手方に送られる。一方、相手方から送られてくる受信信号は、光伝送路5から集光レンズ4を介して発光素子1の発光面で反射して受光素子2の受光面に達し、受光される。発光面Aで反射されるため、その反射率により受光素子に達する光の量が異なり、反射率がたとえば80%であれば、受光素子2以外に反射光が広がっていることにより、さらに50%程度に減衰するため、送られてくる受信光の40%程度の強さで受信される。
【0017】
すなわち、従来は発信側および受信側共に25%程度に減衰するのに対して、本発明によれば、発信側は50%程度の減衰だけで結合効率が2倍程度に向上し、受信側も発光面の反射率により異なるが、発光面の反射率が60〜90%程度であれば結合効率は30〜45%程度(反射率が80%の場合で40%となり、従来より60%の向上)となる。とくに発信側の減衰が小さいため、その出力を小さくすることができ、発光面での反射率を高くすることができる。発光面での反射率を高くすることにより、発振させる電流のスレッショルド電流Ith(したがって動作電流Iop)を下げることができ、低い入力で発振させることができる。また、発光素子の輝度を小さくしなければ、光伝送路5から出射される受信光の輝度が大きくなり、いずれにしても発光素子1の出射光に対する受光素子2による受信光の割合は一層向上する。
【0018】
なお、前述の発信と受信とは、時分割により発信と受信とが時間的に分けて行われるため、光伝送路からの受信信号光が発光素子に入射して発光素子の発振に影響を及ぼすことはない。
【0019】
本発明によれば、ハーフミラーなどが不要で部品点数が減少する。しかも、前述のように、発光素子の発光面にもともと設けられる多層膜によりその反射率を調整することができ、従来のハーフミラーや受光素子の受光面での反射率を調整するために反射膜を設ける必要がない。
【0020】
【発明の効果】
本発明によれば、発光素子および受光素子と光伝送路との結合効率がそれぞれ非常に向上し、発光素子の出力を小さくすることができる。さらに、部品点数が少なく、また、組立ても容易となり、安価で高性能の双方向光通信用モジュールが得られる。
【図面の簡単な説明】
【図1】本発明の双方向光通信用モジュールの一実施形態の説明図である。
【図2】図1の発光素子および受光素子部分の拡大説明図である。
【図3】従来の双方向光通信用モジュールの一例の説明図である。
【図4】従来の双方向光通信用モジュールの他の例の説明図である。
【符号の説明】
1 発光素子
2 受光素子
4 集光レンズ
5 光伝送路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a time-division bidirectional optical communication module used for optical communication using an optical fiber.
[0002]
[Prior art]
For example, as shown in FIG. 3, a conventional bidirectional optical communication module includes a light emitting element 21 such as a semiconductor laser that generates transmission signal light, a photodiode that receives reception signal light through a half mirror 23, and a photo diode. A light receiving element 22 made of a transistor, a condensing lens 24 for coupling transmission signal light to an optical transmission path 25 such as an optical fiber, an optical transmission path 25 for transmitting the collected light, and an optical transmission path 25 The condensing lens 26 condenses the received signal light reflected by the half mirror 23 on the light receiving element 22. With this configuration, the transmission signal light from the light emitting element 21 enters the optical transmission line 25 via the half mirror 23 and is sent to the other party. When receiving a signal sent from the other party, the received signal light from the optical transmission path 25 is reflected by the half mirror 23 and converted into an electric signal by the light receiving element 22, and can be received. Is done. In this case, transmission and reception are alternately switched by time division, and mutual interference does not occur.
[0003]
In this configuration, it is necessary to assemble the light emitting element and the light receiving element independently through the half mirror in accordance with the optical axis of the condenser lens, and it is very difficult to assemble with high accuracy. Therefore, as shown in FIG. 4, without using a half mirror, the light receiving surface of the light receiving element 22 is received as a half reflecting surface, and the light from the light emitting element 21 is reflected to reflect the condensing lens 24 or light (not shown). A configuration coupled to a transmission path is also disclosed in, for example, Japanese Patent Application Laid-Open No. 8-114726.
[0004]
[Problems to be solved by the invention]
In the optical communication module having the above-described configuration, light incident on the optical transmission path from the light emitting element is approximately 50% by the half mirror or the light receiving element, and is emitted so that the return light is reflected and does not enter the optical transmission path. It is necessary to incline the light emitting surface of the element with respect to the axis of the light beam (a loss of about 50%), which attenuates to about 25% (0.5 × 0.5) of the light emitted from the light emitting element. Also, the received signal light incident on the light receiving element from the optical transmission path is attenuated to about 50% by the reflecting surface formed on the light receiving surface of the half mirror or the light receiving element. In the configuration using the half mirror, the light receiving surface must be inclined with respect to the beam of the received signal light so that the reflected light from the light receiving element does not return to the optical transmission path as in the case of the light emitting element, and the total is 25%. Attenuates to a degree. For this reason, the coupling efficiency between the light emitting element or the light receiving element and the optical transmission path is lowered, and a light emitting element having a large output or a light receiving element with high sensitivity must be used, resulting in an increase in cost.
[0005]
The present invention has been made to solve such a problem, and improves the coupling efficiency between the light emitting element and the light receiving element and the optical transmission path, reduces the number of parts, simplifies assembly, and is inexpensive and has characteristics. An object is to provide a stable bidirectional optical communication module.
[0006]
[Means for Solving the Problems]
A bidirectional optical communication module according to the present invention includes a light emitting element that generates a transmission signal, a condensing lens that couples transmission signal light from the light emitting element to an optical transmission path, and a received signal light from the optical transmission path. A light receiving element for receiving, and the light emitting element is provided so that transmission signal light from the light emitting element is directly coupled to the optical transmission line via the condenser lens, and the received signal light from the optical transmission line is provided. The light receiving element is provided at a position where the reflected light from the light emitting surface of the light emitting element can be received.
[0007]
With this configuration, although there is attenuation by tilting the light emitting element and the light receiving element with respect to the beam, light emitted from the light emitting element does not pass through an attenuation component of about 50%. In addition, the received signal light from the optical transmission path receives light reflected by the light emitting surface of the light emitting element, and thus partially attenuates, but the reflectance of the light emitting surface can be made higher than 50%. Both the light receiving element and the light receiving element can increase the coupling efficiency with the optical transmission line.
[0008]
Specifically, the light-emitting element is provided on the optical axis of the condenser lens so that the light-emitting surface is inclined with respect to the optical axis, and the light-receiving element has the light-receiving surface described above. The reception signal light from the optical transmission line is formed so as to be inclined with respect to the reflected beam by the light emitting element.
[0009]
A multilayer insulating film is formed on the light emitting surface of the light emitting element, and the reflectance on the light emitting surface is adjusted to 30 to 90% by the multilayer insulating film, thereby increasing the coupling efficiency of both the light emitting element and the light receiving element. be able to. Note that when the reflectance of the light emitting surface is increased, the light emission rate of the light emitted from the light emitting element is reduced, but the oscillation in the laser resonator of the light emitting element becomes stronger and the oscillation start current (I th ) can be lowered. .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, the bidirectional optical communication module of the present invention will be described with reference to the drawings.
[0011]
The optical communication module of the present invention has a light emitting element 1 for generating a transmission signal and a transmission signal light from the light emitting element 1 to an optical transmission line 5 as shown in FIG. A position where the condensing lens 4 to be coupled and the light receiving element 2 for receiving the received signal light from the optical transmission path 5 can receive light reflected by the light emitting element 1 of the received signal light from the optical transmission path 5 The light receiving element 2 is provided. In the example shown in FIG. 1, the mount base 6 is fixed to the stem 7 to which the lead 8 is fixed, and the light emitting element 1 and the light receiving element 2 are fixed to the mount base 6. The structure is obtained by simply fixing both elements to 6.
[0012]
The light emitting element 1 is formed, for example, by fixing a semiconductor laser chip 1a that emits a laser beam B from a light emitting surface A that is an end face thereof to a submount 1b made of a silicon substrate or the like. The semiconductor laser has a light-emitting surface whose end face is made into a mirror surface by cleaving or the like, and a multilayer film made of an inorganic material such as amorphous Si or Al 2 O 3 is formed to appropriately set the reflectance with respect to the oscillation wavelength. In this structure, a resonator is formed by the light emitting layer and the multilayer film on the end face so that the resonator can oscillate. Therefore, the reflectance can be adjusted by adjusting the multilayer film, the oscillation intensity in the resonator can be adjusted, and the reflectance of the received signal light can also be adjusted by the multilayer film. In a light emitting device used as a normal optical communication module, the multilayer film is adjusted so that the reflectance at this end face is about 30%. However, even if this reflectance is about 30 to 90%, the resonator Although the ratio of the light emitted from the light source becomes small, it oscillates sufficiently and its intensity increases, so that the total light intensity does not decrease and the amount of light received by the light receiving element can be increased. This reflectance is preferably adjusted to about 50 to 90%, more preferably about 60 to 90%.
[0013]
By fixing the submount 1b of the light emitting element 1 to the mount base 6 with a low melting point metal such as In, the light emitting surface A is inclined with a predetermined angle with respect to the optical axis of the condenser lens 4 and positioned on the optical axis. It is attached as follows. The reason why the light emitting surface A is attached to be inclined with respect to the optical axis is that the received signal light from the optical transmission path 5 is reflected by the light emitting surface A and does not return to the optical transmission path 5 again, and the reflected light Is to be received by the light receiving element 2. Therefore, it is only necessary to tilt the reflected light so that it does not enter the condenser lens. As shown in an enlarged explanatory view of the light emitting element 1 and the light receiving element 2 in FIG. 2, it is perpendicular to the light emitting surface A of the light emitting element 1. The angle α between the bottom surface and the vertical direction that is the direction of the optical axis is tilted so as to be about 11.5 °, for example.
[0014]
The light receiving element 2 is composed of, for example, a photodiode, a phototransistor, a photocell, etc., and is attached so that the light receiving surface can receive the received signal light from the optical transmission path 5 reflected by the light emitting surface A of the light emitting element 1. It has been. The light receiving element 2 is disposed so that the light receiving surface is inclined without being perpendicular to the reflected beam from the light emitting surface A. The reason is to prevent the light reflected by the light receiving surface of the light receiving element 2 from returning to the light emitting surface and further returning to the optical transmission path 5. Therefore, it is sufficient that the reflected light from the light receiving surface does not return to the light emitting surface. In the example shown in FIG. 2, the angle β formed by the bottom surface parallel to the light receiving surface of the light receiving element 2 and the vertical direction is, for example, about 30 °. Tilted like that.
[0015]
The mount base 6 is made of, for example, iron, copper alloy, or the like, and is formed in advance so that the mounting surface of the light emitting element 1 and the mounting surface of the light receiving element 2 have the above-described angles. The device 2 can be easily assembled in the above-described relationship by simply bonding the element 2 to the mounting surface. A light (1) and a light receiving element (2) assembled to be aligned with the optical axis of the condenser lens (4) by covering the stem with a cap (not shown) to which the condenser lens (4) is attached. A communication module is obtained.
[0016]
Next, the operation of the optical communication module of the present invention will be described. First, when sending a signal, a light beam modulated by the signal is emitted from the light emitting element 1 and enters the optical transmission line 5 via the condenser lens 4. At this time, since the light emitting surface A of the light emitting element 1 is inclined with respect to the optical axis of the condenser lens 4, about 50% of the light emitted from the light emitting element 1 is combined with the condenser lens 4. . However, since there are no other parts to attenuate, it is sent to the other party through the optical transmission line with an intensity of about 50% of the emitted light. On the other hand, the received signal sent from the other party is reflected by the light emitting surface of the light emitting element 1 from the optical transmission path 5 through the condenser lens 4 and reaches the light receiving surface of the light receiving element 2 to be received. Since it is reflected by the light emitting surface A, the amount of light reaching the light receiving element differs depending on the reflectance. If the reflectance is 80%, for example, the reflected light spreads in addition to the light receiving element 2 and further 50%. Since it attenuates to the extent, it is received with an intensity of about 40% of the received light transmitted.
[0017]
That is, while the transmission side and the reception side are both attenuated to about 25% in the past, according to the present invention, the transmission side improves the coupling efficiency by a factor of about 50%, and the reception side also increases. Although it depends on the reflectance of the light emitting surface, if the reflectance of the light emitting surface is about 60 to 90%, the coupling efficiency is about 30 to 45% (40% when the reflectance is 80%, which is 60% improvement from the conventional one). ) In particular, since the attenuation on the transmitting side is small, the output can be reduced and the reflectance on the light emitting surface can be increased. By increasing the reflectance on the light emitting surface, the threshold current I th (and hence the operating current I op ) of the current to be oscillated can be lowered, and oscillation can be performed with a low input. If the luminance of the light emitting element is not reduced, the luminance of the received light emitted from the optical transmission line 5 increases, and in any case, the ratio of the received light by the light receiving element 2 to the emitted light of the light emitting element 1 is further improved. To do.
[0018]
In addition, since the above-mentioned transmission and reception are performed by time division by transmission and reception, the received signal light from the optical transmission path is incident on the light emitting element and affects the oscillation of the light emitting element. There is nothing.
[0019]
According to the present invention, a half mirror or the like is unnecessary and the number of parts is reduced. Moreover, as described above, the reflectance can be adjusted by the multilayer film originally provided on the light emitting surface of the light emitting element, and the reflective film is used to adjust the reflectance on the light receiving surface of the conventional half mirror or light receiving element. There is no need to provide.
[0020]
【The invention's effect】
According to the present invention, the coupling efficiency of the light emitting element, the light receiving element, and the optical transmission path is greatly improved, and the output of the light emitting element can be reduced. Furthermore, the number of parts is small, and it is easy to assemble, and an inexpensive and high-performance bidirectional optical communication module can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of a bidirectional optical communication module of the present invention.
FIG. 2 is an enlarged explanatory view of a light emitting element and a light receiving element part of FIG. 1;
FIG. 3 is an explanatory diagram of an example of a conventional bidirectional optical communication module.
FIG. 4 is an explanatory diagram of another example of a conventional bidirectional optical communication module.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Light receiving element 4 Condensing lens 5 Optical transmission line

Claims (3)

送信信号を発生させる発光素子と、該発光素子からの送信信号光を光伝送路に結合させる集光レンズと、前記光伝送路からの受信信号光を受信する受光素子とからなる双方向光通信用モジュールであって、前記発光素子からの送信信号光が前記集光レンズを介して直接前記光伝送路と結合するように前記発光素子が設けられ、前記光伝送路からの受信信号光の前記発光素子の発光面での反射光を受光できる位置に前記受光素子が設けられてなる双方向光通信用モジュール。Bidirectional optical communication comprising a light emitting element that generates a transmission signal, a condenser lens that couples transmission signal light from the light emitting element to an optical transmission path, and a light receiving element that receives reception signal light from the optical transmission path The light emitting element is provided such that the transmission signal light from the light emitting element is directly coupled to the optical transmission path via the condenser lens, and the received signal light from the optical transmission path is A bidirectional optical communication module, wherein the light receiving element is provided at a position where the light reflected from the light emitting surface of the light emitting element can be received. 前記発光素子は、前記集光レンズの光軸上で、かつ、その発光面が前記光軸に対して斜めになるように設けられ、前記受光素子は、その受光面が前記光伝送路からの受信信号光の前記発光素子による反射ビームに対して斜めになるように設けられてなる請求項1記載の光通信用モジュール。  The light emitting element is provided on the optical axis of the condenser lens and the light emitting surface thereof is inclined with respect to the optical axis, and the light receiving element has a light receiving surface extending from the optical transmission path. The optical communication module according to claim 1, wherein the module is provided so as to be inclined with respect to a reflected beam of the received signal light by the light emitting element. 前記発光素子の発光面に多層絶縁膜が形成され、該多層絶縁膜により前記発光面における反射率が30〜90%に調整されてなる請求項1または2記載の光通信用モジュール。  3. The optical communication module according to claim 1, wherein a multilayer insulating film is formed on a light emitting surface of the light emitting element, and a reflectance on the light emitting surface is adjusted to 30 to 90% by the multilayer insulating film.
JP09200697A 1997-04-10 1997-04-10 Bidirectional optical communication module Expired - Fee Related JP3759279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09200697A JP3759279B2 (en) 1997-04-10 1997-04-10 Bidirectional optical communication module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09200697A JP3759279B2 (en) 1997-04-10 1997-04-10 Bidirectional optical communication module

Publications (2)

Publication Number Publication Date
JPH10285122A JPH10285122A (en) 1998-10-23
JP3759279B2 true JP3759279B2 (en) 2006-03-22

Family

ID=14042378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09200697A Expired - Fee Related JP3759279B2 (en) 1997-04-10 1997-04-10 Bidirectional optical communication module

Country Status (1)

Country Link
JP (1) JP3759279B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3861816B2 (en) 2003-01-24 2006-12-27 住友電気工業株式会社 Optical transceiver module and manufacturing method thereof

Also Published As

Publication number Publication date
JPH10285122A (en) 1998-10-23

Similar Documents

Publication Publication Date Title
US6005262A (en) Flip-chip bonded VCSEL CMOS circuit with silicon monitor detector
JPH06160674A (en) Photoelectronic device
EP1387197A1 (en) Laser module with intensity tracking error supression
JPH1168164A (en) Module for two-way light communication
JP2003262766A (en) Optical coupler
JP2628774B2 (en) Semiconductor laser module with built-in optical isolator
JPH10321900A (en) Optical module
US6792012B2 (en) Laser pump module with reduced tracking error
JP2004271921A (en) Bidirectional optical module and optical transmission device
US6874954B2 (en) Light-emitting module
EP0477842B1 (en) Semiconducteur laser amplifier
US6509989B1 (en) Module for bidirectional optical communication
JP2002374027A (en) Semiconductor laser device
JP3759279B2 (en) Bidirectional optical communication module
US6282006B1 (en) Optical communications apparatus and method
JPH0980274A (en) Semiconductor laser module
JPH07168061A (en) Light transmitting receiving module
JPH10256672A (en) Semiconductor laser module, optical fiber amplifier, and optical transmission system
JPH08148756A (en) Semiconductor laser device
CA2297898A1 (en) Semiconductor laser power monitoring arrangements and method
CN112532232A (en) Optical coupler with side-emitting electromagnetic radiation source
JPH1010354A (en) Optical communication module
JP2002162541A (en) Optical semiconductor element module
JPH1138279A (en) Optical module for bidirectional transmission
JPH1154788A (en) Two-way optical communication module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees