JP3759003B2 - Permanent magnet built-in high magnetic field generator - Google Patents

Permanent magnet built-in high magnetic field generator Download PDF

Info

Publication number
JP3759003B2
JP3759003B2 JP2001215874A JP2001215874A JP3759003B2 JP 3759003 B2 JP3759003 B2 JP 3759003B2 JP 2001215874 A JP2001215874 A JP 2001215874A JP 2001215874 A JP2001215874 A JP 2001215874A JP 3759003 B2 JP3759003 B2 JP 3759003B2
Authority
JP
Japan
Prior art keywords
magnetic field
superconducting
permanent magnet
magnet
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001215874A
Other languages
Japanese (ja)
Other versions
JP2003031399A (en
Inventor
雅之 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Radiological Sciences
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Radiological Sciences
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Radiological Sciences, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001215874A priority Critical patent/JP3759003B2/en
Publication of JP2003031399A publication Critical patent/JP2003031399A/en
Application granted granted Critical
Publication of JP3759003B2 publication Critical patent/JP3759003B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、永久磁石組込型高磁場発生装置に関するものである。さらに詳しくは、この出願の発明は、高エネルギー物理学、原子核物理学、エネルギー科学、物質・材料科学、生命科学、医療利用研究等に利用可能な、シンクロトロン、サイクロトロン、貯蔵リング(ストレージリング)等の円形荷電粒子加速器において、荷電粒子を偏向及び収束・発散させるために必要な高強度の磁場を形成する、永久磁石組込型高磁場発生装置に関するものである。
【0002】
【従来の技術とその課題】
これまで、加速器科学の中でもシンクロトロン、サイクロトロン、貯蔵リング(ストレージリング)等の円形荷電粒子加速器の研究開発においては、加速する或いは貯蔵する荷電粒子のエネルギー又は粒子数を増加させる方向に研究目標が置かれてきた。特に、衝突型加速器においては、荷電粒子の衝突頻度(ルミノシティ)を増加させることに努力がなされてきた。
【0003】
荷電粒子の加速エネルギーを増加させるためには、加速器のサイズを大きくし、且つ荷電粒子を偏向及び収束・発散させるための磁石の磁場強度を高める必要がある。磁場強度を高めるために超伝導電磁石技術の導入がなされたが、高エネルギー物理学や原子核物理学等の分野において要求されるレベルまでには到底及ばず、加速器のサイズばかりが肥大化することとなり、ついには周長が数十キロメートルにも及ぶ巨大な円形加速器が開発されるにまで至った。
【0004】
アメリカ合衆国においては、円形衝突型加速器であるハドロンコライダーのSSC(Superconducting Super Collider)が計画実施半ばでその規模の大きさと予算の増加に対する反省がエネルギー省によりなされ、建設中止となった。その結果アメリカ合衆国での高エネルギー加速器の研究開発は、衝突型線形加速器であるリニアコライダー及びSSCと比べて規模の小さい新たな円形のハドロンコライダーが主流になっており、続いて円形レプトン衝突型加速器であるミューオンコライダーが開発計画にある主要な加速器として挙げてきた。
【0005】
一方ヨーロッパでは、最後のハドロンコライダーと考えられる円形加速器LHC(Large Hadron Collider)の建設が進められており、またレプトン衝突型加速器としてはアメリカと同様にミューオンコライダーの開発計画も検討されはじめている。
【0006】
このように次世代における高エネルギーハドロンコライダーの研究開発の中心はアメリカからヨーロッパに移行しようとしており、アメリカの高エネルギー物理学界は危機感を持ちつつある。このような情勢からアメリカでは超大型加速器VLHC(Very Large Hadron Collider)計画が提案されようとしている。
【0007】
他方で、本発明者等は、円形加速器の小型化という観点から高磁場永久磁石を開発してきた(永久磁石を用いた高磁場円形荷電粒子加速器(熊田他、特願2000−301078)、磁界発生装置(熊田他、特願2001−086098))。しかし、これらの発明で得られる高磁場は直流磁場として利用されるため、粒子加速器としては小型サイクロトロン或いはFFAG(Fixed Field Alternating Gradient)加速器等に利用されるに限られていたことは否めない。
【0008】
ところで、最近のマグネットテクノロジーの最先端としてVLHCの研究開発現場においては、主にFermilab (Fermi National Accelerator Laboratory)で使用されている磁石の構造を極端に単純化した超伝導伝送線路マグネット(Transmission Line Magnet/Pipetron)が研究開発されている。
【0009】
この磁石の構造は、超伝導ケーブルをパイプ状にして通電し、このパイプの周りに上下2方向から鉄芯を被せ、それらの鉄芯間にお互いに逆方向であるダイポール磁場の空隙を2つ作るというものである。加速器としては、円周上にいくつも並んだこの磁石の空隙中に、陽子をお互いに逆方向に回して衝突させようというもので、その周長は240kmに達する。この磁石は単純な構造のため低価格であることが最大の特長で、占積率を95%として超伝導電磁石だけで日本円に換算して2400億円強と言われている。
【0010】
逆に最も不満な点は、かなり無理をしても磁場強度が2テスラを超えることができないと言う点である。これは鉄が飽和してしまうために磁場の励磁の増加とともに磁場分布が変化してしまい、特に貯蔵リングに必要とされる高精度な磁場の空間分布が維持できなくなってしまうためである。現在、この2テスラの壁を超えることはできていない。
【0011】
そのためVLHC計画では計画を2期に分割せざるを得ず、2テスラ磁石の後、第2期計画として同じトンネルに9.8テスラの高磁場磁石を入れるという計画が出ている。しかし、2テスラでは以前に計画の最中で挫折してしまったSSC(Superconducting Super Cllider)と変り映えがしないという批判もあり、2テスラを超える磁石を実現させたいという要望が高い。これが本発明が解決すべき第1の課題である。
【0012】
更に上記のようなことが可能になれば、高エネルギー最先端加速器も医療用加速器のシンクロトロンの小型化への道も開ける可能性がある。偏向磁場強度が3テスラに及ぶ小型シンクロトロンは高磁場永久磁石FFAGとともに新たな利用価値が生まれ、医療用・治療用加速器の普及に大きなインパクトを与えることになる。これが本発明の解決すべき第2の課題である。
【0013】
そこで、この出願の発明は、以上のとおりの事情に鑑みてなされたものであり、従来技術の問題点を解消し、円形荷電粒子加速器において、荷電粒子を偏向及び収束・発散させるために必要な高強度の磁場を形成する、永久磁石組込型高磁場発生装置を提供することを課題としている。
【0014】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、まず第1には、超伝導ケーブルにより形成した超伝導パイプと、超伝導パイプを液体ヘリウムで冷却する冷却手段と、超伝導パイプの外側に設けられ、上下2方向から被せられる鉄芯及び鉄ヨークの少なくとも一方と、超伝導パイプに対し超伝導パイプの長さ方向に垂直な方向において左右両側に設けられた2つのビームダクトよりなり、超伝導パイプの左右が対称な構造を有する超伝導伝送線路マグネットにおける鉄芯及び鉄ヨークの少なくとも一方の左右両側に、超伝導伝送線路マグネットの発生する外部磁場が作用し、かつ鉄芯及び鉄ヨークを用いず磁極間に空隙を有する永久磁石を配置するための空間をそれぞれ設け、鉄芯及び鉄ヨークの少なくとも一方を飽和させることなく加速器の性能に必要な高い磁場の空間分布を維持しつつ、永久磁石に設けた空隙中の磁場強度が、永久磁石による磁場と超伝導電磁石による外部磁場の合成磁場の磁場強度となることを特徴とする高磁場発生装置を提供する。
【0015】
第2には、第1の発明において、合成磁場の磁場強度が、2テスラ以上であることを特徴とする高磁場発生装置を提供する。
【0016】
また、第3には、第1又は第2の発明において、速い励磁の繰返しの運転を可能とするため、永久磁石の構成要素が絶縁された小さい単位磁石であることを特徴とする高磁場発生装置を提供する。
【0017】
また、第4には、第1から第3のいずれかの発明において、永久磁石が希土類系の磁石材料からなることを特徴とする高磁場発生装置を提供する。
【0018】
また、第5には、第1から第4のいずれかの発明において、永久磁石を液体窒素温度で冷却し、磁場の温度安定性を向上し残留磁束密度および保磁力をも併せて向上させることを特徴とする高磁場発生装置を提供する。
【0019】
また、第6には、第1から第5のいずれかの発明において、シンクロトロン加速器で荷電粒子を収束させる際に超伝導伝送線路マグネットが発生する磁場の勾配と永久磁石が発生する磁場の勾配が等しくなることを特徴とする高磁場発生装置を提供する。
【0020】
【発明の実施の形態】
この出願の発明の磁界発生装置は、まず第1の課題を解決するために、Fermilabのフォスター等の発明した(Fermilab report, "Design study for a staged VLHC) Fermilab TM-2149, 6/4/01)超伝導伝送線路マグネットに希土類系磁石材料を用いた永久磁石を組み合わせることで、フォスター等の開発では不可能であった3テスラから4テスラの磁場強度を空隙(ギャップ)磁場で実現させようというものである。
【0021】
3テスラ磁石の場合、1.5テスラを超伝導電磁石で作り、残りの1.5テスラを永久磁石で作り、永久磁石の磁極間に設けた空隙に、それぞれの磁石による磁場を重畳させた合成磁場を得る。超伝導伝送線路マグネット全体は240mm×280mm程度であり、超伝導ケーブルで形成した超伝導パイプの直径が約40mmであるのに比べてかなり大きく、また、ビームパイプのサイズは、20mm×40mm程度であり、超伝導伝送線路マグネット全体はビームパイプに比べてもかなり大きいため、永久磁石を挿入するのに適当な大きさといえる。
【0022】
超伝導伝送線路マグネットにおける2つの鉄芯間の空間であり、ビームパイプを挿入する空間に、永久磁石が1.5テスラの磁場を生成させる。尚、永久磁石は磁極間に空隙を有するU字形やC字形やO字形等をしており、その外径は100mm程度で良く、超伝導伝送線路マグネットの鉄芯の形状を変更させて、この100mmの空間を永久磁石の設置のために設ける。
【0023】
超伝導伝送線路マグネットは永久磁石に対しては1.5テスラの外部磁場を作ることになるが、それ自身の鉄芯はこの外部磁場の外側にあるので単独で1.5テスラを生成するときと比べて超伝導伝送線路マグネットの鉄芯内部の磁場は強くなることはない。また、永久磁石は1.5テスラという強い外部磁場に曝されることになるが、希土類系の磁石材料では最大3テスラまでの外部磁場に耐えられる保磁力の高いものが入手可能であるので問題は少ない。
【0024】
よって、超伝導伝送線路マグネットに挿入した永久磁石の磁極間の空隙中には、永久磁石による磁場と超伝導伝送線路マグネットによる磁場の合成磁場が得られる。
【0025】
それぞれの磁石の磁場強度は、正確には永久磁石の方を0.1テスラ程度高くしておき、超伝導伝送線路マグネットをシンクロトロンモードのため交流励磁したときの最小磁場が、例えば入射磁場の0.1テスラ(最大磁場は3.1テスラ)になるようにして所定のエネルギーの荷電粒子を入射可能とさせる。この永久磁石は超伝導ケーブルから成る超伝導パイプの両側に左右対称になるように設置され、超伝導パイプとの間の電磁力も左右対称になるので、当初の超伝導伝送線路マグネットに働く電磁力が小さいという利点は変わらない。また永久磁石の大きさは超伝導伝送線路マグネットと比べてかなり小さいので、コストも大きくならず大幅にエネルギーを増大させることができる。
【0026】
第2の課題の解決においても、外径が100mm程度の1.5テスラ永久磁石が有効である。従来のH型或いはC型の電磁石において、<100mm+磁気回路的に必要な幅>となる幅の空隙を設け、鉄芯及び鉄ヨークを用いず磁極間に空隙を有する永久磁石を電磁石の空隙の中心に設置することで永久磁石の空隙における磁場が電磁石による磁場と永久磁石による磁場の合成磁場となる。第1の課題の場合と同様、外部磁場は1.5テスラ程度であるので保磁力の高い永久磁石材料を選ぶことで減磁効果は避けることができる。
【0027】
また、超伝導伝送線路マグネット又は通常の電磁石の空隙に永久磁石を挿入した際、永久磁石を液体窒素温度で冷却することで、磁場の温度安定性を向上させ、残留磁束密度および保磁力をも併せて向上させることが可能となる。
【0028】
また超伝導電磁石の場合では磁石の励磁の繰返しが遅いのに比べ、従来の電磁石では励磁の繰返しを速くすることができる。この場合、第2の課題を解決する際、励磁のスピードに応じて小さく絶縁された分割された小磁石で永久磁石を構成する。
【0029】
超伝導伝送線路マグネット/通常電磁石のいずれの場合においても特に注意すべき点は、この発明での磁石はシンクロトロン等の円形加速器への応用であるため、この発明での磁石を純粋な偏向磁石として用いる場合は問題ないが、これに収束作用を持たせる場合には偏向磁場強度の変化に応じて収束力も一定に保持する必要があるということである。そのためには永久磁石の磁場勾配と超伝導伝送線路マグネット/通常電磁石の磁場勾配を等しくとる必要がある。
【0030】
また、超伝導伝送線路マグネット/通常電磁石のいずれの場合においても、電磁石と小型永久磁石を加速器のビームの進行方向に対して、横方向(transversedirection)の面内で組み合わせを行っているのがこの発明の特徴である。
【0031】
以下、添付した図面に沿って実施例を示し、この発明の実施の形態についてさらに詳しく説明する。もちろん、この発明は以下の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。
【0032】
【実施例】
<実施例1>
図1にFermilabのフォスターがVLHC用に提案した超伝導伝送線路マグネット(6)の断面図を示す。この超伝導伝送線路マグネット(6)は従来の銅コイル電磁石の銅コイルの部分を超伝導コイルで置き換えたスーパーフェリック型超伝導マグネットと言える。
【0033】
この超伝導伝送線路マグネット(6)は、超伝導ケーブルによって形成した超伝導パイプ(2)を液体ヘリウム(1)で冷やし、超伝導パイプ(2)の外側の真空絶縁ダクト(3)の周囲に鉄芯(鉄ヨーク)(5)を上下2方向から被せ、超伝導パイプ(2)の左右両側にビームダクト(4)を2つ設けた構造となっている。尚、この図には示していないが、実際はこの断面の下側にリターンの超伝導ケーブルがある。
【0034】
この超伝導伝送線路マグネット(6)の最大の特徴は、超伝導ケーブルによって形成された超伝導パイプ(2)の左右が対称になっていて、電磁力が超伝導パイプ(2)にはほとんどかからないことである。従って、超伝導パイプ(2)をなす超伝導ケーブルとして電磁力に対抗するための強固な構造材を必要としないため、コストが圧倒的に安価となる。フォスター等の主張では240kmの加速器の周長に超伝導伝送線路マグネット(6)をほぼいっぱいに詰めても2億ドルしかかからないということである。日本円に換算すると100万円/mであり常伝導磁石よりも桁違いに安価であると言える。
【0035】
図2の破線は、元の鉄芯(5)の位置を示し、実線は小型永久磁石を挿入するために空隙を広げた状態に鉄芯(5)が位置しているときの超伝導伝送線路マグネット(6)の様子を示す。
【0036】
図3は、ビームダクト(4)の周りに、磁極間に空隙を有するC字形の小型永久磁石(7)を設置し、小型永久磁石(7)によって形成されるビームダクト(4)中の磁場の向き(8)を示している。
【0037】
図4では超伝導伝送線路マグネット(6)の空隙の中に小型永久磁石(7)を挿入した様子を示す。
以上の図は寸法の縮尺比はおおよそ正しいが概略図である。概算では1.5テスラを出すのに小型の超伝導伝送線路マグネットで済んでいるので、この発明の磁石の追加コストも併せたコストは、フォスター等が開発した元の超伝導伝送線路マグネットとほぼ同額であると期待される。
<実施例2>
図5に従来の銅コイルを用いたH型電磁石(9)の断面図を示す。ここでは鉄芯(10)と鉄ヨーク(11)と銅コイル(12)とが電磁石を構成し、そこに形成される空隙中において、ビームダクト(13)を有する小型永久磁石(14)を、冷却ダクトとしての液体窒素槽(15)の中に設置し、液体窒素(16)を封入している。この例ではビームダクト(13)が永久磁石(14)の磁極間の空隙に当り、ビームダクト(13)中の磁場がH型電磁石(9)による磁場と永久磁石(14)による磁場の合成磁場となる。
【0038】
H型電磁石(9)の空隙中の永久磁石(14)等を液体窒素(16)で冷やす目的は、加速器に使用するための磁場の温度安定性を高めるためと、低温での磁化特性の向上である。図には示していないが、実施例1の形態においても空隙中の永久磁石等を液体窒素で冷やすことも可能である。
【0039】
超伝導電磁石では励磁の繰返しが遅いのに比べ、従来の電磁石では励磁の繰返しを速くすることができる。
実施例2の形態では励磁のスピードに応じて、小さく絶縁され且つ分割された小磁石で永久磁石を構成することも可能である。永久磁石は電磁石によって変化する外部磁場中に入れると、渦電流が流れ加熱されたり渦電流による磁場が発生するが、上記のように永久磁石を絶縁且つ分割された小磁石で構成することでこれらのことを回避することができる。
【0040】
実施例1、実施例2のいずれの形態においても電磁石と小型永久磁石を加速器のビームの進行方向に対して横方向の面内で組合せを行っている。
【0041】
【発明の効果】
以上詳しく説明したとおり、この発明によって、超伝導電磁石と永久磁石を組み合わせることにより、高性能磁場分布を維持しつつ、2テスラを超えて4テスラ近くまでの遅い励磁の繰返しの運転を可能とする高磁場発生装置が提供される。同様に超伝導電磁石以外の電磁石と永久磁石の組合せにより速い励磁の繰返しの運転も可能となる高磁場発生装置が提供される。
【0042】
上記のような超伝導電磁石と永久磁石を組み合わせた磁石は低価格中磁場(3〜4テスラ)で、低磁場(2テスラ)では困難であった超伝導電磁石における鉄の飽和の問題を解決し、そして永久磁石でしばしば不便な直流磁場という問題をも解決でき、両者の欠点を取り除くことが可能となる。
【0043】
また超伝導電磁石以外の電磁石においても同様に、小型の永久磁石との組み合わせることで従来不可能であった3テスラの交流磁場の領域まで可能にし、医療用等の低価格小型加速器への応用への道を開くことができる。
【図面の簡単な説明】
【図1】この発明の一実施例の高磁場発生装置に用いる超伝導伝送線路マグネットの断面図である。
【図2】同じ実施例の高磁場発生装置において、小型永久磁石を挿入するために超伝導伝送線路マグネットの磁極の間隔を広げたときの様子を示した図である。
【図3】同じ実施例の高磁場発生装置に用いる小型永久磁石の外観を示した図である。
【図4】同じ実施例の高磁場発生装置において、小型永久磁石を超伝導伝送線路マグネットに組み込んだときの様子を示した図である。
【図5】他の実施例の高磁場発生装置において、小型永久磁石を従来型電磁石の空隙に組み込んだときの様子を示した図である。
【符号の説明】
1 液体ヘリウム
2 超伝導パイプ
3 真空絶縁ダクト
4 ビームダクト
5 鉄芯(鉄ヨーク)
6 超伝導伝送線路マグネット
7 永久磁石
8 空隙の磁場の向き
9 H型電磁石
10 鉄芯
11 鉄ヨーク
12 銅コイル
13 ビームダクト
14 小型永久磁石
15 液体窒素槽
16 液体窒素
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a permanent magnet built-in high magnetic field generator. More specifically, the invention of this application relates to a synchrotron, a cyclotron, a storage ring (storage ring) that can be used for high energy physics, nuclear physics, energy science, materials and materials science, life science, medical use research, etc. The present invention relates to a permanent magnet built-in high magnetic field generator that forms a high-intensity magnetic field necessary for deflecting, converging, and diverging charged particles.
[0002]
[Prior art and its problems]
Until now, research and development of circular charged particle accelerators such as synchrotrons, cyclotrons, and storage rings (storage rings) in accelerator science have focused on increasing the energy or number of charged particles to be accelerated or stored. Has been put. In particular, in a collision type accelerator, efforts have been made to increase the collision frequency (luminosity) of charged particles.
[0003]
In order to increase the acceleration energy of the charged particles, it is necessary to increase the size of the accelerator and to increase the magnetic field strength of the magnet for deflecting, converging / diverging the charged particles. Although superconducting electromagnet technology was introduced to increase the magnetic field strength, it did not reach the level required in fields such as high energy physics and nuclear physics, and only the size of the accelerator would be enlarged. Finally, a huge circular accelerator with a circumference of several tens of kilometers was developed.
[0004]
In the United States, Hadron Collider SSC (Superconducting Super Collider), a circular collision type accelerator, was mid-planned and the Ministry of Energy made a reflection on the increase in size and budget, and the construction was discontinued. As a result, research and development of high-energy accelerators in the United States has been mainly performed by linear colliders, which are colliding linear accelerators, and new circular hadron colliders, which are smaller in scale than SSC, followed by circular lepton colliding accelerators. A muon collider has been listed as the main accelerator in the development plan.
[0005]
On the other hand, in Europe, the construction of the LHC (Large Hadron Collider), which is considered to be the last hadron collider, has been under construction, and the development plan for the muon collider as a leptone collider is beginning to be considered. .
[0006]
In this way, the center of research and development of next-generation high-energy hadron colliders is moving from the United States to Europe, and the high-energy physics community in the United States is beginning to feel a sense of crisis. Under such circumstances, a very large accelerator VLHC (Very Large Hadron Collider) program is being proposed in the United States.
[0007]
On the other hand, the present inventors have developed a high-field permanent magnet from the viewpoint of miniaturization of a circular accelerator (a high-field circular charged particle accelerator using a permanent magnet (Kumada et al., Japanese Patent Application No. 2000-301078), Device (Kumada et al., Japanese Patent Application No. 2001-086098)). However, since the high magnetic field obtained by these inventions is used as a DC magnetic field, it cannot be denied that the particle accelerator is limited to being used in a small cyclotron or a FFAG (Fixed Field Alternating Gradient) accelerator.
[0008]
By the way, at the research and development site of VLHC as the latest state of the art of magnet technology, a superconducting transmission line magnet (Transmission Line Magnet), which is an extremely simplified structure of a magnet mainly used in Fermilab (Fermi National Accelerator Laboratory). / Pipetron) is being researched and developed.
[0009]
This magnet is constructed by energizing a superconducting cable in the form of a pipe, and covering this pipe with an iron core from two directions, two dipole magnetic fields that are opposite to each other. It is to make. As an accelerator, protons are allowed to collide by rotating in opposite directions in the gaps of the magnets arranged on the circumference, and the circumference reaches 240 km. This magnet has the simple feature of being inexpensive and its biggest feature is that the space factor is 95%, and it is said that the superconducting electromagnet alone is converted to Japanese yen and is over 240 billion yen.
[0010]
On the contrary, the most dissatisfied point is that the magnetic field strength cannot exceed 2 Tesla even if it is considerably overreasonable. This is because the magnetic field distribution changes with an increase in the excitation of the magnetic field because iron is saturated, and the high-precision magnetic field spatial distribution required for the storage ring cannot be maintained. Currently, it is not possible to cross this 2 Tesla wall.
[0011]
Therefore, in the VLHC plan, the plan must be divided into two phases, and after 2 Tesla magnets, there is a plan to put 9.8 Tesla high-field magnets in the same tunnel as the second phase plan. However, in 2 Tesla, there is criticism that it will not change with SSC (Superconducting Super Cllider), which had been frustrated in the middle of the plan before, and there is a high demand for realizing a magnet exceeding 2 Tesla. This is the first problem to be solved by the present invention.
[0012]
Furthermore, if the above becomes possible, there is a possibility that a high-energy state-of-the-art accelerator and a medical accelerator synchrotron can be downsized. A small synchrotron with a deflection magnetic field strength of 3 Tesla has a new utility value along with the high-field permanent magnet FFAG, and has a great impact on the spread of medical and therapeutic accelerators. This is the second problem to be solved by the present invention.
[0013]
Therefore, the invention of this application has been made in view of the circumstances as described above, and is necessary for solving the problems of the prior art and deflecting and converging / diverging charged particles in a circular charged particle accelerator. An object of the present invention is to provide a permanent magnet built-in high magnetic field generator that forms a high-intensity magnetic field.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, the invention of this application firstly , a superconducting pipe formed by a superconducting cable, a cooling means for cooling the superconducting pipe with liquid helium, and an outer side of the superconducting pipe And at least one of an iron core and an iron yoke that are covered from the upper and lower directions, and two beam ducts provided on the left and right sides in a direction perpendicular to the length direction of the superconducting pipe with respect to the superconducting pipe, An external magnetic field generated by the superconducting transmission line magnet acts on both left and right sides of the iron core and iron yoke in the superconducting transmission line magnet having a symmetrical structure of the superconducting pipe, and the iron core and iron yoke. It provided a space for arranging the permanent magnet with a gap between the magnetic poles without, respectively, without saturating the at least one of the iron core and yoke While maintaining the spatial distribution of the high magnetic field necessary for the speedometer performance, the magnetic field strength in the air gap provided in the permanent magnet is the magnetic field strength of the combined magnetic field of the permanent magnet and the external magnetic field of the superconducting electromagnet. A high magnetic field generator characterized by the above is provided.
[0015]
Second, in the first invention, there is provided a high magnetic field generator characterized in that the magnetic field strength of the synthesized magnetic field is 2 Tesla or more .
[0016]
Thirdly, in the first or second invention, the high magnetic field generation is characterized in that the constituent elements of the permanent magnet are insulated small unit magnets in order to enable the repeated operation of the fast excitation. Providing equipment.
[0017]
According to a fourth aspect of the present invention, there is provided the high magnetic field generator according to any one of the first to third aspects, wherein the permanent magnet is made of a rare earth magnet material .
[0018]
Fifth, in any one of the first to fourth inventions, the permanent magnet is cooled at a liquid nitrogen temperature, the temperature stability of the magnetic field is improved, and the residual magnetic flux density and the coercive force are also improved. A high magnetic field generator is provided.
[0019]
Sixth, in any one of the first to fifth inventions, the gradient of the magnetic field generated by the superconducting transmission line magnet and the gradient of the magnetic field generated by the permanent magnet when the charged particles are converged by the synchrotron accelerator. A high magnetic field generator characterized by equality is provided.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the first problem, the magnetic field generator of the invention of this application was first invented by Fermilab Foster et al. (Fermilab report, “Design study for a staged VLHC”) Fermilab TM-2149, 6/4/01 ) By combining a superconducting transmission line magnet with a permanent magnet using a rare earth magnet material, a magnetic field strength of 3 Tesla to 4 Tesla, which was impossible in the development of Foster etc., will be realized with a gap magnetic field. Is.
[0021]
In the case of a 3 Tesla magnet, 1.5 Tesla is made of a superconducting electromagnet, the remaining 1.5 Tesla is made of a permanent magnet, and the magnetic field of each magnet is superimposed on the gap provided between the magnetic poles of the permanent magnet. Get a magnetic field. The entire superconducting transmission line magnet is about 240 mm x 280 mm, which is considerably larger than the diameter of the superconducting pipe formed by the superconducting cable, and the size of the beam pipe is about 20 mm x 40 mm. In addition, since the entire superconducting transmission line magnet is considerably larger than the beam pipe, it can be said that the size is suitable for inserting a permanent magnet.
[0022]
A permanent magnet generates a magnetic field of 1.5 Tesla in a space between two iron cores in a superconducting transmission line magnet, and a space into which a beam pipe is inserted. The permanent magnet has a U-shape, C-shape, O-shape, etc. with a gap between the magnetic poles, and its outer diameter may be about 100 mm. The shape of the iron core of the superconducting transmission line magnet can be changed. A space of 100 mm is provided for permanent magnet installation.
[0023]
A superconducting transmission line magnet creates an external magnetic field of 1.5 Tesla for a permanent magnet, but its own iron core is outside this external magnetic field, so when generating 1.5 Tesla alone The magnetic field inside the iron core of the superconducting transmission line magnet does not become stronger. Permanent magnets are exposed to a strong external magnetic field of 1.5 Tesla. However, rare earth magnet materials with high coercive force that can withstand external magnetic fields up to 3 Tesla are available. There are few.
[0024]
Therefore, in the gap between the magnetic poles of the permanent magnet inserted into the superconducting transmission line magnet, a combined magnetic field of the magnetic field by the permanent magnet and the magnetic field by the superconducting transmission line magnet is obtained.
[0025]
The magnetic field strength of each magnet is precisely about 0.1 Tesla higher for the permanent magnet, and the minimum magnetic field when the superconducting transmission line magnet is AC-excited for the synchrotron mode is, for example, the incident magnetic field. Charged particles having a predetermined energy can be incident so as to be 0.1 Tesla (the maximum magnetic field is 3.1 Tesla). These permanent magnets are installed symmetrically on both sides of the superconducting pipe made of superconducting cable, and the electromagnetic force between the superconducting pipe and the superconducting pipe is also symmetrical, so the electromagnetic force acting on the original superconducting transmission line magnet The advantage of small is unchanged. Moreover, since the size of the permanent magnet is considerably smaller than that of the superconducting transmission line magnet, the cost can be increased without significantly increasing the energy.
[0026]
Also in the solution of the second problem, a 1.5 Tesla permanent magnet having an outer diameter of about 100 mm is effective. In a conventional H-type or C-type electromagnet, a gap having a width of <100 mm + necessary width for a magnetic circuit> is provided, and a permanent magnet having a gap between magnetic poles without using an iron core and an iron yoke is used as the gap of the electromagnet. By installing in the center, the magnetic field in the gap of the permanent magnet becomes the combined magnetic field of the magnetic field by the electromagnet and the magnetic field by the permanent magnet. As in the case of the first problem, since the external magnetic field is about 1.5 Tesla, the demagnetization effect can be avoided by selecting a permanent magnet material having a high coercive force.
[0027]
In addition, when a permanent magnet is inserted into the gap of a superconducting transmission line magnet or a normal electromagnet, the permanent magnet is cooled at the liquid nitrogen temperature, thereby improving the temperature stability of the magnetic field and increasing the residual magnetic flux density and coercive force. In addition, it is possible to improve.
[0028]
Further, in the case of a superconducting electromagnet, the repetition of excitation of the magnet is slow, whereas in the conventional electromagnet, the repetition of excitation can be accelerated. In this case, when solving the second problem, the permanent magnet is constituted by the divided small magnets which are insulated small according to the excitation speed.
[0029]
In both cases of superconducting transmission line magnets / normal electromagnets, it should be noted that the magnets of the present invention are applied to circular accelerators such as synchrotrons. There is no problem when it is used as, but when it has a convergence effect, it is necessary to keep the convergence force constant according to the change of the deflection magnetic field strength. For this purpose, it is necessary to make the magnetic field gradient of the permanent magnet equal to the magnetic field gradient of the superconducting transmission line magnet / normal electromagnet.
[0030]
Also, in both cases of superconducting transmission line magnets / normal electromagnets, the combination of electromagnets and small permanent magnets in the transverse direction with respect to the traveling direction of the beam of the accelerator. It is a feature of the invention.
[0031]
Hereinafter, embodiments will be described with reference to the accompanying drawings, and embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail.
[0032]
【Example】
<Example 1>
FIG. 1 shows a cross-sectional view of a superconducting transmission line magnet (6) proposed by Fermilab Foster for VLHC. This superconducting transmission line magnet (6) can be said to be a super ferric superconducting magnet in which the copper coil portion of a conventional copper coil electromagnet is replaced with a superconducting coil.
[0033]
This superconducting transmission line magnet (6) cools the superconducting pipe (2) formed by the superconducting cable with liquid helium (1), and surrounds the vacuum insulating duct (3) outside the superconducting pipe (2). An iron core (iron yoke) (5) is covered in two directions, and two beam ducts (4) are provided on both the left and right sides of the superconducting pipe (2). Although not shown in this figure, there is actually a return superconducting cable below the cross section.
[0034]
The greatest feature of this superconducting transmission line magnet (6) is that the left and right sides of the superconducting pipe (2) formed by the superconducting cable are symmetrical, and electromagnetic force is hardly applied to the superconducting pipe (2). That is. Therefore, the superconducting cable forming the superconducting pipe (2) does not require a strong structural material for resisting electromagnetic force, and the cost is extremely low. Foster's claim is that it costs only $ 200 million if the superconducting transmission line magnet (6) is almost fully packed in the circumference of the 240 km accelerator. In terms of Japanese yen, it is 1 million yen / m, which is an order of magnitude cheaper than normal magnets.
[0035]
The broken line in FIG. 2 indicates the position of the original iron core (5), and the solid line indicates the superconducting transmission line when the iron core (5) is located in a state where the gap is widened to insert a small permanent magnet. The state of the magnet (6) is shown.
[0036]
FIG. 3 shows a magnetic field in the beam duct (4) formed by a small permanent magnet (7) in which a C-shaped small permanent magnet (7) having a gap between magnetic poles is installed around the beam duct (4). Direction (8) is shown.
[0037]
FIG. 4 shows a state in which the small permanent magnet (7) is inserted into the gap of the superconducting transmission line magnet (6).
The above figure is a schematic view although the dimensional scale ratio is approximately correct. Roughly, it takes only a small superconducting transmission line magnet to produce 1.5 Tesla. Therefore, the cost including the additional cost of the magnet of the present invention is almost the same as the original superconducting transmission line magnet developed by Foster et al. Expected to be the same amount.
<Example 2>
FIG. 5 shows a cross-sectional view of an H-type electromagnet (9) using a conventional copper coil. Here, the iron core (10), the iron yoke (11), and the copper coil (12) constitute an electromagnet, and a small permanent magnet (14) having a beam duct (13) is formed in a gap formed therein. It is installed in a liquid nitrogen tank (15) as a cooling duct, and liquid nitrogen (16) is enclosed. In this example, the beam duct (13) hits the gap between the magnetic poles of the permanent magnet (14), and the magnetic field in the beam duct (13) is a combined magnetic field of the magnetic field by the H-type electromagnet (9) and the magnetic field by the permanent magnet (14). It becomes.
[0038]
The purpose of cooling the permanent magnet (14) in the gap of the H-type electromagnet (9) with liquid nitrogen (16) is to increase the temperature stability of the magnetic field for use in the accelerator and to improve the magnetization characteristics at low temperatures. It is. Although not shown in the drawing, the permanent magnets in the gaps can also be cooled with liquid nitrogen in the form of the first embodiment.
[0039]
Compared with superconducting electromagnets, which repeats excitation slowly, conventional electromagnets can accelerate excitation repeatedly.
In the form of the second embodiment, it is also possible to configure a permanent magnet with small magnets that are insulated and divided in accordance with the excitation speed. When a permanent magnet is placed in an external magnetic field that is changed by an electromagnet, an eddy current flows and a magnetic field is generated due to the eddy current. However, as described above, the permanent magnet is composed of small magnets that are insulated and divided. This can be avoided.
[0040]
In both the first and second embodiments, the electromagnet and the small permanent magnet are combined in a plane transverse to the traveling direction of the beam of the accelerator.
[0041]
【The invention's effect】
As described in detail above, the present invention enables repeated operation of slow excitation exceeding 2 Tesla to nearly 4 Tesla while maintaining a high-performance magnetic field distribution by combining a superconducting electromagnet and a permanent magnet. A high magnetic field generator is provided. Similarly, there is provided a high magnetic field generator that can be repeatedly operated with a fast excitation by a combination of an electromagnet other than a superconducting electromagnet and a permanent magnet.
[0042]
Magnets that combine superconducting electromagnets and permanent magnets as described above are low-priced medium magnetic fields (3 to 4 Tesla) and solve the problem of iron saturation in superconducting electromagnets, which was difficult with low magnetic fields (2 Tesla). In addition, the problem of the DC magnetic field, which is often inconvenient with permanent magnets, can be solved, and the disadvantages of both can be eliminated.
[0043]
Similarly, electromagnets other than superconducting electromagnets can be combined with small permanent magnets, enabling up to 3 Tesla AC magnetic field, which was previously impossible, and can be applied to low-priced compact accelerators for medical use. Can open the way.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a superconducting transmission line magnet used in a high magnetic field generator of one embodiment of the present invention.
FIG. 2 is a diagram showing a state when the interval between magnetic poles of a superconducting transmission line magnet is widened in order to insert a small permanent magnet in the high magnetic field generator of the same embodiment.
FIG. 3 is a view showing the appearance of a small permanent magnet used in the high magnetic field generator of the same embodiment.
FIG. 4 is a diagram showing a state when a small permanent magnet is incorporated into a superconducting transmission line magnet in the high magnetic field generator of the same embodiment.
FIG. 5 is a view showing a state in which a small permanent magnet is incorporated into a gap of a conventional electromagnet in a high magnetic field generator of another embodiment.
[Explanation of symbols]
1 Liquid helium 2 Superconducting pipe 3 Vacuum insulation duct 4 Beam duct 5 Iron core (iron yoke)
6 Superconducting transmission line magnet 7 Permanent magnet 8 Direction of magnetic field in gap 9 H-type electromagnet 10 Iron core 11 Iron yoke 12 Copper coil 13 Beam duct 14 Small permanent magnet 15 Liquid nitrogen tank 16 Liquid nitrogen

Claims (6)

超伝導ケーブルにより形成した超伝導パイプと、超伝導パイプを液体ヘリウムで冷却する冷却手段と、超伝導パイプの外側に設けられ、上下2方向から被せられる鉄芯及び鉄ヨークの少なくとも一方と、超伝導パイプに対し超伝導パイプの長さ方向に垂直な方向において左右両側に設けられた2つのビームダクトよりなり、超伝導パイプの左右が対称な構造を有する超伝導伝送線路マグネットにおける鉄芯及び鉄ヨークの少なくとも一方の左右両側に、超伝導伝送線路マグネットの発生する外部磁場が作用し、かつ鉄芯及び鉄ヨークを用いず磁極間に空隙を有する永久磁石を配置するための空間をそれぞれ設け、鉄芯及び鉄ヨークの少なくとも一方を飽和させることなく加速器の性能に必要な高い磁場の空間分布を維持しつつ、永久磁石に設けた空隙中の磁場強度が、永久磁石による磁場と超伝導電磁石による外部磁場の合成磁場の磁場強度となることを特徴とする高磁場発生装置。 A superconducting pipe formed by a superconducting cable, a cooling means for cooling the superconducting pipe with liquid helium, at least one of an iron core and an iron yoke provided on the outer side of the superconducting pipe and covered from two directions above and below, Iron core and iron in a superconducting transmission line magnet comprising two beam ducts provided on the left and right sides in a direction perpendicular to the length direction of the superconducting pipe with respect to the conducting pipe, and having a symmetrical structure on the left and right of the superconducting pipe On each of the left and right sides of at least one of the yokes, an external magnetic field generated by the superconducting transmission line magnet acts, and a space for disposing a permanent magnet having a gap between the magnetic poles without using an iron core and an iron yoke is provided. While maintaining at least one of the iron core and iron yoke without saturating the high magnetic field spatial distribution necessary for the accelerator performance, it is installed in the permanent magnet. Magnetic field strength in the air gap, high magnetic field generator, characterized in that the field strength of the resultant magnetic field of the external magnetic field by the magnetic field and superconducting magnet by a permanent magnet. 合成磁場の磁場強度が、2テスラ以上であることを特徴とする請求項1に記載の高磁場発生装置。 The high magnetic field generator according to claim 1, wherein the magnetic field strength of the synthetic magnetic field is 2 Tesla or more . 速い励磁の繰返しの運転を可能とするため、永久磁石の構成要素が絶縁された小さい単位磁石であることを特徴とする請求項1又は2に記載の高磁場発生装置。 The high magnetic field generator according to claim 1 or 2, wherein the constituent elements of the permanent magnet are insulated small unit magnets so as to enable fast repeated operation of excitation . 永久磁石が希土類系の磁石材料から成ることを特徴とする請求項1から3のいずれかに記載の高磁場発生装置。 4. The high magnetic field generator according to claim 1, wherein the permanent magnet is made of a rare earth magnet material . 永久磁石を液体窒素温度で冷却し、磁場の温度安定性を向上し残留磁束密度および保磁力をも併せて向上させることを特徴とする請求項1から4のいずれかに記載の高磁場発生装置。 The high magnetic field generator according to any one of claims 1 to 4, wherein the permanent magnet is cooled at a liquid nitrogen temperature, temperature stability of the magnetic field is improved, and residual magnetic flux density and coercive force are also improved. . シンクロトロン加速器で荷電粒子を収束させる際に超伝導伝送線路マグネットが発生する磁場の勾配と永久磁石が発生する磁場の勾配が等しくなることを特徴とする請求項1から5のいずれかに記載の高磁場発生装置。 The gradient of the magnetic field generated by the superconducting transmission line magnet and the gradient of the magnetic field generated by the permanent magnet when the charged particles are converged by the synchrotron accelerator are equal to each other. High magnetic field generator.
JP2001215874A 2001-07-16 2001-07-16 Permanent magnet built-in high magnetic field generator Expired - Lifetime JP3759003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001215874A JP3759003B2 (en) 2001-07-16 2001-07-16 Permanent magnet built-in high magnetic field generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001215874A JP3759003B2 (en) 2001-07-16 2001-07-16 Permanent magnet built-in high magnetic field generator

Publications (2)

Publication Number Publication Date
JP2003031399A JP2003031399A (en) 2003-01-31
JP3759003B2 true JP3759003B2 (en) 2006-03-22

Family

ID=19050426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001215874A Expired - Lifetime JP3759003B2 (en) 2001-07-16 2001-07-16 Permanent magnet built-in high magnetic field generator

Country Status (1)

Country Link
JP (1) JP3759003B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5336991B2 (en) * 2009-10-01 2013-11-06 大学共同利用機関法人 高エネルギー加速器研究機構 Electromagnet for controlling charged particle beam and irradiation treatment apparatus provided with the same
CN102956279A (en) * 2012-10-25 2013-03-06 中国科学院上海应用物理研究所 Undulator and manufacture method thereof
US20220268494A1 (en) * 2019-07-25 2022-08-25 National Institute For Materials Science Magnetic refrigeration module, magnetic refrigeration system, and cooling method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076104A (en) * 1983-10-01 1985-04-30 Sumitomo Special Metals Co Ltd Magnetic field generating device
JPH03122999A (en) * 1989-10-06 1991-05-24 Hitachi Ltd Deflecting electric magnet and charged particle accelerating method for circular accelerator using same
JPH05166598A (en) * 1991-12-12 1993-07-02 Toshiba Corp Deflection electromagnet for particle accelerator
JP3206506B2 (en) * 1997-07-31 2001-09-10 日本電気株式会社 Ion implanter with analysis magnet with magnetic field offset by permanent magnet
JP2000068099A (en) * 1998-08-20 2000-03-03 Ishikawajima Harima Heavy Ind Co Ltd Deflection magnet
JP2000324736A (en) * 1999-05-12 2000-11-24 Mitsubishi Electric Corp Permanent magnet mounted motor

Also Published As

Publication number Publication date
JP2003031399A (en) 2003-01-31

Similar Documents

Publication Publication Date Title
US4680565A (en) Magnetic field device for a system for the acceleration and/or storage of electrically charged particles
US4710722A (en) Apparatus generating a magnetic field for a particle accelerator
JPH06132119A (en) Superconductive magnet
JP3759003B2 (en) Permanent magnet built-in high magnetic field generator
Kashikhin A novel design of iron dominated superconducting multipole magnets with circular coils
Abe et al. Magnetic field design of a superconducting wiggler in the saga-ls storage ring
Thuillier et al. A-PHOENIX, an electron cyclotron resonance ion source for the Spiral 2 facility
Wilson Superconducting magnets for accelerators: a review
JPS61218120A (en) Magnetic field generator
Foster et al. Superconducting superferric dipole magnet with cold iron core for the VLHC
Kashikhin et al. Superconducting magnets for SCRF cryomodules at front end of linear accelerators
JP3948511B2 (en) Magnetic field generator that combines electromagnet and permanent magnet in the vertical direction
Kumada et al. Development of high field permanent magnet
Hull et al. Superconducting magnets
Gupta et al. RHIC Insertion Magnets
Chouhan et al. Design and fabrication of iron-dominated magnets and cryomodule magnetic shielding for the re-accelerator project at MSU
Summers et al. Muon acceleration with a very fast ramping synchrotron for a neutrino factory
Kumada et al. Three tesla magnet-in-magnet
Yoshimoto et al. The magnet design study for the FFAG accelerator
Zhu et al. CEPC superconducting magnets
Milanese et al. Concept of a Hybrid (Normal and Superconducting) Bending Magnet based on Iron Magnetization for 80-100km Lepton/Hadron Colliders
Shen et al. Status of Interaction Region Magnets for CEPC
Schmüser et al. 10.5 The Electron-Proton Collider HERA: The Largest Accelerators and Colliders of Their Time
Hwang et al. Comparison of predesign parameters for mini-pole in-vacuo superconducting undulators
Summers Accelerating muons to 2400 GeV/c with dogbones followed by interleaved fast ramping iron and fixed superconducting magnets

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051227

R150 Certificate of patent or registration of utility model

Ref document number: 3759003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term