JP2003031399A - Permanent magnet embedded type high magnetic field generating device - Google Patents

Permanent magnet embedded type high magnetic field generating device

Info

Publication number
JP2003031399A
JP2003031399A JP2001215874A JP2001215874A JP2003031399A JP 2003031399 A JP2003031399 A JP 2003031399A JP 2001215874 A JP2001215874 A JP 2001215874A JP 2001215874 A JP2001215874 A JP 2001215874A JP 2003031399 A JP2003031399 A JP 2003031399A
Authority
JP
Japan
Prior art keywords
magnetic field
permanent magnet
electromagnet
magnet
high magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001215874A
Other languages
Japanese (ja)
Other versions
JP3759003B2 (en
Inventor
Masayuki Kumada
雅之 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Radiological Sciences
Original Assignee
National Institute of Radiological Sciences
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Radiological Sciences, Japan Science and Technology Corp filed Critical National Institute of Radiological Sciences
Priority to JP2001215874A priority Critical patent/JP3759003B2/en
Publication of JP2003031399A publication Critical patent/JP2003031399A/en
Application granted granted Critical
Publication of JP3759003B2 publication Critical patent/JP3759003B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high magnetic field generating device increasing magnetic field intensity while keeping the accuracy of magnetic field distribution which was impossible in a superconductive transmission line magnet or a conventional electromagnet. SOLUTION: A permanent magnet is inserted into the cavity of the superconductive transmission line magnet or the conventional electromagnet. The magnetic field intensity of the cavity magnetic field between the magnetic poles of the permanent magnet is increased close to four teslas without further saturating iron.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この出願の発明は、永久磁石
組込型高磁場発生装置に関するものである。さらに詳し
くは、この出願の発明は、高エネルギー物理学、原子核
物理学、エネルギー科学、物質・材料科学、生命科学、
医療利用研究等に利用可能な、シンクロトロン、サイク
ロトロン、貯蔵リング(ストレージリング)等の円形荷
電粒子加速器において、荷電粒子を偏向及び収束・発散
させるために必要な高強度の磁場を形成する、永久磁石
組込型高磁場発生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The invention of this application relates to a permanent magnet built-in type high magnetic field generator. More specifically, the invention of this application includes high energy physics, nuclear physics, energy science, material / material science, life science,
In a circular charged particle accelerator such as a synchrotron, cyclotron, storage ring (storage ring), which can be used for medical application research, forms a high-intensity magnetic field necessary for deflecting, converging and diverging charged particles. The present invention relates to a high magnetic field generator incorporating a magnet.

【0002】[0002]

【従来の技術とその課題】これまで、加速器科学の中で
もシンクロトロン、サイクロトロン、貯蔵リング(スト
レージリング)等の円形荷電粒子加速器の研究開発にお
いては、加速する或いは貯蔵する荷電粒子のエネルギー
又は粒子数を増加させる方向に研究目標が置かれてき
た。特に、衝突型加速器においては、荷電粒子の衝突頻
度(ルミノシティ)を増加させることに努力がなされて
きた。
2. Description of the Related Art Up to now, in the research and development of circular charged particle accelerators such as a synchrotron, a cyclotron, and a storage ring (accelerator science), the energy or number of charged particles to be accelerated or stored has been used. Research objectives have been placed in the direction of increasing. In particular, in colliders, efforts have been made to increase the collision frequency (luminosity) of charged particles.

【0003】荷電粒子の加速エネルギーを増加させるた
めには、加速器のサイズを大きくし、且つ荷電粒子を偏
向及び収束・発散させるための磁石の磁場強度を高める
必要がある。磁場強度を高めるために超伝導電磁石技術
の導入がなされたが、高エネルギー物理学や原子核物理
学等の分野において要求されるレベルまでには到底及ば
ず、加速器のサイズばかりが肥大化することとなり、つ
いには周長が数十キロメートルにも及ぶ巨大な円形加速
器が開発されるにまで至った。
In order to increase the acceleration energy of the charged particles, it is necessary to increase the size of the accelerator and increase the magnetic field strength of the magnet for deflecting and converging / diverging the charged particles. Superconducting electromagnet technology was introduced to increase the magnetic field strength, but it did not reach the level required in fields such as high-energy physics and nuclear physics, and the size of the accelerator only increased. Finally, a huge circular accelerator with a circumference of several tens of kilometers was developed.

【0004】アメリカ合衆国においては、円形衝突型加
速器であるハドロンコライダーのSSC(Superconduct
ing Super Collider)が計画実施半ばでその規模の大き
さと予算の増加に対する反省がエネルギー省によりなさ
れ、建設中止となった。その結果アメリカ合衆国での高
エネルギー加速器の研究開発は、衝突型線形加速器であ
るリニアコライダー及びSSCと比べて規模の小さい新
たな円形のハドロンコライダーが主流になっており、続
いて円形レプトン衝突型加速器であるミューオンコライ
ダーが開発計画にある主要な加速器として挙げてきた。
In the United States, the hadron collider SSC (Superconduct), which is a circular collider, is used.
ing Super Collider) was discontinued by the Ministry of Energy in the middle of implementation of the plan, reflecting the increase in its scale and budget. As a result, in the research and development of high energy accelerators in the United States, a new circular hadron collider, which is smaller in size than the linear colliders and SSCs, which are colliding linear accelerators, has become the mainstream, followed by circular lepton colliders. One muon collider has listed it as the main accelerator in the development plan.

【0005】一方ヨーロッパでは、最後のハドロンコラ
イダーと考えられる円形加速器LHC(Large Hadron C
ollider)の建設が進められており、またレプトン衝突
型加速器としてはアメリカと同様にミューオンコライダ
ーの開発計画も検討されはじめている。
On the other hand, in Europe, the circular accelerator LHC (Large Hadron C) is considered to be the last hadron collider.
The construction of a muon collider is being considered as a lepton collider, as in the United States.

【0006】このように次世代における高エネルギーハ
ドロンコライダーの研究開発の中心はアメリカからヨー
ロッパに移行しようとしており、アメリカの高エネルギ
ー物理学界は危機感を持ちつつある。このような情勢か
らアメリカでは超大型加速器VLHC(Very Large Had
ron Collider)計画が提案されようとしている。
As described above, the center of research and development of high-energy hadron colliders in the next generation is shifting from the United States to Europe, and the American high-energy physics community is feeling a sense of crisis. Under such circumstances, in the United States, a very large accelerator VLHC (Very Large Had
ron Collider) plans are being proposed.

【0007】他方で、本発明者等は、円形加速器の小型
化という観点から高磁場永久磁石を開発してきた(永久
磁石を用いた高磁場円形荷電粒子加速器(熊田他、特願
2000−301078)、磁界発生装置(熊田他、特
願2001−086098))。しかし、これらの発明
で得られる高磁場は直流磁場として利用されるため、粒
子加速器としては小型サイクロトロン或いはFFAG
(Fixed Field Alternating Gradient)加速器等に利用
されるに限られていたことは否めない。
On the other hand, the present inventors have developed a high magnetic field permanent magnet from the viewpoint of miniaturizing the circular accelerator (a high magnetic field circular charged particle accelerator using a permanent magnet (Kumada et al., Japanese Patent Application No. 2000-301078)). , Magnetic field generator (Kumada et al., Japanese Patent Application No. 2001-086098)). However, since the high magnetic field obtained by these inventions is used as a direct current magnetic field, a small cyclotron or FFAG is used as a particle accelerator.
(Fixed Field Alternating Gradient) It cannot be denied that it was used only for accelerators and the like.

【0008】ところで、最近のマグネットテクノロジー
の最先端としてVLHCの研究開発現場においては、主
にFermilab (Fermi National Accelerator Laboratory)
で使用されている磁石の構造を極端に単純化した超伝導
伝送線路マグネット(Transmission Line Magnet/Pipet
ron)が研究開発されている。
By the way, at the VLHC research and development site as the latest cutting edge of magnet technology, Fermilab (Fermi National Accelerator Laboratory) is mainly used.
Superconducting Transmission Line Magnet / Pipet, which is an extremely simplified structure of the magnet used in
ron) is being researched and developed.

【0009】この磁石の構造は、超伝導ケーブルをパイ
プ状にして通電し、このパイプの周りに上下2方向から
鉄芯を被せ、それらの鉄芯間にお互いに逆方向であるダ
イポール磁場の空隙を2つ作るというものである。加速
器としては、円周上にいくつも並んだこの磁石の空隙中
に、陽子をお互いに逆方向に回して衝突させようという
もので、その周長は240kmに達する。この磁石は単
純な構造のため低価格であることが最大の特長で、占積
率を95%として超伝導電磁石だけで日本円に換算して
2400億円強と言われている。
The structure of this magnet is such that a superconducting cable is made into a pipe shape to conduct electricity, an iron core is covered from above and below in the upper and lower directions of the pipe, and gaps of dipole magnetic fields in opposite directions are provided between the iron cores. It is to make two. As an accelerator, protons are rotated in opposite directions to collide with each other in the voids of the magnets arranged on the circumference, and the perimeter reaches 240 km. The most important feature of this magnet is its low price because of its simple structure. It is said that the superconducting electromagnet alone has a space factor of 95% and is converted into Japanese yen of just over 240 billion yen.

【0010】逆に最も不満な点は、かなり無理をしても
磁場強度が2テスラを超えることができないと言う点で
ある。これは鉄が飽和してしまうために磁場の励磁の増
加とともに磁場分布が変化してしまい、特に貯蔵リング
に必要とされる高精度な磁場の空間分布が維持できなく
なってしまうためである。現在、この2テスラの壁を超
えることはできていない。
On the contrary, the most dissatisfied point is that the magnetic field strength cannot exceed 2 Tesla even if it is done excessively. This is because the saturation of iron causes the magnetic field distribution to change as the excitation of the magnetic field increases, and it becomes impossible to maintain the highly accurate spatial distribution of the magnetic field, which is particularly required for the storage ring. Currently, it is not possible to exceed this 2 Tesla wall.

【0011】そのためVLHC計画では計画を2期に分
割せざるを得ず、2テスラ磁石の後、第2期計画として
同じトンネルに9.8テスラの高磁場磁石を入れるとい
う計画が出ている。しかし、2テスラでは以前に計画の
最中で挫折してしまったSSC(Superconducting Supe
r Cllider)と変り映えがしないという批判もあり、2
テスラを超える磁石を実現させたいという要望が高い。
これが本発明が解決すべき第1の課題である。
Therefore, in the VLHC plan, there is no choice but to divide the plan into two phases, and after the 2 Tesla magnet, there is a plan to put a high field magnet of 9.8 Tesla in the same tunnel as the second phase plan. However, at 2 Tesla, SSC (Superconducting Supe), which had been frustrated in the middle of the plan before.
There is also criticism that it does not look different from r Cllider) 2
There is a strong demand for magnets that exceed Tesla.
This is the first problem to be solved by the present invention.

【0012】更に上記のようなことが可能になれば、高
エネルギー最先端加速器も医療用加速器のシンクロトロ
ンの小型化への道も開ける可能性がある。偏向磁場強度
が3テスラに及ぶ小型シンクロトロンは高磁場永久磁石
FFAGとともに新たな利用価値が生まれ、医療用・治
療用加速器の普及に大きなインパクトを与えることにな
る。これが本発明の解決すべき第2の課題である。
[0012] Further, if the above can be realized, there is a possibility to open the way to miniaturization of the high energy advanced accelerator and the medical accelerator synchrotron. The small synchrotron with a deflection magnetic field strength of 3 Tesla has a new utility value together with the high magnetic field permanent magnet FFAG, and will have a great impact on the spread of medical and therapeutic accelerators. This is the second problem to be solved by the present invention.

【0013】そこで、この出願の発明は、以上のとおり
の事情に鑑みてなされたものであり、従来技術の問題点
を解消し、円形荷電粒子加速器において、荷電粒子を偏
向及び収束・発散させるために必要な高強度の磁場を形
成する、永久磁石組込型高磁場発生装置を提供すること
を課題としている。
Therefore, the invention of this application has been made in view of the above circumstances, and in order to solve the problems of the prior art and to deflect, converge and diverge charged particles in a circular charged particle accelerator. It is an object of the present invention to provide a high magnetic field generator with a built-in permanent magnet that forms a high-strength magnetic field required for the above.

【0014】[0014]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、まず第1には、鉄芯及び
鉄ヨークを用いず磁極間に空隙を有する永久磁石を、鉄
芯及び鉄ヨークの少なくとも一方を用いた超伝導電磁石
による外部磁場中に置き、鉄芯及び鉄ヨークの少なくと
も一方を飽和させることなく加速器の性能に必要な高い
磁場の空間分布を維持しつつ、永久磁石に設けた空隙中
の磁場強度が、永久磁石による磁場と超伝導電磁石によ
る外部磁場の合成磁場の磁場強度となることを特徴とす
る高磁場発生装置を提供する。
SUMMARY OF THE INVENTION The invention of this application is to solve the above-mentioned problems. First, a permanent magnet having an air gap between magnetic poles is used without using an iron core and an iron yoke. And a permanent magnet while being placed in an external magnetic field by a superconducting electromagnet using at least one of an iron yoke and an iron yoke, while maintaining a high magnetic field spatial distribution required for accelerator performance without saturating at least one of an iron core and an iron yoke. There is provided a high magnetic field generation device characterized in that the magnetic field strength in the air gap provided in is the magnetic field strength of a synthetic magnetic field of a magnetic field of a permanent magnet and an external magnetic field of a superconducting electromagnet.

【0015】第2には、第1の発明において、合成磁場
の磁場強度が、2テスラ以上であることを特徴とする高
磁場発生装置を提供する。さらに、第3には、鉄芯及び
鉄ヨークを用いず磁極間に空隙を有する永久磁石を、超
伝導材料以外の材料から成る通常のコイルと鉄芯及び鉄
ヨークの少なくとも一方を用いて磁場を発生させる電磁
石の空隙中に置き、鉄芯及び鉄ヨークの少なくとも一方
を飽和させることなく加速器の性能に必要な高い磁場の
空間分布を維持しつつ、永久磁石に設けた空隙中の磁場
強度が、永久磁石による磁場と電磁石による磁場の合成
磁場の磁場強度となることを特徴とする高磁場発生装置
を提供する。
Secondly, in the first invention, there is provided a high magnetic field generator characterized in that the magnetic field strength of the synthetic magnetic field is 2 tesla or more. Thirdly, a permanent magnet having an air gap between magnetic poles without using an iron core and an iron yoke is used to generate a magnetic field by using an ordinary coil made of a material other than a superconducting material and at least one of the iron core and the iron yoke. Placed in the void of the electromagnet to be generated, while maintaining the high magnetic field spatial distribution required for the performance of the accelerator without saturating at least one of the iron core and the iron yoke, the magnetic field strength in the void provided in the permanent magnet, Provided is a high magnetic field generation device characterized by having a magnetic field strength of a synthetic magnetic field of a magnetic field of a permanent magnet and a magnetic field of an electromagnet.

【0016】また、第4には、第3の発明において、合
成磁場の磁場強度が2テスラ以上であることを特徴とす
る高磁場発生装置を提供する。また、第5には、第3の
発明において、速い励磁の繰返しの運転を可能とするた
め、永久磁石の構成要素が絶縁された小さい単位磁石で
あることを特徴とする高磁場発生装置をも提供する。
A fourth aspect of the present invention provides the high magnetic field generator according to the third aspect of the invention, wherein the magnetic field strength of the synthetic magnetic field is 2 tesla or more. Fifthly, in the third aspect of the present invention, there is also provided a high magnetic field generation device characterized in that the constituent elements of the permanent magnet are small unit magnets that are insulated in order to enable rapid and repetitive operation. provide.

【0017】また、第6には、第1又は第3のいずれか
の発明において、永久磁石が希土類系の磁石材料から成
ることを特徴とする高磁場発生装置をも提供する。ま
た、第7には、第1又は第3のいずれかの発明におい
て、永久磁石を液体窒素温度で冷却し、磁場の温度安定
性を向上し残留磁束密度および保磁力をも併せて向上さ
せることを特徴とする高磁場発生装置をも提供する。
Sixthly, there is also provided a high magnetic field generator according to any one of the first and third inventions, wherein the permanent magnet is made of a rare earth magnet material. Seventhly, in the first or third aspect of the invention, the permanent magnet is cooled at the liquid nitrogen temperature to improve the temperature stability of the magnetic field and also improve the residual magnetic flux density and the coercive force. There is also provided a high magnetic field generator characterized by:

【0018】また、第8には、第1〜第7のいずれかの
発明において、電磁石と永久磁石の組合せが、加速器の
ビーム方向に対して横方向の面内での組合せであること
を特徴とする高磁場発生装置をも提供する。
Eighth, in any one of the first to seventh inventions, the combination of the electromagnet and the permanent magnet is a combination in a plane transverse to the beam direction of the accelerator. Also provided is a high magnetic field generator.

【0019】また、第9には、第1〜第8のいずれかの
発明において、シンクロトロン加速器で荷電粒子を収束
させる際に電磁石と永久磁石の磁場勾配の比が等しくな
ることを特徴とする高磁場発生装置をも提供する。
Ninth, in any one of the first to eighth inventions, when the charged particles are converged by the synchrotron accelerator, the ratio of the magnetic field gradients of the electromagnet and the permanent magnet becomes equal. A high magnetic field generator is also provided.

【0020】[0020]

【発明の実施の形態】この出願の発明の磁界発生装置
は、まず第1の課題を解決するために、Fermilabのフォ
スター等の発明した(Fermilab report, "Design study
for a stagedVLHC) Fermilab TM-2149, 6/4/01)超伝
導伝送線路マグネットに希土類系磁石材料を用いた永久
磁石を組み合わせることで、フォスター等の開発では不
可能であった3テスラから4テスラの磁場強度を空隙
(ギャップ)磁場で実現させようというものである。
BEST MODE FOR CARRYING OUT THE INVENTION In order to solve the first problem, the magnetic field generator of the invention of this application was invented by Fermilab's Foster (Fermilab report, "Design study").
For a staged VLHC) Fermilab TM-2149, 6/4/01) By combining a superconducting transmission line magnet with a permanent magnet using a rare earth magnet material, it was not possible to develop Foster etc. from 3 Tesla to 4 Tesla. It is intended to realize the magnetic field strength of (1) with a gap magnetic field.

【0021】3テスラ磁石の場合、1.5テスラを超伝
導電磁石で作り、残りの1.5テスラを永久磁石で作
り、永久磁石の磁極間に設けた空隙に、それぞれの磁石
による磁場を重畳させた合成磁場を得る。超伝導伝送線
路マグネット全体は240mm×280mm程度であ
り、超伝導ケーブルで形成した超伝導パイプの直径が約
40mmであるのに比べてかなり大きく、また、ビーム
パイプのサイズは、20mm×40mm程度であり、超
伝導伝送線路マグネット全体はビームパイプに比べても
かなり大きいため、永久磁石を挿入するのに適当な大き
さといえる。
In the case of a 3 Tesla magnet, 1.5 Tesla is made of a superconducting electromagnet, the remaining 1.5 Tesla is made of a permanent magnet, and the magnetic fields of the respective magnets are superposed on the gap provided between the magnetic poles of the permanent magnet. Obtained synthetic magnetic field. The whole superconducting transmission line magnet is about 240 mm x 280 mm, which is considerably larger than the diameter of the superconducting pipe formed by the superconducting cable is about 40 mm, and the size of the beam pipe is about 20 mm x 40 mm. However, since the entire superconducting transmission line magnet is considerably larger than the beam pipe, it can be said that it is an appropriate size for inserting a permanent magnet.

【0022】超伝導伝送線路マグネットにおける2つの
鉄芯間の空間であり、ビームパイプを挿入する空間に、
永久磁石が1.5テスラの磁場を生成させる。尚、永久
磁石は磁極間に空隙を有するU字形やC字形やO字形等
をしており、その外径は100mm程度で良く、超伝導
伝送線路マグネットの鉄芯の形状を変更させて、この1
00mmの空間を永久磁石の設置のために設ける。
In the space between the two iron cores in the superconducting transmission line magnet, where the beam pipe is inserted,
A permanent magnet produces a magnetic field of 1.5 Tesla. The permanent magnet has a U-shape, a C-shape, an O-shape, etc. having an air gap between the magnetic poles, and the outer diameter thereof may be about 100 mm. By changing the shape of the iron core of the superconducting transmission line magnet, 1
A space of 00 mm is provided for installing the permanent magnet.

【0023】超伝導伝送線路マグネットは永久磁石に対
しては1.5テスラの外部磁場を作ることになるが、そ
れ自身の鉄芯はこの外部磁場の外側にあるので単独で
1.5テスラを生成するときと比べて超伝導伝送線路マ
グネットの鉄芯内部の磁場は強くなることはない。ま
た、永久磁石は1.5テスラという強い外部磁場に曝さ
れることになるが、希土類系の磁石材料では最大3テス
ラまでの外部磁場に耐えられる保磁力の高いものが入手
可能であるので問題は少ない。
The superconducting transmission line magnet creates an external magnetic field of 1.5 Tesla with respect to the permanent magnet, but since its own iron core is outside this external magnetic field, 1.5 Tesla alone is used. The magnetic field inside the iron core of the superconducting transmission line magnet is not stronger than when it is generated. Also, permanent magnets are exposed to a strong external magnetic field of 1.5 Tesla, but it is a problem because rare earth magnet materials with a high coercive force that can withstand an external magnetic field of up to 3 Tesla are available. Is few.

【0024】よって、超伝導伝送線路マグネットに挿入
した永久磁石の磁極間の空隙中には、永久磁石による磁
場と超伝導伝送線路マグネットによる磁場の合成磁場が
得られる。
Therefore, in the gap between the magnetic poles of the permanent magnet inserted in the superconducting transmission line magnet, a composite magnetic field of the magnetic field of the permanent magnet and the magnetic field of the superconducting transmission line magnet is obtained.

【0025】それぞれの磁石の磁場強度は、正確には永
久磁石の方を0.1テスラ程度高くしておき、超伝導伝
送線路マグネットをシンクロトロンモードのため交流励
磁したときの最小磁場が、例えば入射磁場の0.1テス
ラ(最大磁場は3.1テスラ)になるようにして所定の
エネルギーの荷電粒子を入射可能とさせる。この永久磁
石は超伝導ケーブルから成る超伝導パイプの両側に左右
対称になるように設置され、超伝導パイプとの間の電磁
力も左右対称になるので、当初の超伝導伝送線路マグネ
ットに働く電磁力が小さいという利点は変わらない。ま
た永久磁石の大きさは超伝導伝送線路マグネットと比べ
てかなり小さいので、コストも大きくならず大幅にエネ
ルギーを増大させることができる。
To be precise, the magnetic field strength of each magnet is set to be 0.1 tesla higher than that of the permanent magnet, and the minimum magnetic field when the superconducting transmission line magnet is AC-excited for the synchrotron mode is, for example, The incident magnetic field is set to 0.1 Tesla (the maximum magnetic field is 3.1 Tesla) so that charged particles having a predetermined energy can be incident. This permanent magnet is installed symmetrically on both sides of the superconducting pipe consisting of a superconducting cable, and the electromagnetic force with the superconducting pipe is also symmetrical, so the electromagnetic force acting on the original superconducting transmission line magnet The advantage of being small is unchanged. Further, since the size of the permanent magnet is considerably smaller than that of the superconducting transmission line magnet, the cost is not increased and the energy can be greatly increased.

【0026】第2の課題の解決においても、外径が10
0mm程度の1.5テスラ永久磁石が有効である。従来
のH型或いはC型の電磁石において、<100mm+磁
気回路的に必要な幅>となる幅の空隙を設け、鉄芯及び
鉄ヨークを用いず磁極間に空隙を有する永久磁石を電磁
石の空隙の中心に設置することで永久磁石の空隙におけ
る磁場が電磁石による磁場と永久磁石による磁場の合成
磁場となる。第1の課題の場合と同様、外部磁場は1.
5テスラ程度であるので保磁力の高い永久磁石材料を選
ぶことで減磁効果は避けることができる。
Also in solving the second problem, the outer diameter is 10
A 1.5 Tesla permanent magnet of about 0 mm is effective. In a conventional H-type or C-type electromagnet, a gap having a width of <100 mm + width required for magnetic circuit> is provided, and a permanent magnet having a gap between magnetic poles is used as the gap of the electromagnet without using an iron core and an iron yoke. When installed in the center, the magnetic field in the air gap of the permanent magnet becomes a composite magnetic field of the magnetic field of the electromagnet and the magnetic field of the permanent magnet. As in the case of the first problem, the external magnetic field is 1.
Since it is about 5 tesla, the demagnetization effect can be avoided by selecting a permanent magnet material having a high coercive force.

【0027】また、超伝導伝送線路マグネット又は通常
の電磁石の空隙に永久磁石を挿入した際、永久磁石を液
体窒素温度で冷却することで、磁場の温度安定性を向上
させ、残留磁束密度および保磁力をも併せて向上させる
ことが可能となる。
Further, when the permanent magnet is inserted into the space of the superconducting transmission line magnet or the usual electromagnet, the temperature stability of the magnetic field is improved by cooling the permanent magnet at the liquid nitrogen temperature, and the residual magnetic flux density and retention are improved. It is possible to improve the magnetic force as well.

【0028】また超伝導電磁石の場合では磁石の励磁の
繰返しが遅いのに比べ、従来の電磁石では励磁の繰返し
を速くすることができる。この場合、第2の課題を解決
する際、励磁のスピードに応じて小さく絶縁された分割
された小磁石で永久磁石を構成する。
Further, in the case of the superconducting electromagnet, the repetition of the excitation of the magnet is slow, whereas in the conventional electromagnet, the repetition of the excitation can be accelerated. In this case, when solving the second problem, the permanent magnet is composed of the divided small magnets that are small insulated according to the excitation speed.

【0029】超伝導伝送線路マグネット/通常電磁石の
いずれの場合においても特に注意すべき点は、この発明
での磁石はシンクロトロン等の円形加速器への応用であ
るため、この発明での磁石を純粋な偏向磁石として用い
る場合は問題ないが、これに収束作用を持たせる場合に
は偏向磁場強度の変化に応じて収束力も一定に保持する
必要があるということである。そのためには永久磁石の
磁場勾配と超伝導伝送線路マグネット/通常電磁石の磁
場勾配を等しくとる必要がある。
In any case of the superconducting transmission line magnet / ordinary electromagnet, the point to be particularly noted is that the magnet of the present invention is applied to a circular accelerator such as a synchrotron, so that the magnet of the present invention is a pure magnet. There is no problem when it is used as a deflecting magnet, but in the case where it has a converging action, it is necessary to keep the converging force constant according to the change of the deflection magnetic field strength. For that purpose, it is necessary to make the magnetic field gradient of the permanent magnet equal to the magnetic field gradient of the superconducting transmission line magnet / normal electromagnet.

【0030】また、超伝導伝送線路マグネット/通常電
磁石のいずれの場合においても、電磁石と小型永久磁石
を加速器のビームの進行方向に対して、横方向(transv
ersedirection)の面内で組み合わせを行っているのが
この発明の特徴である。
In either case of the superconducting transmission line magnet / normal electromagnet, the electromagnet and the small permanent magnet are transversal to the traveling direction of the beam of the accelerator.
It is a feature of the present invention that the combination is performed in the plane of (erse direction).

【0031】以下、添付した図面に沿って実施例を示
し、この発明の実施の形態についてさらに詳しく説明す
る。もちろん、この発明は以下の例に限定されるもので
はなく、細部については様々な態様が可能であることは
言うまでもない。
Embodiments of the present invention will be described below in more detail with reference to the accompanying drawings. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in details.

【0032】[0032]

【実施例】<実施例1>図1にFermilabのフォスターが
VLHC用に提案した超伝導伝送線路マグネット(6)
の断面図を示す。この超伝導伝送線路マグネット(6)
は従来の銅コイル電磁石の銅コイルの部分を超伝導コイ
ルで置き換えたスーパーフェリック型超伝導マグネット
と言える。
EXAMPLES Example 1 FIG. 1 shows a superconducting transmission line magnet (6) proposed by Fermilab's Foster for VLHC.
FIG. This superconducting transmission line magnet (6)
Can be said to be a super-ferric superconducting magnet in which the copper coil portion of the conventional copper coil electromagnet is replaced with a superconducting coil.

【0033】この超伝導伝送線路マグネット(6)は、
超伝導ケーブルによって形成した超伝導パイプ(2)を
液体ヘリウム(1)で冷やし、超伝導パイプ(2)の外
側の真空絶縁ダクト(3)の周囲に鉄芯(鉄ヨーク)
(5)を上下2方向から被せ、超伝導パイプ(2)の左
右両側にビームダクト(4)を2つ設けた構造となって
いる。尚、この図には示していないが、実際はこの断面
の下側にリターンの超伝導ケーブルがある。
This superconducting transmission line magnet (6) is
A superconducting pipe (2) formed by a superconducting cable is cooled with liquid helium (1), and an iron core (iron yoke) is provided around the vacuum insulating duct (3) outside the superconducting pipe (2).
(5) is covered from above and below, and two beam ducts (4) are provided on both left and right sides of the superconducting pipe (2). Although not shown in this figure, there is actually a return superconducting cable below this section.

【0034】この超伝導伝送線路マグネット(6)の最
大の特徴は、超伝導ケーブルによって形成された超伝導
パイプ(2)の左右が対称になっていて、電磁力が超伝
導パイプ(2)にはほとんどかからないことである。従
って、超伝導パイプ(2)をなす超伝導ケーブルとして
電磁力に対抗するための強固な構造材を必要としないた
め、コストが圧倒的に安価となる。フォスター等の主張
では240kmの加速器の周長に超伝導伝送線路マグネ
ット(6)をほぼいっぱいに詰めても2億ドルしかかか
らないということである。日本円に換算すると100万
円/mであり常伝導磁石よりも桁違いに安価であると言
える。
The greatest feature of this superconducting transmission line magnet (6) is that the left and right sides of the superconducting pipe (2) formed by the superconducting cable are symmetrical, and electromagnetic force acts on the superconducting pipe (2). Is almost never taken. Therefore, the superconducting cable forming the superconducting pipe (2) does not require a strong structural material for resisting electromagnetic force, so that the cost is overwhelmingly low. According to Foster et al., It would cost 200 million dollars even if the superconducting transmission line magnet (6) was packed to the circumference of an accelerator of 240 km. When converted to Japanese yen, it is 1 million yen / m, which can be said to be an order of magnitude cheaper than a normal conducting magnet.

【0035】図2の破線は、元の鉄芯(5)の位置を示
し、実線は小型永久磁石を挿入するために空隙を広げた
状態に鉄芯(5)が位置しているときの超伝導伝送線路
マグネット(6)の様子を示す。
The broken line in FIG. 2 shows the original position of the iron core (5), and the solid line shows the superposition when the iron core (5) is positioned with the air gap expanded to insert the small permanent magnet. A state of the transmission line magnet (6) is shown.

【0036】図3は、ビームダクト(4)の周りに、磁
極間に空隙を有するC字形の小型永久磁石(7)を設置
し、小型永久磁石(7)によって形成されるビームダク
ト(4)中の磁場の向き(8)を示している。
In FIG. 3, a small C-shaped permanent magnet (7) having a gap between magnetic poles is installed around the beam duct (4), and the beam duct (4) formed by the small permanent magnet (7). The direction (8) of the magnetic field inside is shown.

【0037】図4では超伝導伝送線路マグネット(6)
の空隙の中に小型永久磁石(7)を挿入した様子を示
す。以上の図は寸法の縮尺比はおおよそ正しいが概略図
である。概算では1.5テスラを出すのに小型の超伝導
伝送線路マグネットで済んでいるので、この発明の磁石
の追加コストも併せたコストは、フォスター等が開発し
た元の超伝導伝送線路マグネットとほぼ同額であると期
待される。<実施例2>図5に従来の銅コイルを用いた
H型電磁石(9)の断面図を示す。ここでは鉄芯(1
0)と鉄ヨーク(11)と銅コイル(12)とが電磁石
を構成し、そこに形成される空隙中において、ビームダ
クト(13)を有する小型永久磁石(14)を、冷却ダ
クトとしての液体窒素槽(15)の中に設置し、液体窒
素(16)を封入している。この例ではビームダクト
(13)が永久磁石(14)の磁極間の空隙に当り、ビ
ームダクト(13)中の磁場がH型電磁石(9)による
磁場と永久磁石(14)による磁場の合成磁場となる。
In FIG. 4, a superconducting transmission line magnet (6)
The state that the small permanent magnet (7) is inserted into the void is shown. The above figures are schematic diagrams although the scale ratios of dimensions are approximately correct. As a rough estimate, a small superconducting transmission line magnet is enough to produce 1.5 Tesla, so the additional cost of the magnet of this invention is almost the same as the original superconducting transmission line magnet developed by Foster. Expected to be the same. <Embodiment 2> FIG. 5 shows a sectional view of an H-type electromagnet (9) using a conventional copper coil. Here, iron core (1
0), the iron yoke (11) and the copper coil (12) constitute an electromagnet, and in the void formed therein, a small permanent magnet (14) having a beam duct (13) is used as a liquid for a cooling duct. It is installed in a nitrogen tank (15) and is filled with liquid nitrogen (16). In this example, the beam duct (13) hits the gap between the magnetic poles of the permanent magnet (14), and the magnetic field in the beam duct (13) is the combined magnetic field of the H-type electromagnet (9) and the permanent magnet (14). Becomes

【0038】H型電磁石(9)の空隙中の永久磁石(1
4)等を液体窒素(16)で冷やす目的は、加速器に使
用するための磁場の温度安定性を高めるためと、低温で
の磁化特性の向上である。図には示していないが、実施
例1の形態においても空隙中の永久磁石等を液体窒素で
冷やすことも可能である。
The permanent magnet (1 in the void of the H-shaped electromagnet (9)
The purpose of cooling 4) and the like with liquid nitrogen (16) is to enhance the temperature stability of the magnetic field for use in the accelerator and to improve the magnetization characteristics at low temperatures. Although not shown in the figure, it is also possible to cool the permanent magnets and the like in the gap with liquid nitrogen in the form of the first embodiment.

【0039】超伝導電磁石では励磁の繰返しが遅いのに
比べ、従来の電磁石では励磁の繰返しを速くすることが
できる。実施例2の形態では励磁のスピードに応じて、
小さく絶縁され且つ分割された小磁石で永久磁石を構成
することも可能である。永久磁石は電磁石によって変化
する外部磁場中に入れると、渦電流が流れ加熱されたり
渦電流による磁場が発生するが、上記のように永久磁石
を絶縁且つ分割された小磁石で構成することでこれらの
ことを回避することができる。
While the repetition of excitation is slow in the superconducting electromagnet, the repetition of excitation can be accelerated in the conventional electromagnet. In the second embodiment, depending on the excitation speed,
It is also possible to construct a permanent magnet with small magnets which are small and insulated. When a permanent magnet is placed in an external magnetic field that is changed by an electromagnet, an eddy current flows and is heated or a magnetic field is generated by the eddy current.However, by configuring the permanent magnet with insulating and divided small magnets as described above, these Can be avoided.

【0040】実施例1、実施例2のいずれの形態におい
ても電磁石と小型永久磁石を加速器のビームの進行方向
に対して横方向の面内で組合せを行っている。
In both the first and second embodiments, the electromagnet and the small permanent magnet are combined in a plane lateral to the traveling direction of the beam of the accelerator.

【0041】[0041]

【発明の効果】以上詳しく説明したとおり、この発明に
よって、超伝導電磁石と永久磁石を組み合わせることに
より、高性能磁場分布を維持しつつ、2テスラを超えて
4テスラ近くまでの遅い励磁の繰返しの運転を可能とす
る高磁場発生装置が提供される。同様に超伝導電磁石以
外の電磁石と永久磁石の組合せにより速い励磁の繰返し
の運転も可能となる高磁場発生装置が提供される。
As described in detail above, according to the present invention, by combining a superconducting electromagnet and a permanent magnet, it is possible to maintain the high-performance magnetic field distribution and to repeatedly perform the slow excitation of more than 2 Tesla to nearly 4 Tesla. There is provided a high magnetic field generator that enables operation. Similarly, a combination of an electromagnet other than a superconducting electromagnet and a permanent magnet provides a high magnetic field generation device that enables rapid and repetitive operation of excitation.

【0042】上記のような超伝導電磁石と永久磁石を組
み合わせた磁石は低価格中磁場(3〜4テスラ)で、低
磁場(2テスラ)では困難であった超伝導電磁石におけ
る鉄の飽和の問題を解決し、そして永久磁石でしばしば
不便な直流磁場という問題をも解決でき、両者の欠点を
取り除くことが可能となる。
The magnet combining the superconducting electromagnet and the permanent magnet as described above has a low price medium magnetic field (3 to 4 Tesla), and the problem of iron saturation in the superconducting electromagnet, which was difficult in the low magnetic field (2 Tesla). It is possible to solve the problem of direct current magnetic field, which is often inconvenient with a permanent magnet, and it is possible to eliminate the drawbacks of both.

【0043】また超伝導電磁石以外の電磁石においても
同様に、小型の永久磁石との組み合わせることで従来不
可能であった3テスラの交流磁場の領域まで可能にし、
医療用等の低価格小型加速器への応用への道を開くこと
ができる。
Similarly, in electromagnets other than superconducting electromagnets, by combining with a small permanent magnet, it is possible to achieve an AC magnetic field range of 3 Tesla, which has been impossible in the past.
It can open the way to application to low-cost small accelerators for medical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の高磁場発生装置に用いる
超伝導伝送線路マグネットの断面図である。
FIG. 1 is a sectional view of a superconducting transmission line magnet used in a high magnetic field generator according to an embodiment of the present invention.

【図2】同じ実施例の高磁場発生装置において、小型永
久磁石を挿入するために超伝導伝送線路マグネットの磁
極の間隔を広げたときの様子を示した図である。
FIG. 2 is a diagram showing a state in which a magnetic pole interval of a superconducting transmission line magnet is widened in order to insert a small permanent magnet in the high magnetic field generator of the same embodiment.

【図3】同じ実施例の高磁場発生装置に用いる小型永久
磁石の外観を示した図である。
FIG. 3 is a diagram showing an appearance of a small permanent magnet used in the high magnetic field generator of the same embodiment.

【図4】同じ実施例の高磁場発生装置において、小型永
久磁石を超伝導伝送線路マグネットに組み込んだときの
様子を示した図である。
FIG. 4 is a view showing a state in which a small permanent magnet is incorporated in a superconducting transmission line magnet in the high magnetic field generator of the same embodiment.

【図5】他の実施例の高磁場発生装置において、小型永
久磁石を従来型電磁石の空隙に組み込んだときの様子を
示した図である。
FIG. 5 is a diagram showing a state in which a small permanent magnet is incorporated in a gap of a conventional electromagnet in a high magnetic field generator of another embodiment.

【符号の説明】[Explanation of symbols]

1 液体ヘリウム 2 超伝導パイプ 3 真空絶縁ダクト 4 ビームダクト 5 鉄芯(鉄ヨーク) 6 超伝導伝送線路マグネット 7 永久磁石 8 空隙の磁場の向き 9 H型電磁石 10 鉄芯 11 鉄ヨーク 12 銅コイル 13 ビームダクト 14 小型永久磁石 15 液体窒素槽 16 液体窒素 1 liquid helium 2 Superconducting pipe 3 vacuum insulation duct 4 beam duct 5 Iron core (iron yoke) 6 Superconducting transmission line magnet 7 Permanent magnet 8 Direction of magnetic field in air gap 9 H type electromagnet 10 iron core 11 iron yoke 12 copper coils 13 beam duct 14 Small permanent magnets 15 Liquid nitrogen tank 16 Liquid nitrogen

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G085 AA11 AA13 BA14 BC02 BC04 BC05 BC06 BC15 BC18 BC20 BE02 CA05 CA16 EA01 EA06 EA07    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2G085 AA11 AA13 BA14 BC02 BC04                       BC05 BC06 BC15 BC18 BC20                       BE02 CA05 CA16 EA01 EA06                       EA07

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 鉄芯及び鉄ヨークを用いず磁極間に空隙
を有する永久磁石を、鉄芯及び鉄ヨークの少なくとも一
方を用いた超伝導電磁石による外部磁場中に置き、鉄芯
及び鉄ヨークの少なくとも一方を飽和させることなく加
速器の性能に必要な高い磁場の空間分布を維持しつつ、
永久磁石に設けた空隙中の磁場強度が、永久磁石による
磁場と超伝導電磁石による外部磁場の合成磁場の磁場強
度となることを特徴とする高磁場発生装置。
1. A permanent magnet having an air gap between magnetic poles without using an iron core and an iron yoke is placed in an external magnetic field of a superconducting electromagnet using at least one of the iron core and the iron yoke, While maintaining the high magnetic field spatial distribution required for accelerator performance without saturating at least one,
A high magnetic field generator characterized in that the magnetic field strength in the air gap provided in the permanent magnet is the magnetic field strength of the synthetic magnetic field of the magnetic field of the permanent magnet and the external magnetic field of the superconducting electromagnet.
【請求項2】 請求項1に記載の合成磁場の磁場強度
が、2テスラ以上であることを特徴とする高磁場発生装
置。
2. A high magnetic field generating device according to claim 1, wherein a magnetic field strength of the synthetic magnetic field is 2 Tesla or more.
【請求項3】 鉄芯及び鉄ヨークを用いず磁極間に空隙
を有する永久磁石を、超伝導材料以外の材料から成る通
常のコイルと鉄芯及び鉄ヨークの少なくとも一方を用い
て磁場を発生させる電磁石の空隙中に置き、鉄芯及び鉄
ヨークの少なくとも一方を飽和させることなく加速器の
性能に必要な高い磁場の空間分布を維持しつつ、永久磁
石に設けた空隙中の磁場強度が、永久磁石による磁場と
電磁石による磁場の合成磁場の磁場強度となることを特
徴とする高磁場発生装置。
3. A permanent magnet having an air gap between magnetic poles without using an iron core and an iron yoke is used to generate a magnetic field using an ordinary coil made of a material other than a superconducting material and at least one of the iron core and the iron yoke. Placed in the air gap of the electromagnet, the magnetic field strength in the air gap provided in the permanent magnet is maintained while maintaining the high magnetic field spatial distribution required for the performance of the accelerator without saturating at least one of the iron core and the iron yoke. A high magnetic field generator characterized by having a magnetic field strength of a synthetic magnetic field of a magnetic field by the magnetic field and a magnetic field by the electromagnet.
【請求項4】 請求項3に記載の合成磁場の磁場強度
が、2テスラ以上であることを特徴とする高磁場発生装
置。
4. A high magnetic field generation device, wherein the magnetic field strength of the synthetic magnetic field according to claim 3 is 2 Tesla or more.
【請求項5】 請求項3において、速い励磁の繰返しの
運転を可能とするため、永久磁石の構成要素が絶縁され
た小さい単位磁石であることを特徴とする高磁場発生装
置。
5. The high magnetic field generator according to claim 3, wherein the constituent elements of the permanent magnet are small unit magnets that are insulated so as to enable repeated rapid excitation operation.
【請求項6】 請求項1又は3に記載の永久磁石が、希
土類系の磁石材料から成ることを特徴とする高磁場発生
装置。
6. A high magnetic field generator, wherein the permanent magnet according to claim 1 or 3 is made of a rare earth magnet material.
【請求項7】 請求項1又は3において、永久磁石を液
体窒素温度で冷却し、磁場の温度安定性を向上し残留磁
束密度および保磁力をも併せて向上させることを特徴と
する高磁場発生装置。
7. The high magnetic field generation according to claim 1, wherein the permanent magnet is cooled at a liquid nitrogen temperature to improve the temperature stability of the magnetic field and also improve the residual magnetic flux density and the coercive force. apparatus.
【請求項8】 請求項1〜7のいずれかにおいて、電磁
石と永久磁石の組合せが、加速器のビーム方向に対して
横方向の面内での組合せであることを特徴とする高磁場
発生装置。
8. The high magnetic field generator according to claim 1, wherein the combination of the electromagnet and the permanent magnet is a combination in a plane lateral to the beam direction of the accelerator.
【請求項9】 請求項1〜8のいずれかにおいて、シン
クロトロン加速器で荷電粒子を収束させる際に電磁石と
永久磁石の磁場勾配の比が等しくなることを特徴とする
高磁場発生装置。
9. The high magnetic field generator according to claim 1, wherein the ratio of the magnetic field gradients of the electromagnet and the permanent magnet are equal when the charged particles are converged by the synchrotron accelerator.
JP2001215874A 2001-07-16 2001-07-16 Permanent magnet built-in high magnetic field generator Expired - Lifetime JP3759003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001215874A JP3759003B2 (en) 2001-07-16 2001-07-16 Permanent magnet built-in high magnetic field generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001215874A JP3759003B2 (en) 2001-07-16 2001-07-16 Permanent magnet built-in high magnetic field generator

Publications (2)

Publication Number Publication Date
JP2003031399A true JP2003031399A (en) 2003-01-31
JP3759003B2 JP3759003B2 (en) 2006-03-22

Family

ID=19050426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001215874A Expired - Lifetime JP3759003B2 (en) 2001-07-16 2001-07-16 Permanent magnet built-in high magnetic field generator

Country Status (1)

Country Link
JP (1) JP3759003B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072717A (en) * 2009-10-01 2011-04-14 High Energy Accelerator Research Organization Electromagnet for controlling charged particle beam and irradiation therapy instrument equipped with the same
CN102956279A (en) * 2012-10-25 2013-03-06 中国科学院上海应用物理研究所 Undulator and manufacture method thereof
WO2021015038A1 (en) * 2019-07-25 2021-01-28 国立研究開発法人物質・材料研究機構 Magnetic freezing module, magnetic freezing system, and cooling method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076104A (en) * 1983-10-01 1985-04-30 Sumitomo Special Metals Co Ltd Magnetic field generating device
JPH03122999A (en) * 1989-10-06 1991-05-24 Hitachi Ltd Deflecting electric magnet and charged particle accelerating method for circular accelerator using same
JPH05166598A (en) * 1991-12-12 1993-07-02 Toshiba Corp Deflection electromagnet for particle accelerator
JPH1154080A (en) * 1997-07-31 1999-02-26 Nec Corp Ion implanting device having analysis magnet whose magnetic field is offset by permanent magnet
JP2000068099A (en) * 1998-08-20 2000-03-03 Ishikawajima Harima Heavy Ind Co Ltd Deflection magnet
JP2000324736A (en) * 1999-05-12 2000-11-24 Mitsubishi Electric Corp Permanent magnet mounted motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076104A (en) * 1983-10-01 1985-04-30 Sumitomo Special Metals Co Ltd Magnetic field generating device
JPH03122999A (en) * 1989-10-06 1991-05-24 Hitachi Ltd Deflecting electric magnet and charged particle accelerating method for circular accelerator using same
JPH05166598A (en) * 1991-12-12 1993-07-02 Toshiba Corp Deflection electromagnet for particle accelerator
JPH1154080A (en) * 1997-07-31 1999-02-26 Nec Corp Ion implanting device having analysis magnet whose magnetic field is offset by permanent magnet
JP2000068099A (en) * 1998-08-20 2000-03-03 Ishikawajima Harima Heavy Ind Co Ltd Deflection magnet
JP2000324736A (en) * 1999-05-12 2000-11-24 Mitsubishi Electric Corp Permanent magnet mounted motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072717A (en) * 2009-10-01 2011-04-14 High Energy Accelerator Research Organization Electromagnet for controlling charged particle beam and irradiation therapy instrument equipped with the same
CN102956279A (en) * 2012-10-25 2013-03-06 中国科学院上海应用物理研究所 Undulator and manufacture method thereof
WO2021015038A1 (en) * 2019-07-25 2021-01-28 国立研究開発法人物質・材料研究機構 Magnetic freezing module, magnetic freezing system, and cooling method

Also Published As

Publication number Publication date
JP3759003B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
US4680565A (en) Magnetic field device for a system for the acceleration and/or storage of electrically charged particles
JP3759003B2 (en) Permanent magnet built-in high magnetic field generator
Obana et al. Magnetic field design of a superconducting magnet for a FFAG accelerator
JPS61218120A (en) Magnetic field generator
Thuillier et al. A-PHOENIX, an electron cyclotron resonance ion source for the Spiral 2 facility
Abe et al. Magnetic field design of a superconducting wiggler in the saga-ls storage ring
Hull et al. Superconducting magnets
Summers Hybrid rings of fixed 8T superconducting magnets and iron magnets rapidly cycling between-2T and+ 2T for a muon collider
US11357095B2 (en) Fast-switch undulator and method for polarizing electron beam
Summers et al. Muon acceleration with a very fast ramping synchrotron for a neutrino factory
Yoshimoto et al. The magnet design study for the FFAG accelerator
Summers et al. Acceleration for the/spl mu//sup+//spl mu//sup-/collider
Suominen et al. 3D-simulation studies of the modified magnetic multipole structure for an electron cyclotron resonance ion source
Summers Accelerating muons to 2400 GeV/c with dogbones followed by interleaved fast ramping iron and fixed superconducting magnets
Radovinsky et al. A Ioffe Trap Magnet for the Project 8 Atom Trapping Demonstrator
Iwashita et al. Strong variable permanent multipole magnets
Sugiyama et al. The operation of a superconducting wiggler at TERAS
Schmüser et al. 10.5 The Electron-Proton Collider HERA: The Largest Accelerators and Colliders of Their Time
Summers et al. A Pulsed synchrotron for muon acceleration at a neutrino factory
Gilbert Summary of international progress on superconducting magnets
Bonaudi Magnets in particle physics
Kashikhin et al. Superconducting helical solenoid systems for muon cooling experiment at Fermilab
Hatanaka et al. Developments of HTS Magnets for Accelerators
Elleaume Undulators and wigglers for the new generation of synchrotron sources
Kumada et al. Three tesla magnet-in-magnet

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051227

R150 Certificate of patent or registration of utility model

Ref document number: 3759003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term