JP3758718B2 - Porous lance tuyere for steel making - Google Patents

Porous lance tuyere for steel making Download PDF

Info

Publication number
JP3758718B2
JP3758718B2 JP27425295A JP27425295A JP3758718B2 JP 3758718 B2 JP3758718 B2 JP 3758718B2 JP 27425295 A JP27425295 A JP 27425295A JP 27425295 A JP27425295 A JP 27425295A JP 3758718 B2 JP3758718 B2 JP 3758718B2
Authority
JP
Japan
Prior art keywords
tuyere
cooling water
lance
oxygen
water channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27425295A
Other languages
Japanese (ja)
Other versions
JPH09118909A (en
Inventor
義博 山田
千博 山地
和人 前村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27425295A priority Critical patent/JP3758718B2/en
Publication of JPH09118909A publication Critical patent/JPH09118909A/en
Application granted granted Critical
Publication of JP3758718B2 publication Critical patent/JP3758718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、転炉吹錬等に使用される製鋼用多孔ランス羽口に関し、特に製鋼用多孔ランス羽口の受熱面を冷却する冷却水路の構造の改良に関する。
【0002】
【従来の技術】
転炉吹錬用ランス羽口は、高温の溶鋼面から1.5から4.0メートルの至近距離で、高圧酸素を溶鋼に向かって噴出させるために使用される。そのため、羽口は、溶鋼から激しい輻射熱を受け、さらには、地金も付着するため、著しい熱負荷を受ける。そこで、一般的に、ランス羽口は外管と中管と内管の3重管構造となっており、内管の中を高圧酸素が流れ、内管と中管の間を冷却水がランス先端に向かって流れ、ランス先端部で中管と外管の間に流れが移動し、ランス先端部の溶鋼に面した受熱面の内側を冷却し、中管と外管の間を上昇して冷却水が戻るようになっている。ここで、酸素孔が多孔の場合は、受熱面の冷却において、中管と外管の間の冷却水路には酸素孔の壁があるため、流れの淀みが発生し十分に冷却できない問題があった。そこで、多くの改良案が出されてきた。例えば、(1)先端部の内面と中管との間隙を狭くし、受熱面の冷却水の線速度を18m/sec 以上にするもの(特開平3−229814号公報)
(2)淀み無く一方向に流れを形成するもの(特開昭48−103405号公報)
(3)冷却水の吹き出し孔を別に非対称に設け、羽口中心部で渦巻を発生させるもの(特開平1−312023号公報)
(4)酸素孔先端部にそって冷却用導水口を複数個設置するもの(特開昭61−15911号公報)
(5)互いに反対方向に冷却水が旋回するようにし、流れの干渉を防止するもの(特開昭53−90109号公報)
などがある。
【0003】
【発明が解決しようとする課題】
しかしながら、特開平3−229814号公報および特開昭48−103405号公報の発明では酸素孔の背面の淀み領域がなくならないため、十分な冷却ができず、特開平1−312023号公報および特開昭61−15911号公報および特開昭53−90109号公報の発明では構造が複雑であり、製造コストが高くなるという問題がある。そのため、酸素孔が多孔の場合は、受熱面の冷却において、中管と外管の間の冷却水路内の酸素孔の壁の存在に起因する流れの淀みをなくし、十分に冷却する冷却水路を安価に実現することは困難であった。
【0004】
そこで、本発明は、酸素孔が多孔の場合、受熱面の冷却において、中管と外管の間の冷却水路内の酸素孔の壁の存在に起因する流れの淀みをなくし、十分に冷却する冷却水路を安価に実現できる製鋼用多孔ランス羽口を提供する。
【0005】
【課題を解決するための手段】
上記問題を解決するために、本発明は、ランスの外管と中管の間の、羽口先端部の多孔の酸素孔が開口する曲面(受熱面)の背後の冷却水路内で、全ての酸素孔の中心軸を通る円錐面より外側でかつ全ての酸素孔に共通の外接円錐面より内側の冷却水路内に、流線に沿いながら、冷却水路を分割するようにランスの上下方向に曲線状あるいはランスの上下方向に直線状のリブを設置することを特徴とする。また、前記冷却水流路の分割数が、3から5であることが好ましい。
【0006】
【発明の実施の形態】
本発明において、酸素孔が5つである製鋼用多孔ランス羽口について図面を参照しながら説明する。図1は、酸素孔が5つである製鋼用多孔ランス羽口の縦断面図および受熱面8に沿った中管4と外管6の間の冷却水9の流路の横断面図である。ランス羽口は、外管6と中管4と内管2の3重管構造となっており、内管2の中は、高圧酸素が流れる酸素通路1になっている。内管2と中管4の間を供給冷却水3が羽口先端の受熱面8に向かって流れ、羽口先端部で中管4と外管6の間に流れ9が移動し、ランス先端部の溶鋼に面した、受熱面8の内側を冷却し、中管4と外管6の間を冷却水9が戻る様になっている。図2は、従来の羽口11と本発明の羽口12を併記した証明図である。図2で、リブ16がない従来のランス羽口においては、酸素孔7が多孔の場合は、受熱面8の冷却において、中管4と外管6の間の冷却水路に酸素孔7の壁があるため、流れの淀み10が発生し、十分に冷却できなかった。
【0007】
問題となっている流れの淀み10をなくすため、12の領域に示す通り、ランスの外管6と中管4の間で、羽口先端部の酸素孔7が開口する曲面(受熱面8)の背後の冷却水路内で、全ての酸素孔の中心軸を通る円錐面14より外側でかつ全ての酸素孔7に共通の外接円錐面15より内側の冷却水路内に、流線に沿いながら、冷却水路を分割するようにランスの上下方向に曲線状あるいはランスの上下方向に直線状のリブを設置する。
【0008】
ここで流路の分割数は圧損の増加及び生産効率を考慮すると、3から5が好ましい。
具体的な形態として、例えば流路を3等分割する方法は、リブの始点Bを酸素孔7との距離ABおよびA′B′とリブの始点間距離BB′が(1)式を満たし、かつ2つの酸素孔7の間を2等分する面に対して面対称となるようにとり、リブの終点C,C′を、各酸素孔の外接円錐面15の一部FCC′F′上に(2)式を満たすように、かつ2つの酸素孔7の間を2等分する面に対して面対称となるようにとっている。なお、点Fは、酸素孔7と円錐面15の図2の断面上の交点である。
【0009】
AB=BB′=B′A′ (1)
FC=CC′=C′F′ (2)
なおリブの始点Bと終点Cは2つの円錐面14,15の間にあって(3)式を満たすものとする。なお、点D,Gは、2つの酸素孔7の壁により最も狭められた冷却水路の中心点及び端点であり、点Eは、点Dとランス中心を通る直線と円錐面15との交点である。
【0010】
0.1×DE≦BC≦DE (3)
このランス羽口の効果を前記図2および図3を用いて説明する。前述のごとく、図2には従来の羽口11と本発明の羽口13の流速分布も比較して併記している。酸素孔7と酸素孔7の間の断面DGでは断面積が小さいため、流速は大きくよどみの問題はない。一方、その下流の断面EF″では断面積が急速に増加するため、従来の羽口では流速が急激に減少するだけでなく、F″の側では大きく流速が減少する。一方、本発明ではリブにより流速分布が均等化されるので、図2の本発明羽口13のE′F′のように流速分布のむらがなくなる。またリブをランスの外管と中管の間で、羽口先端部の酸素孔が開口する曲面(受熱面)の背後の冷却水路内で、全ての酸素孔の中心軸を通る円錐面より外側でかつ全ての酸素孔に共通の外接円錐面より内側の冷却水路内に、流線に沿いながら、冷却水路を分割するように、ランスの上下方向に設置しているのでリブの後方に発生する流れの淀みも解消されている。
【0011】
図3は、従来法と本発明とを適用した場合における図2のEF″,E′F′断面における流速分布を比較したものである。従来法ではEC間では流速が速く、CF間では遅くなっていたが、リブにより流れが分配され、ほぼ均等な流れが実現されている。
以上により、ランス羽口酸素孔が多孔の場合、受熱面の冷却において、中管と外管の間の冷却水路内の酸素孔の壁の存在に起因する流れの淀みをなくし、十分に冷却できる冷却水路を安価に提供できる。
【0012】
【実施例】
以下、図2,3図を参照しながら、本発明の水路を単に分割した実施例について具体的に説明する。使用したランス羽口の直径は0.6mで酸素孔は5孔である。それぞれの酸素孔の直径は0.2mであり同心円14の直径は0.3mである。冷却水は図2の中心部で秒速20mで流れている。この場合、従来法では、流速が秒速5m以下となる部分(図2の流れの淀み10)が酸素孔7の外側で発生する。ここで図2においてリブにより水路を3分割する場合の形状を(4)〜(7)式で決定した。
【0013】
AB=B′A′ =0.035〔m〕 (4)
BB′ =0.03 〔m〕 (5)
FC=CC′=C′F′=0.17〔m〕 (6)
BC=0.2×DE =0.02〔m〕 (7)
このランス羽口を使用すると、受熱面の冷却において、中管と外管の間の冷却水路内の酸素孔の壁の存在に起因する流速が秒速5m以下となる流れの淀みがなくなり、十分に冷却できた。また、十分に冷却可能であるため、溶鋼からの輻射熱や地金付着による著しい熱負荷に起因する損傷も減少し、羽口の交換周期も図4に示すように従来の100回から250回に延命している。
【0014】
同じ上記図面を参照しながら、本発明の水路を等分割したものの実施例について具体的に説明する。ここで分割数は同様に3分割とし、図2においてリブの形状を(8)〜(10)式で決定した。
AB=BB′=B′A′=0.03〔m〕 (8)
FC=CC′=C′F′=0.17〔m〕 (9)
BC=0.3×DE =0.03〔m〕 (10)
このランス羽口を使用すると、受熱面の冷却において、中管と外管の間の酸素孔の存在に起因する流速が秒速5m以下となる流れの淀みがなくなり、十分に冷却できた。また、十分に冷却可能であるため、溶鋼からの輻射熱や地金付着による著しい熱負荷に起因する損傷も減少し、羽口の交換周期も図4に示すように従来の100回から250回に延命することがわかった。
【0015】
【発明の効果】
本発明の製鋼用多孔ランス羽口を用いれば、酸素孔が多孔の場合、受熱面の冷却において、中管と外管の間の冷却水路内の酸素孔の壁の存在に起因する流れの淀みをなくし、十分に冷却する冷却水路を安価に提供できる。
【図面の簡単な説明】
【図1】本発明に係る酸素孔が5つである製鋼用多孔ランス羽口の(a)縦断面図および(b)横断面図である。
【図2】本発明に係る羽口と従来羽口との流速分布の相違の説明図である。
【図3】本発明による流速分布の位置別を従来法との比較で示す図である。
【図4】本発明の効果を従来法との比較で示す図である。
【符号の説明】
1…酸素通路
2…内管
3…供給冷却水
4…中管
5…もどり冷却水
6…外管
7…酸素孔
8…受熱面
9…冷却水流れ方向
10…流れの淀み
11…従来羽口(部分)および流速分布
12…本発明羽口(部分)
13…本発明羽口における流速分布
14…全ての酸素孔7の中心軸を通る円錐面
15…全ての酸素孔7に共通の外接円錐面
16…リブ
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a steelmaking porous lance tuyere used for converter blowing or the like, and more particularly to an improvement in the structure of a cooling water channel for cooling a heat receiving surface of a steelmaking porous lance tuyere.
[0002]
[Prior art]
Converter smelter lance tuyere is used to eject high pressure oxygen toward molten steel at a close distance of 1.5 to 4.0 meters from the hot molten steel surface. For this reason, the tuyere receives intense radiant heat from the molten steel, and further receives a significant heat load because metal is also attached. Therefore, in general, the lance tuyere has a triple tube structure of an outer tube, an intermediate tube, and an inner tube. High-pressure oxygen flows through the inner tube, and cooling water flows between the inner tube and the inner tube. It flows toward the tip, the flow moves between the middle pipe and the outer pipe at the tip of the lance, cools the inside of the heat receiving surface facing the molten steel at the tip of the lance, and rises between the middle pipe and the outer pipe. The cooling water comes back. Here, when the oxygen hole is porous, there is a problem that in the cooling of the heat receiving surface, there is a wall of the oxygen hole in the cooling water channel between the middle pipe and the outer pipe, so that the stagnation of the flow occurs and the cooling cannot be sufficiently performed. It was. Many improvements have been proposed. For example, (1) the gap between the inner surface of the tip and the middle tube is narrowed so that the linear velocity of the cooling water on the heat receiving surface is 18 m / sec or more (Japanese Patent Laid-Open No. 3-229814)
(2) Forming a flow in one direction without stagnation (Japanese Patent Laid-Open No. 48-103405)
(3) A cooling water outlet is provided asymmetrically and a spiral is generated at the center of the tuyere (Japanese Patent Laid-Open No. 1-312023)
(4) A plurality of cooling water inlets installed along the front end of the oxygen hole (Japanese Patent Laid-Open No. 61-15911)
(5) Cooling water swirls in opposite directions to prevent flow interference (Japanese Patent Laid-Open No. 53-90109)
and so on.
[0003]
[Problems to be solved by the invention]
However, in the inventions of JP-A-3-229814 and JP-A-48-103405, the stagnation region on the back of the oxygen hole is not lost, so that sufficient cooling cannot be performed. The inventions disclosed in Japanese Patent Application Laid-Open No. 61-15911 and Japanese Patent Application Laid-Open No. 53-90109 have a problem that the structure is complicated and the manufacturing cost increases. Therefore, when the oxygen hole is porous, in cooling the heat receiving surface, the stagnation of the flow due to the presence of the wall of the oxygen hole in the cooling water channel between the middle tube and the outer tube is eliminated, and a cooling water channel that is sufficiently cooled is provided. It was difficult to realize at low cost.
[0004]
Therefore, the present invention eliminates the stagnation of the flow due to the presence of the wall of the oxygen hole in the cooling water channel between the middle pipe and the outer pipe when cooling the heat receiving surface when the oxygen hole is porous, and sufficiently cools the heat receiving surface. A porous lance tuyere for steel making that can realize a cooling water channel at low cost is provided.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problem, the present invention provides a cooling water channel between the outer tube and the middle tube of the lance behind the curved surface (heat receiving surface) where the porous oxygen hole at the tip of the tuyere opens. In the cooling water channel outside the conical surface passing through the central axis of the oxygen hole and inside the circumscribed conical surface common to all oxygen holes, along the streamline, in the vertical direction of the lance It is characterized in that straight ribs are installed in the curved or lance vertical direction . Moreover, it is preferable that the number of divisions of the cooling water channel is 3 to 5.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a steel-made porous lance tuyere having five oxygen holes will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a steel-made porous lance tuyere with five oxygen holes and a transverse sectional view of a flow path of cooling water 9 between an intermediate tube 4 and an outer tube 6 along a heat receiving surface 8. . The lance tuyere has a triple tube structure of an outer tube 6, an intermediate tube 4, and an inner tube 2, and the inner tube 2 is an oxygen passage 1 through which high-pressure oxygen flows. The supply cooling water 3 flows between the inner tube 2 and the middle tube 4 toward the heat receiving surface 8 at the tip of the tuyere, and the flow 9 moves between the middle tube 4 and the outer tube 6 at the tip of the tuyere, and the tip of the lance. The inner side of the heat receiving surface 8 facing the molten steel is cooled, and the cooling water 9 is returned between the intermediate tube 4 and the outer tube 6. FIG. 2 is a proof diagram showing both the conventional tuyere 11 and the tuyere 12 of the present invention. In FIG. 2, in the conventional lance tuyere without the rib 16, when the oxygen hole 7 is porous, the wall of the oxygen hole 7 is provided in the cooling water channel between the middle tube 4 and the outer tube 6 in cooling the heat receiving surface 8. Therefore, the stagnation of the flow 10 occurred and the cooling could not be performed sufficiently.
[0007]
In order to eliminate the problem of flow stagnation 10, as shown in the region 12, a curved surface (heat receiving surface 8) in which the oxygen hole 7 at the tip of the tuyere opens between the outer tube 6 and the middle tube 4 of the lance. In the cooling water channel behind the inside of the cooling water channel outside the conical surface 14 passing through the central axis of all the oxygen holes and inside the circumscribed conical surface 15 common to all the oxygen holes 7, along the streamline, to divide the cooling water channel is installed a linear rib in the vertical direction of the curved or lance in a vertical direction of the lance.
[0008]
Here, the division number of the flow path is preferably 3 to 5 in consideration of an increase in pressure loss and production efficiency.
As a specific form, for example, in the method of dividing the flow path into three equal parts, the distance AB and A′B ′ between the rib start point B and the oxygen hole 7 and the distance BB ′ between the rib start points satisfy the equation (1), The end points C and C ′ of the ribs are placed on a part FCC′F ′ of the circumscribed conical surface 15 of each oxygen hole so as to be plane-symmetric with respect to the plane that bisects the two oxygen holes 7. In order to satisfy the equation (2), the plane is symmetrical with respect to a plane that bisects the two oxygen holes 7. Note that the point F is an intersection of the oxygen hole 7 and the conical surface 15 on the cross section of FIG.
[0009]
AB = BB ′ = B′A ′ (1)
FC = CC '= C'F' (2)
The starting point B and the ending point C of the rib are between the two conical surfaces 14 and 15 and satisfy the expression (3). The points D and G are the center point and end point of the cooling water channel narrowed most by the walls of the two oxygen holes 7, and the point E is the intersection of the straight line passing through the point D and the center of the lance and the conical surface 15. is there.
[0010]
0.1 × DE ≦ BC ≦ DE (3)
The effect of the lance tuyere will be described with reference to FIGS. As described above, FIG. 2 also compares the flow velocity distributions of the conventional tuyere 11 and the tuyere 13 of the present invention. In the cross section DG between the oxygen hole 7 and the oxygen hole 7, the cross-sectional area is small, so the flow rate is large and there is no problem of stagnation. On the other hand, since the cross-sectional area rapidly increases at the downstream cross-section EF ″, not only does the flow velocity decrease rapidly at the conventional tuyere, but also the flow velocity decreases greatly at the F ″ side. On the other hand, in the present invention, since the flow velocity distribution is equalized by the ribs, the uneven flow velocity distribution is eliminated as in E′F ′ of the tuyere 13 of the present invention in FIG. Also, the rib is located between the outer tube and the middle tube of the lance, outside the conical surface passing through the central axis of all oxygen holes in the cooling water channel behind the curved surface (heat receiving surface) where the oxygen holes at the tip of the tuyere open. In the cooling water channel inside the circumscribed conical surface common to all oxygen holes, it is installed in the vertical direction of the lance so as to divide the cooling water channel along the streamline. The itch of the flow is also eliminated.
[0011]
3 compares the flow velocity distributions in the EF ″ and E′F ′ cross sections of FIG. 2 when the conventional method and the present invention are applied. In the conventional method, the flow velocity is high between ECs and slow between CFs. However, the flow is distributed by the ribs, and an almost uniform flow is realized.
As described above, when the lance tuyere oxygen hole is porous, in the cooling of the heat receiving surface, the stagnation of the flow due to the presence of the wall of the oxygen hole in the cooling water channel between the middle pipe and the outer pipe can be eliminated and the cooling can be sufficiently performed. A cooling water channel can be provided at low cost.
[0012]
【Example】
Hereinafter, an embodiment in which the water channel of the present invention is simply divided will be described in detail with reference to FIGS. The diameter of the lance tuyere used was 0.6 m and there were 5 oxygen holes. The diameter of each oxygen hole is 0.2 m, and the diameter of the concentric circle 14 is 0.3 m. The cooling water flows at 20 m / s in the center of FIG. In this case, in the conventional method, a portion (flow stagnation 10 in FIG. 2) where the flow rate is 5 m or less per second is generated outside the oxygen hole 7. Here, the shape when the water channel is divided into three by ribs in FIG. 2 is determined by the equations (4) to (7).
[0013]
AB = B′A ′ = 0.035 [m] (4)
BB '= 0.03 [m] (5)
FC = CC ′ = C′F ′ = 0.17 [m] (6)
BC = 0.2 × DE = 0.02 [m] (7)
When this lance tuyere is used, in the cooling of the heat receiving surface, there is no stagnation of the flow rate at which the flow velocity is 5 m / s or less due to the existence of the oxygen hole wall in the cooling water channel between the middle pipe and the outer pipe. I was able to cool it. In addition, because it can be cooled sufficiently, damage due to radiant heat from molten steel and a significant heat load due to adhesion of metal is reduced, and the replacement period of tuyere is changed from the conventional 100 times to 250 times as shown in FIG. Prolonged life.
[0014]
With reference to the same drawings, an embodiment of the water channel of the present invention divided equally will be described in detail. Here, the number of divisions was similarly set to three, and the shape of the ribs in FIG. 2 was determined by equations (8) to (10).
AB = BB ′ = B′A ′ = 0.03 [m] (8)
FC = CC ′ = C′F ′ = 0.17 [m] (9)
BC = 0.3 × DE = 0.03 [m] (10)
When this lance tuyere was used, in the cooling of the heat receiving surface, there was no stagnation of the flow rate caused by the presence of oxygen holes between the middle tube and the outer tube, and the flow rate became 5 m / s or less, and the heat receiving surface was sufficiently cooled. In addition, because it can be cooled sufficiently, damage due to radiant heat from molten steel and a significant heat load due to adhesion of metal is reduced, and the replacement period of tuyere is changed from the conventional 100 times to 250 times as shown in FIG. I knew it would prolong life.
[0015]
【The invention's effect】
When the porous lance tuyere for steel making of the present invention is used, when the oxygen hole is porous, in the cooling of the heat receiving surface, the stagnation of the flow due to the presence of the wall of the oxygen hole in the cooling water channel between the middle pipe and the outer pipe Thus, it is possible to provide a cooling water channel that sufficiently cools at low cost.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a (a) longitudinal sectional view and (b) a transverse sectional view of a porous lance tuyere for steel making having five oxygen holes according to the present invention.
FIG. 2 is an explanatory diagram of a difference in flow velocity distribution between a tuyere according to the present invention and a conventional tuyere.
FIG. 3 is a diagram showing the position of the flow velocity distribution according to the present invention in comparison with the conventional method.
FIG. 4 is a diagram showing the effect of the present invention in comparison with a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Oxygen channel 2 ... Inner pipe | tube 3 ... Supply cooling water 4 ... Middle pipe | tube 5 ... Return cooling water 6 ... Outer pipe | tube 7 ... Oxygen hole 8 ... Heat receiving surface 9 ... Cooling water flow direction 10 ... Flow stagnation 11 ... Conventional tuyere (Part) and flow velocity distribution 12 ... the tuyere of the present invention (part)
13 ... Flow velocity distribution 14 in the tuyere of the present invention ... Conical surface 15 passing through the central axis of all oxygen holes 7 ... circumscribed conical surface 16 common to all oxygen holes 7 ... ribs

Claims (2)

ランスの外管と中管の間の、羽口先端部の多孔の酸素孔が開口する曲面(受熱面)の背後の冷却水路内で、全ての酸素孔の中心軸を通る円錐面より外側でかつ全ての酸素孔に共通の外接円錐面より内側の冷却水路内に、流線に沿いながら、冷却水路を分割するようにランスの上下方向に曲線状あるいはランスの上下方向に直線状のリブを設置することを特徴とする製鋼用多孔ランス羽口。Inside the cooling water channel between the outer and middle tubes of the lance behind the curved surface (heat receiving surface) where the porous oxygen hole at the tip of the tuyere opens, outside the conical surface passing through the central axis of all oxygen holes And ribs that are curved in the vertical direction of the lance or linear in the vertical direction of the lance so as to divide the cooling water channel along the streamline in the cooling water channel inside the circumscribed conical surface common to all oxygen holes Perforated lance tuyere for steel making, characterized in that it is installed. 前記冷却水流路の分割数が、3から5であることを特徴とする請求項1記載の製鋼用多孔ランス羽口。The perforated lance tuyere for steel making according to claim 1, wherein the number of divisions of the cooling water passage is 3 to 5.
JP27425295A 1995-10-23 1995-10-23 Porous lance tuyere for steel making Expired - Fee Related JP3758718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27425295A JP3758718B2 (en) 1995-10-23 1995-10-23 Porous lance tuyere for steel making

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27425295A JP3758718B2 (en) 1995-10-23 1995-10-23 Porous lance tuyere for steel making

Publications (2)

Publication Number Publication Date
JPH09118909A JPH09118909A (en) 1997-05-06
JP3758718B2 true JP3758718B2 (en) 2006-03-22

Family

ID=17539115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27425295A Expired - Fee Related JP3758718B2 (en) 1995-10-23 1995-10-23 Porous lance tuyere for steel making

Country Status (1)

Country Link
JP (1) JP3758718B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012409B2 (en) * 2006-12-15 2011-09-06 Technological Resources Pty. Limited Apparatus for injecting gas into a vessel

Also Published As

Publication number Publication date
JPH09118909A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
CN109570518B (en) Supersonic gas atomization spray disk for metal powder preparation
KR970702113A (en) SUBMERGED ENTRY NOZZLE
CN1012738B (en) Blast guns
JP5504417B2 (en) Equipment for cooling metal strips
JP3758718B2 (en) Porous lance tuyere for steel making
JPH0211651B2 (en)
US4417721A (en) Lance tip for oxygen steelmaking
CN111974981B (en) Casting nozzle
JPS61205301A (en) Gas turbine blade
HU190850B (en) Tuyere for converting metal production
CN212404134U (en) Blast furnace coal powder spray pipe structure and spray gun
JP3510038B2 (en) Tubular lance tuyere for steel making
UA76433C2 (en) A cooling element for shaft furnaces
SU859462A1 (en) Water-cooled multinozzle tuyere
JPH0842822A (en) Oxygen-fuel combustion machine
US11897027B2 (en) Immersion nozzle for continuous casting
CN85108682A (en) A kind of strand guide that is used for continuous casting equipment
US6033621A (en) Oxygen lance head for treating molten masses
CN217536067U (en) Forced water-cooling hot air spray gun
SU933710A2 (en) Blast furnace tuyere
CN217712728U (en) Exhaust cooling water jacket device
US3525509A (en) Injection lance with a nozzle adapted for above the bath operation
SU1217882A1 (en) Blast furnace blowing for tuyere
CN217251610U (en) High-efficient cooling guide slot of altitude water tank
CN210548072U (en) Sheet billet submersed nozzle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees