JP3758539B2 - Control apparatus and control method for automobile - Google Patents

Control apparatus and control method for automobile Download PDF

Info

Publication number
JP3758539B2
JP3758539B2 JP2001272854A JP2001272854A JP3758539B2 JP 3758539 B2 JP3758539 B2 JP 3758539B2 JP 2001272854 A JP2001272854 A JP 2001272854A JP 2001272854 A JP2001272854 A JP 2001272854A JP 3758539 B2 JP3758539 B2 JP 3758539B2
Authority
JP
Japan
Prior art keywords
vehicle
air
inter
fuel ratio
temporal change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001272854A
Other languages
Japanese (ja)
Other versions
JP2002130046A (en
Inventor
利通 箕輪
智 倉垣
潤市 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001272854A priority Critical patent/JP3758539B2/en
Publication of JP2002130046A publication Critical patent/JP2002130046A/en
Application granted granted Critical
Publication of JP3758539B2 publication Critical patent/JP3758539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車の制御装置及び制御方法に係り、特に走行環境等の情報に応じてエンジンパワートレインを効率良く制御する自動車の制御装置及び制御方法に関する。
【0002】
【従来の技術】
従来のこの種の制御方法は、例えば、特開昭62−126235号公報記載のように、燃料経済性と運転性の両立のため、運転状態の変化、つまりエンジン負荷(吸気管内圧力,空燃比センサ信号等)及びエンジン回転数の変化に応じて運転領域を判定し、運転領域毎に設定された目標空燃比情報を読み出しエンジンの空燃比を変更していた。
【0003】
【発明が解決しようとする課題】
上記従来技術のようにエンジン負荷とエンジン回転数とをパラメータとして目標空燃比を変化させると、加速途中で燃料量が変化するためトルク変動が発生し違和感を生じていた。さらに、NOx還元触媒を用いない場合、NOx排出量低減のため、理論混合比の空燃比14.7 から空燃比24あたりまで大幅に空燃比が変化するため、トルク変動も大きくなっていた。
【0004】
本発明の目的は、空燃比変化時のトルク変動を無くし、燃料経済性向上と運転性向上の両立が可能となる制御装置及び方法を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明は、自動車走行時の外界状況を検出する外界状況検出手段,この外界状況に応じて現在の走行環境、例えば道路勾配,渋滞道路等を推定する走行環境判別手段,この走行環境に応じて運転特性を変化させるためのデータを記憶するデータ記憶手段,このデータを走行環境に応じて切り換える切り換え手段,上記データ記憶手段から選択されたデータを基に制御量を演算する制御量演算手段及び制御対象を制御する制御アクチュエータから成る。
【0006】
このように構成された本発明によれば、必ず変速,停止,アイドリング及びシフトレバー操作等の定常走行以外の走行環境に応じて空燃比等のデータを切り換えるため、運転者は空燃比変化に伴うトルク変動による不快感がなくなる。よって、実用燃費の低減と運転性向上が図れる。
【0007】
【発明の実施の形態】
以下、本発明の実施例を図面に基づき詳細に説明する。
【0008】
図1は本発明の実施例のブロック図である。まず、自動車走行時の外界状況を検出する外界状況検出手段1の信号あるいは画像を走行環境判別手段2に入力する。走行環境判別手段2では、この外界状況に応じて現在の走行環境、例えば道路勾配,渋滞道路等を推定する。次に、データ記憶手段3には、この走行環境に応じて運転特性を変化させるためのデータが記憶されている。そして、切り換え手段4で、上記走行環境判別手段2で判別された環境に基づきデータ記憶手段3のデータを選択する。制御量演算手段5では、この選択されたデータを基に制御量を演算し、制御アクチュエータ6に出力し制御対象(エンジン,変速機等)を制御する。
【0009】
図2は図1に記載の実施例の具体例である。図1と同様に、自動車走行時の外界状況を検出する外界状況検出手段1の信号あるいは画像を走行環境判別手段2に入力し、この外界状況に応じて現在の走行環境、例えば道路勾配,渋滞道路等を推定する。次に、補正空燃比記憶手段7には、複数の走行環境に応じた補正空燃比が記憶されている。この補正空燃比データを切り換え手段4で切り換え、走行環境に応じたエンジンの空燃比を実現する。そして、燃料量演算手段8に補正空燃比記憶手段7及び基本燃料量演算手段9で演算された値が入力される。基本燃料量は、通常、空気流量とエンジン回転数により求まる。最終的な燃料量の演算は、補正空燃比記憶手段7のデータを基に補正係数を求め、上記基本燃料量に掛け、あるいは加えて実行される。そして、この演算値がエンジン回転の基準信号に基づいて燃料噴射弁10に出力される。
【0010】
図3は図2に記載の燃料制御に空気流量制御を加えた制御ブロック図である。燃料噴射弁制御は図2と同様である。空気流量制御において、まず、ドライバ意図把握手段11はアクセル開度α及び車速Vsp等の信号からドライバが要求する目標の駆動軸トルクを求める。その後、エンジントルク演算手段12は、この目標駆動軸トルク,変速機のトルクコンバータ特性及びエンジン特性等を用い、さらに上記補正空燃比記憶手段7のデータに基づいて目標のエンジントルクを求める。次に、スロットル開度演算手段13では、この目標エンジントルク及びエンジン回転数等に基づき目標スロットル開度を演算し、モータ等で電子制御されるスロットル制御弁14に出力する。つまり、この空気流量制御の付加は、空燃比変化により変化するエンジントルクを空気流量で補正可能であり運転性を向上することができる。
【0011】
図4は空燃比切り換えの具体例である。外界状況の検出において、第1に、道路に設置された表示板による情報収集やFM多重による道路情報収集のようなインフラを用いた手法がある。第2に、車内にテレビカメラ等の車外状況認識センサを設け、この処理データと自動車の運転信号(例えば、車速,出力軸トルク等)を用いた手法がある。外界状況検出には、これら2手法の組合せ、あるいは個々といった適用方法が考えられ、検出精度,適用状況に応じて使い方が異なる。次に、走行環境には、上り坂,下り坂の道路勾配,渋滞,高速道路の定常,加速及び通常の走行をする市街地等がある。この環境は上記の外界状況検出手段を用いて求められる。そして、空燃比切り換え時には、走行環境に応じて運転性と燃料経済性の両立を図る空燃比が選択される。例えば、上り坂の道路勾配及び高速道路の加速では、エンジンの最大出力要求の可能性が大きいため、空燃比は13程度の濃い混合気にする必要がある。また、下り坂の道路勾配,渋滞及び高速道路の定常走行の場合は、高出力を必要としないため、空燃比は24程度の薄い混合気にし大幅な燃費低減を図る。そして、市街地等の通常走行の場合は、空燃比を14.7 の理論混合気にする。
【0012】
ここで、空燃比の補正テーブルは図5に示すように、横軸,エンジン回転数,縦軸,基本燃料噴射幅で表し、アイドリングを含む低エンジン回転数及び低基本燃料噴射幅の領域では、燃焼が安定する空燃比にする。例えば、エンジンの性能が向上すれば、より薄い混合気で運転することができる。
【0013】
図6は渋滞道路走行時の制御フローチャートである。まず、処理15では、前方車間距離Sf,後方車間距離Sr,車速Vsp,基本燃料噴射幅Tp及びエンジン回転数Neを読み込む。処理16では、前方車間距離の時間的変化ΔSfを(式1)により演算する。処理17では、後方車間距離の時間的変化ΔSrを(式2)により演算する。処理18では、自車両の加速度Gを(式3)により演算する。処理19では、自車両の平均車速Vave を(式4)により演算する。
【0014】
ΔSf=[Sf(n)−Sf(n−1)]/[T(n)−T(n−1)]…(式1)
ΔSr=[Sr(n)−Sr(n−1)]/[T(n)−T(n−1)]…(式2)
G=[Vsp(n)−Vsp(n−1)]/[T(n)−T(n−1)] …(式3)
Vave(n)=[Vsp(n)+…+Vsp(n−k)]/(k+1) …(式4)
そして、処理20では、a回前の平均車速Vave(n−a)を記憶するためのカウンタを実行する。つまり、xがaになったかどうかを判断し、aでない場合は処理21でxに1を加え処理24に進む。もし、aになった場合は、処理22でa回前の平均車速Vave(n−a)にVave(n)を代入し、処理23でxを0にする。次に、処理24では、(式1)で演算した前方車間距離の時間的変化ΔSfが、例えば10m/s以下かどうかを判断する。つまり、この時間的変化ΔSfが大きい時は、前方の車が急発進していると考えられ、前方車両の前には車両が存在しない確立が高いことを示す。処理25では、処理24と同様に後方車両との時間的変化をチェックし、自車が渋滞により前後の車に挟まれているかどうかを判断する。処理26では、自車両の加速度Gを比較する。もし、発進時に前方が渋滞している場合は、発進加速度が制限され、例えば0.5g 以下は渋滞時の可能性大と判断する。最後に、処理27では、処理22で求めた値を用い、a回前の平均車速Vave(n−a)が、例えば5km/h以下かどうかを判断する。もし、数秒前の平均車速が5km/h以下であれば、5km/h以下の状態が長く続いている、つまり渋滞の可能性大と判断される。よって、処理24から処理27の判断を総合的に評価し、全て満足した場合に渋滞と判断し、処理28に進む。また、処理24から処理27の何れかがNoの場合は処理29に進み、前回に判断した走行環境の補正空燃比テーブルを用いる。処理28では、渋滞と判断されているため、補正空燃比テーブルのA/Fは24と希薄混合気にする。そして、処理30で処理28のA/Fの関数h(A/F)により、補正燃料噴射係数k1 を演算する。処理31では、燃料噴射幅Tiを基本燃料噴射幅Tpと上記補正燃料噴射係数k1 により求め、処理32で出力する。
【0015】
図7に空気流量制御の制御フローチャートを示す。まず、処理33で、アクセル開度α,車速Vsp,エンジン回転数Ne,タービン回転数Nt,補正空燃比A/F及び変速比iを読み込む。次に、処理34でアクセル開度α及び車速Vspの関数f1(α,Vsp)により目標駆動軸トルクTtar を求める。処理35では、目標駆動軸トルクTtar ,エンジン回転数Ne,タービン回転数Nt,変速比i,トルクコンバータの容量係数c及びトルク比λの関数f2(Ttar,Ne,Nt,i,c,λ)により目標エンジントルクTetを演算する。ここでは、トルクコンバータの逆モデルを演算することになる。処理36では、目標エンジントルクTet,エンジン回転数Ne及び補正空燃比A/Fの関数f3(Tet,Ne,A/F)により目標スロットル開度θtを演算し、処理37で出力する。
【0016】
図8に本発明のシステム構成図を示す。車体38には、エンジン39及び変速機40が搭載されており、エンジンパワートレイン制御ユニット41からの信号により空気流量,燃料量,点火時期及び変速比等が制御される。燃料制御には、現在主流の吸気ポート噴射方式,制御性の良い筒内噴射方式等が用いられる。また、車体38には、外界状況を検出するためのテレビカメラ42やインフラ情報検出のためのアンテナ43が搭載されている。テレビカメラ42の画像は走行環境判別ユニット44に入力され、画像処理して前方,後方の車間距離,信号機情報,道路標識及び道路状況等を認識する。また、上記アンテナ43はインフラ情報端末器45と接続しており、インフラによる渋滞情報,交通事故情報及び現在位置情報がインフラ情報端末器45から走行環境判別ユニット44に入力される。そして、CD−ROM46等に記憶された地図情報を走行環境判別ユニット44に取り込み、上記インフラ情報とこの地図情報により、現在の走行環境を判別する。そして、走行環境判別ユニット44からは、走行環境に相当する信号が出力され、上記エンジンパワートレイン制御ユニット41に入力される。この信号を基に、走行環境に対応した空気流量,燃料量及び変速比等が制御される。また、上記エンジンパワートレイン制御ユニット41には、スロットル開度θ,変速中信号FlgI,車速Vsp及び変速レバースイッチ信号Isw等が入力され、制御量切り換え,走行環境把握等に用いられる。
【0017】
図9は空燃比切り換え制御の制御フローチャートである。本発明は、走行環境に応じて空燃比を変化させる必要がある。そこで、車両の走行状態、例えば、停止時,変速時及びアイドリング時等に同期して空燃比変化を実行すれば、空燃比変化によるトルク変動を防止することができる。まず、処理50では、補正空燃比A/F,スロットル開度θ,変速レバースイッチ信号Isw及び変速中フラグ信号FlgIを読み込む。処理51では、現在の補正空燃比A/F(n)が前回の補正空燃比A/F(n−1)と等しいかどうかを判断する。等しい場合は、処理52に進み補正燃料噴射係数k1をf4[A/F(n−1)]により求め、前回の空燃比を保持する。そして、処理53でA/F(n−1)=A/F(n−1)を実行し、処理54では、処理52で演算した補正燃料噴射係数k1 を出力する。また、処理51で現在の補正空燃比A/F(n)が前回の補正空燃比A/F(n−1)と異なった場合は、処理55に進み、スロットル開度θをチェックし、アイドリングかどうかを判断する。例えば、2deg 以下であれば、アイドリングと判定する。処理56では、変速レバースイッチIsw(n)が変化したかどうかを判断する。つまり、変速レバーの動きをチェックしていれば、停止時あるいは変速時に限られるため、空燃比変更には有効である。処理57では、変速中フラグ信号FlgIが1かどうかを判断する。1の場合は、変速時のトルク変動に同期して空燃比変更が可能となり、空燃比変化に伴うトルク変動が防止できる。処理55から処理57の何れかがYes の場合は、処理58に進み、その変更期間に同期させて補正燃料噴射係数k1をf4[A/F(n)]により求め、新しい目標空燃比に変更する。そして、処理59でA/F(n−1)=A/F(n)を実行し、処理54では、処理58で演算した補正燃料噴射係数k1を出力する。
【0018】
図10は渋滞と上り坂,下り坂がオーバーラップした場合の制御フローチャートである。例えば、上り坂で渋滞した場合は、その上り坂に応じたエンジン出力が要求され、空燃比可変により対応する必要がある。まず、処理60で、渋滞信号JAM及び道路勾配βを読み込む。処理61では、渋滞かどうか、つまり、JAMが1かどうかを判断する。1の場合は、処理62に進み渋滞フラグFlgJ=1を実行し、1でない場合は、処理63に進み渋滞フラグFlgJ=0を実行する。次に、処理64では道路勾配βが例えば、0.5% 以上かどうかを判断する。0.5% 未満の場合は、平坦路あるいは下り坂と判断され、空燃比は希薄混合気の24程度にすれば良い。これに対し、0.5% 以上の場合は勾配に応じて空燃比を変化する必要がある。よって、0.5% 以上の場合は処理65に進み、上り坂フラグFlgβ=1を実行し、0.5% 未満の場合は処理66に進み、上り坂フラグFlgβ=0を実行する。そして、処理67では渋滞フラグFlgJと上り坂フラグFlgβのANDを判断し、真の場合は処理68に、偽の場合はリターンされる。真の場合は、渋滞と上り坂がオーバーラップするため、処理68で図11に示す補正勾配空燃比テーブル及び道路勾配βの関数f5(β)により補正空燃比A/Fを求める。そして、処理69では、処理68で求めた補正空燃比A/Fを用いて補正燃料噴射係数k1 を演算し、処理70で出力する。
【0019】
図11は前述渋滞時の道路勾配に対する補正空燃比である。平坦路付近からマイナス勾配範囲での渋滞では、エンジン出力がさほど必要ではなく、24程度の空燃比で充分である。これに対し、上り坂勾配では、勾配の度合いに応じて要求されるエンジン出力が大きくなるため、空燃比を小さくし濃い混合気にする必要がある。
【0020】
以上の制御により実用燃費を向上させることができる。
【0021】
【発明の効果】
本発明によれば、走行環境の変化に応じて随時空燃比が変化するため、エンジン出力の有効利用が可能となり、さらに実用燃費が向上する。また、空燃比切り換えは、必ず変速,停止,アイドリング及びシフトレバー操作等の定常走行以外の走行環境に応じて実行されるため、運転者は空燃比変化に伴うトルク変動による不快感がなくなる。よって、燃費低減と運転性向上が図れる。
【図面の簡単な説明】
【図1】本発明の実施例の制御ブロック図。
【図2】図1に記載の実施例の具体例システムの構成を示す制御ブロック図。
【図3】図2に記載の燃料制御に空気流量制御を加えた制御ブロック図。
【図4】空燃比切り換えの具体例を示す概念図。
【図5】目標空燃比の補正テーブル図の一例。
【図6】渋滞道路走行時の制御フローチャート図。
【図7】空気流量制御の制御フローチャート図。
【図8】本発明のシステムの構成を示す概念図。
【図9】空燃比切り換え制御の制御フローチャート図。
【図10】渋滞と上り坂,下り坂がオーバーラップした場合の制御フローチャート図。
【図11】渋滞時の道路勾配に対する補正空燃比の関係を表す相関図。
【符号の説明】
1…外界状況検出手段、2…走行環境判別手段、3…データ記憶手段、4…切り換え手段、5…制御量演算手段、6…制御アクチュエータ、7…補正空燃比記憶手段、8…燃料量演算手段、9…基本燃料量演算手段、10…燃料噴射弁。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automobile control apparatus and control method, and more particularly to an automobile control apparatus and control method for efficiently controlling an engine power train in accordance with information such as a traveling environment.
[0002]
[Prior art]
Conventional control methods of this type, for example, as described in Japanese Patent Application Laid-Open No. Sho 62-126235, change in operating conditions, that is, engine load (intake pipe pressure, air-fuel ratio) in order to achieve both fuel economy and operability. The operation region is determined according to changes in the sensor signal and the like and the engine speed, and the target air-fuel ratio information set for each operation region is read to change the air-fuel ratio of the engine.
[0003]
[Problems to be solved by the invention]
When the target air-fuel ratio is changed using the engine load and the engine speed as parameters as in the prior art described above, the amount of fuel changes during acceleration, resulting in torque fluctuations and an uncomfortable feeling. Further, when the NOx reduction catalyst is not used, the torque fluctuation is also large because the air-fuel ratio changes significantly from the air-fuel ratio of 14.7 to the air-fuel ratio of 24 in order to reduce the NOx emission amount.
[0004]
An object of the present invention is to provide a control device and method that eliminates torque fluctuations when the air-fuel ratio changes, and makes it possible to improve both fuel economy and drivability.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an external environment detection means for detecting an external environment during driving of the automobile, and a traveling environment determination for estimating a current traveling environment, for example, a road gradient, a congested road, etc. according to the external environment. Means, data storage means for storing data for changing the driving characteristics according to the driving environment, switching means for switching the data according to the driving environment, and the control amount based on the data selected from the data storage means. It consists of a control amount calculating means for calculating and a control actuator for controlling a control object.
[0006]
According to the present invention configured as described above, since the data such as the air-fuel ratio is switched according to the traveling environment other than the steady traveling such as shifting, stopping, idling and shift lever operation, the driver is accompanied by the change of the air-fuel ratio. Discomfort due to torque fluctuation is eliminated. Therefore, it is possible to reduce practical fuel consumption and improve drivability.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0008]
FIG. 1 is a block diagram of an embodiment of the present invention. First, a signal or an image of the external environment detection means 1 for detecting the external environment situation during driving of the automobile is input to the traveling environment determination means 2. The traveling environment discriminating means 2 estimates the current traveling environment, for example, a road gradient, a congested road, etc. according to the external environment. Next, the data storage means 3 stores data for changing driving characteristics in accordance with the traveling environment. Then, the switching unit 4 selects data in the data storage unit 3 based on the environment determined by the traveling environment determination unit 2. The control amount calculation means 5 calculates a control amount based on the selected data and outputs it to the control actuator 6 to control the control target (engine, transmission, etc.).
[0009]
FIG. 2 is a specific example of the embodiment shown in FIG. As in FIG. 1, a signal or image of the external environment detection means 1 for detecting the external environment situation during vehicle driving is input to the driving environment determination means 2, and the current driving environment, for example, road gradient, traffic jam, etc., according to the external environment situation. Estimate roads. Next, the corrected air-fuel ratio storage means 7 stores corrected air-fuel ratios corresponding to a plurality of travel environments. The corrected air-fuel ratio data is switched by the switching means 4 to realize the air-fuel ratio of the engine corresponding to the traveling environment. Then, the values calculated by the corrected air-fuel ratio storage unit 7 and the basic fuel amount calculation unit 9 are input to the fuel amount calculation unit 8. The basic fuel amount is usually obtained from the air flow rate and the engine speed. The final calculation of the fuel amount is executed by obtaining a correction coefficient based on the data in the corrected air-fuel ratio storage means 7 and multiplying or adding to the basic fuel amount. This calculated value is output to the fuel injection valve 10 based on the engine rotation reference signal.
[0010]
FIG. 3 is a control block diagram in which an air flow rate control is added to the fuel control shown in FIG. The fuel injection valve control is the same as in FIG. In the air flow rate control, first, the driver intention grasping means 11 obtains a target drive shaft torque requested by the driver from signals such as the accelerator opening α and the vehicle speed Vsp. Thereafter, the engine torque calculation means 12 uses the target drive shaft torque, the transmission torque converter characteristics, the engine characteristics, and the like, and further obtains the target engine torque based on the data in the corrected air-fuel ratio storage means 7. Next, the throttle opening calculation means 13 calculates the target throttle opening based on the target engine torque, the engine speed, etc., and outputs it to the throttle control valve 14 that is electronically controlled by a motor or the like. That is, the addition of this air flow rate control can correct the engine torque that changes due to the change in the air-fuel ratio with the air flow rate, and can improve the drivability.
[0011]
FIG. 4 shows a specific example of air-fuel ratio switching. In the detection of the outside world situation, firstly, there is a method using an infrastructure such as information collection by a display board installed on a road or road information collection by FM multiplexing. Secondly, there is a technique in which an outside vehicle situation recognition sensor such as a TV camera is provided in the vehicle, and this processing data and a driving signal of the vehicle (for example, vehicle speed, output shaft torque, etc.) are used. For the detection of the outside world situation, an application method such as a combination of these two methods or an individual method is conceivable, and the usage differs depending on the detection accuracy and the application situation. Next, the driving environment includes uphill and downhill road gradients, traffic congestion, steady highway, acceleration, and urban areas where normal driving is performed. This environment is obtained by using the above-described external environment detection means. When the air-fuel ratio is switched, an air-fuel ratio that achieves both drivability and fuel economy is selected according to the driving environment. For example, in the uphill road gradient and highway acceleration, there is a high possibility of requesting the maximum output of the engine. Therefore, it is necessary to make the air-fuel ratio a rich mixture of about 13. Further, in the case of downhill road gradients, traffic jams, and steady driving on highways, high output is not required, so the air-fuel ratio is reduced to about 24 and the fuel consumption is greatly reduced. In the case of normal driving in an urban area or the like, the air-fuel ratio is set to a theoretical mixture of 14.7.
[0012]
Here, as shown in FIG. 5, the air-fuel ratio correction table is represented by the horizontal axis, the engine speed, the vertical axis, and the basic fuel injection width. In the low engine speed and low basic fuel injection width areas including idling, Use an air-fuel ratio that stabilizes combustion. For example, if the performance of the engine is improved, it is possible to operate with a thinner air-fuel mixture.
[0013]
FIG. 6 is a control flowchart when traveling on a congested road. First, in the process 15, the front inter-vehicle distance Sf, the rear inter-vehicle distance Sr, the vehicle speed Vsp, the basic fuel injection width Tp, and the engine speed Ne are read. In the process 16, the temporal change ΔSf of the front inter-vehicle distance is calculated by (Equation 1). In the process 17, the temporal change ΔSr of the rear inter-vehicle distance is calculated by (Equation 2). In the process 18, the acceleration G of the host vehicle is calculated by (Equation 3). In process 19, the average vehicle speed Vave of the host vehicle is calculated by (Equation 4).
[0014]
ΔSf = [Sf (n) −Sf (n−1)] / [T (n) −T (n−1)] (Formula 1)
ΔSr = [Sr (n) −Sr (n−1)] / [T (n) −T (n−1)] (Formula 2)
G = [Vsp (n) -Vsp (n-1)] / [T (n) -T (n-1)] (Formula 3)
Vave (n) = [Vsp (n) +... + Vsp (n−k)] / (k + 1) (Equation 4)
And in the process 20, the counter for memorize | storing the average vehicle speed Vave (na) before a times is performed. That is, it is determined whether or not x is a. If it is not a, 1 is added to x in process 21 and the process proceeds to process 24. If it becomes a, Vave (n) is substituted for the average vehicle speed Vave (na) a times before in processing 22, and x is set to 0 in processing 23. Next, in the process 24, it is determined whether or not the temporal change ΔSf of the front inter-vehicle distance calculated in (Equation 1) is, for example, 10 m / s or less. That is, when this temporal change ΔSf is large, it is considered that the vehicle ahead is abruptly started, and there is a high probability that no vehicle is present in front of the vehicle ahead. In the process 25, the time change with the rear vehicle is checked in the same manner as in the process 24, and it is determined whether or not the own vehicle is sandwiched between the preceding and following vehicles due to traffic congestion. In the process 26, the acceleration G of the own vehicle is compared. If the front is congested when starting, the start acceleration is limited. For example, if it is 0.5 g or less, it is determined that there is a high possibility of traffic. Finally, in the process 27, using the value obtained in the process 22, it is determined whether or not the average vehicle speed Vave (na) before a times is 5 km / h or less. If the average vehicle speed several seconds ago is 5 km / h or less, it is determined that the state of 5 km / h or less continues for a long time, that is, the possibility of traffic jam is high. Therefore, the judgments of the processing 24 to the processing 27 are comprehensively evaluated, and when all are satisfied, it is determined that there is a traffic jam and the processing proceeds to the processing 28. If any of the processing 24 to the processing 27 is No, the processing proceeds to the processing 29, and the corrected air-fuel ratio table of the traveling environment determined last time is used. In the process 28, since it is determined that there is a traffic jam, the A / F of the corrected air-fuel ratio table is set to 24 and a lean mixture. Then, in process 30, the corrected fuel injection coefficient k 1 is calculated by the function h (A / F) of A / F in process 28. In process 31, a fuel injection width Ti determined by the basic fuel injection width Tp and the corrected fuel injection coefficient k 1, and outputs the processing 32.
[0015]
FIG. 7 shows a control flowchart of the air flow rate control. First, at step 33, the accelerator opening α, the vehicle speed Vsp, the engine speed Ne, the turbine speed Nt, the corrected air-fuel ratio A / F, and the speed ratio i are read. Next, in a process 34, the target drive shaft torque Ttar is obtained from the function f 1 (α, Vsp) of the accelerator opening α and the vehicle speed Vsp. In the process 35, the function f 2 (Ttar, Ne, Nt, i, c, λ) of the target drive shaft torque Ttar, the engine speed Ne, the turbine speed Nt, the transmission ratio i, the capacity coefficient c of the torque converter, and the torque ratio λ. ) To calculate the target engine torque Tet. Here, an inverse model of the torque converter is calculated. In the process 36, the target throttle opening degree θt is calculated from the function f 3 (Tet, Ne, A / F) of the target engine torque Tet, the engine speed Ne, and the corrected air-fuel ratio A / F, and is output in the process 37.
[0016]
FIG. 8 shows a system configuration diagram of the present invention. An engine 39 and a transmission 40 are mounted on the vehicle body 38, and an air flow rate, a fuel amount, an ignition timing, a gear ratio, and the like are controlled by a signal from the engine power train control unit 41. For the fuel control, the mainstream intake port injection method, the in-cylinder injection method with good controllability, and the like are used. In addition, the vehicle body 38 is equipped with a television camera 42 for detecting the outside world situation and an antenna 43 for detecting infrastructure information. The image of the TV camera 42 is input to the traveling environment discrimination unit 44, and image processing is performed to recognize the front and rear inter-vehicle distances, traffic signal information, road signs, road conditions, and the like. Further, the antenna 43 is connected to the infrastructure information terminal 45, and traffic congestion information, traffic accident information and current position information due to the infrastructure are input from the infrastructure information terminal 45 to the traveling environment determination unit 44. And the map information memorize | stored in CD-ROM46 grade | etc., Is taken in into the driving environment discrimination | determination unit 44, and the present driving environment is discriminate | determined by the said infrastructure information and this map information. A signal corresponding to the driving environment is output from the driving environment determination unit 44 and input to the engine powertrain control unit 41. Based on this signal, the air flow rate, fuel amount, gear ratio, etc. corresponding to the driving environment are controlled. The engine power train control unit 41 is input with a throttle opening θ, a shifting signal FlgI, a vehicle speed Vsp, a shift lever switch signal Isw, and the like, and is used for control amount switching, traveling environment grasping, and the like.
[0017]
FIG. 9 is a control flowchart of air-fuel ratio switching control. In the present invention, it is necessary to change the air-fuel ratio according to the traveling environment. Therefore, if the air-fuel ratio change is executed in synchronism with the running state of the vehicle, for example, at the time of stopping, shifting, idling, etc., torque fluctuation due to the air-fuel ratio change can be prevented. First, in the process 50, the correction air-fuel ratio A / F, the throttle opening θ, the shift lever switch signal Isw, and the shifting flag signal FlgI are read. In process 51, it is determined whether or not the current corrected air-fuel ratio A / F (n) is equal to the previous corrected air-fuel ratio A / F (n-1). If equal, the routine proceeds to step 52, where the corrected fuel injection coefficient k 1 is obtained by f 4 [A / F (n−1)], and the previous air-fuel ratio is held. In the processing 53 A / F (n-1 ) = running A / F (n-1) , the process 54 outputs the corrected fuel injection coefficient k 1 calculated in the process 52. If the current corrected air-fuel ratio A / F (n) is different from the previous corrected air-fuel ratio A / F (n-1) in process 51, the process proceeds to process 55 where the throttle opening θ is checked and idling is performed. Determine whether or not. For example, if it is 2 deg or less, it is determined as idling. In process 56, it is determined whether or not the shift lever switch Isw (n) has changed. That is, if the movement of the shift lever is checked, it is effective only when stopping or shifting, and is effective for changing the air-fuel ratio. In processing 57, it is determined whether or not the shifting flag signal FlgI is 1. In the case of 1, the air-fuel ratio can be changed in synchronization with the torque fluctuation at the time of shifting, and the torque fluctuation accompanying the air-fuel ratio change can be prevented. If any of the processing 55 to processing 57 is Yes, the processing proceeds to processing 58, and the corrected fuel injection coefficient k 1 is obtained by f 4 [A / F (n)] in synchronization with the change period, and a new target air-fuel ratio is obtained. Change to In the processing 59 A / F (n-1 ) = running A / F (n), the process 54 outputs the corrected fuel injection coefficient k 1 calculated in the process 58.
[0018]
FIG. 10 is a control flowchart in the case where the traffic jam and the uphill / downhill overlap. For example, when there is a traffic jam on an uphill, an engine output corresponding to the uphill is required, and it is necessary to respond by varying the air-fuel ratio. First, in process 60, a traffic jam signal JAM and a road gradient β are read. In process 61, it is determined whether there is a traffic jam, that is, whether JAM is 1. In the case of 1, the process proceeds to process 62 and the traffic jam flag FlgJ = 1 is executed. In the case where it is not 1, the process proceeds to process 63 and the traffic jam flag FlgJ = 0 is executed. Next, in process 64, it is determined whether the road gradient β is, for example, 0.5% or more. If it is less than 0.5%, it is determined that the road is flat or downhill, and the air-fuel ratio may be about 24 of the lean air-fuel mixture. On the other hand, in the case of 0.5% or more, it is necessary to change the air-fuel ratio according to the gradient. Therefore, if it is 0.5% or more, the process proceeds to process 65, and the uphill flag Flgβ = 1 is executed. If it is less than 0.5%, the process proceeds to process 66, and the uphill flag Flgβ = 0 is executed. Then, in process 67, the AND of the traffic jam flag FlgJ and the uphill flag Flgβ is judged. If true, the process returns to process 68, and if false, the process returns. If true, the traffic jam and the uphill overlap, so the corrected air-fuel ratio A / F is obtained by processing 68 using the corrected gradient air-fuel ratio table and the function f 5 (β) of the road gradient β shown in FIG. In process 69, the corrected fuel injection coefficient k 1 is calculated using the corrected air-fuel ratio A / F obtained in process 68, and output in process 70.
[0019]
FIG. 11 shows a corrected air-fuel ratio with respect to the road gradient at the time of the traffic jam. In a traffic jam from the vicinity of a flat road to a minus gradient range, the engine output is not so necessary, and an air-fuel ratio of about 24 is sufficient. On the other hand, in the uphill slope, the required engine output increases according to the degree of the slope, so it is necessary to reduce the air-fuel ratio to make a rich air-fuel mixture.
[0020]
Practical fuel consumption can be improved by the above control.
[0021]
【The invention's effect】
According to the present invention, since the air-fuel ratio changes at any time according to the change in the driving environment, the engine output can be effectively used, and the practical fuel consumption is further improved. In addition, since the air-fuel ratio switching is always executed in accordance with a traveling environment other than steady traveling such as shifting, stopping, idling, and shift lever operation, the driver is free from discomfort due to torque fluctuations associated with air-fuel ratio changes. Therefore, fuel consumption can be reduced and drivability can be improved.
[Brief description of the drawings]
FIG. 1 is a control block diagram of an embodiment of the present invention.
FIG. 2 is a control block diagram showing a configuration of a specific example system according to the embodiment shown in FIG. 1;
FIG. 3 is a control block diagram in which air flow rate control is added to the fuel control shown in FIG. 2;
FIG. 4 is a conceptual diagram showing a specific example of air-fuel ratio switching.
FIG. 5 is an example of a target air-fuel ratio correction table.
FIG. 6 is a control flowchart when traveling on a congested road.
FIG. 7 is a control flowchart of air flow control.
FIG. 8 is a conceptual diagram showing the configuration of the system of the present invention.
FIG. 9 is a control flowchart of air-fuel ratio switching control.
FIG. 10 is a control flowchart when a traffic jam and an uphill / downhill overlap.
FIG. 11 is a correlation diagram showing the relationship of the corrected air-fuel ratio to the road gradient at the time of traffic jam.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Outside condition detection means, 2 ... Driving environment discrimination means, 3 ... Data storage means, 4 ... Switching means, 5 ... Control amount calculation means, 6 ... Control actuator, 7 ... Correction air-fuel ratio storage means, 8 ... Fuel amount calculation Means 9... Basic fuel amount calculation means 10... Fuel injection valve.

Claims (16)

空気と燃料の割合によって制御されるエンジンと、
少なくとも前方車両との車間距離及び後方車両の車間距離を検出して、自動車走行時の外界状況を検出する外界情報検出手段と、
前記外界情報検出手段からの情報に基づいて渋滞状況を判別する走行環境判別手段と、
前記走行環境判別手段による判別結果に基づき前記エンジンの空燃比を制御する制御手段とを有し、
前記走行環境判別手段は、前記外界情報検出手段からの前方車両との車間距離及び後方車両の車間距離とから前記前方車両の車間距離の時間的変化及び前記後方車両の車間距離の時間的変化を算出し、算出された前記前方車両の車間距離の時間的変化又は前記後方車両の車間距離の時間的変化と、予め定めた所定値とから渋滞の有無を判別することを特徴とする自動車制御システム。
An engine controlled by the ratio of air and fuel;
Outside world information detection means for detecting at least the distance between the front vehicle and the distance between the back vehicles and detecting the outside world situation when the vehicle is running,
Traveling environment determining means for determining a traffic jam situation based on information from the outside world information detecting means;
Control means for controlling the air-fuel ratio of the engine based on the determination result by the traveling environment determination means,
The traveling environment determining means is configured to calculate a temporal change in the inter-vehicle distance of the front vehicle and a temporal change in the inter-vehicle distance of the rear vehicle from the inter-vehicle distance from the external vehicle information detection means and the inter-vehicle distance of the rear vehicle. A vehicle control system that calculates and determines whether there is a traffic jam from a temporal change in the inter-vehicle distance of the preceding vehicle or the temporal change of the inter-vehicle distance of the rear vehicle, and a predetermined value. .
請求項1において、
前記自車両の加速度を取り込み、
前記走行環境判別手段は、前記前方車両との車間距離の時間的変化と前記後方車両との車間距離の時間的変化と前記自車両の加速度と、予め保持されている所定値とから渋滞の有無を判別することを特徴とする自動車制御システム。
In claim 1,
Take in the acceleration of the vehicle,
The travel environment determining means determines whether there is traffic congestion based on a temporal change in the inter-vehicle distance with the preceding vehicle, a temporal change in the inter-vehicle distance with the rear vehicle, the acceleration of the host vehicle, and a predetermined value held in advance. The vehicle control system characterized by distinguishing.
請求項1又は2において、
前記自車両の所定時間の平均車速を取り込み、
前記走行環境判別手段は、前記前方車両との車間距離の時間的変化と前記後方車両との車間距離の時間的変化と前記自車両の平均車速と、予め保持されている所定値とから渋滞の有無を判別することを特徴とする自動車制御システム。
In claim 1 or 2,
Capture the average vehicle speed of the vehicle for a predetermined time,
The travel environment determining means is configured to detect a traffic jam based on a temporal change in the inter-vehicle distance with the preceding vehicle, a temporal change in the inter-vehicle distance with the rear vehicle, the average vehicle speed of the host vehicle, and a predetermined value held in advance. An automobile control system characterized by determining presence or absence.
請求項1乃至3のいずれか1項において、
エンジン回転数と基本燃料噴射幅で特定される空燃比の値を保持する記憶手段を有し、
前記制御手段は、前記走行環境判別手段による判別結果に基づき、前記記憶手段に保持された前記エンジンの空燃比を切り換えることを特徴とする自動車制御システム。
In any one of Claims 1 thru | or 3,
Storage means for holding an air-fuel ratio value specified by the engine speed and the basic fuel injection width;
The vehicle control system, wherein the control means switches an air-fuel ratio of the engine held in the storage means based on a determination result by the traveling environment determination means.
請求項4において、
前記走行環境判別手段によって渋滞と判別されれば、前記制御手段は、前記空燃比を燃焼安定空燃比より大きな値に基づいて制御することを特徴とする自動車制御システム。
In claim 4,
The vehicle control system according to claim 1, wherein if the traveling environment determining unit determines that the traffic is jammed, the control unit controls the air-fuel ratio based on a value larger than a combustion stable air-fuel ratio.
請求項4において、
前記走行環境判別手段によって渋滞と判別されれば、前記制御手段は、前記空燃比を
14.7 より大きな値に基づいて制御することを特徴とする自動車制御システム。
In claim 4,
The vehicle control system according to claim 1, wherein the control unit controls the air-fuel ratio based on a value greater than 14.7 if the travel environment determination unit determines that the traffic is jammed.
請求項4において、
前記制御手段は、前記走行環境判別手段による判別結果に基づき、切り換えられた前記エンジンの空燃比と基本燃料噴射幅から燃料噴射幅を算出し、算出された前記燃料噴射幅に従って、前記エンジンを制御することを特徴とする自動車制御システム。
In claim 4,
The control means calculates a fuel injection width from the switched air-fuel ratio and basic fuel injection width based on the determination result by the traveling environment determination means, and controls the engine according to the calculated fuel injection width. An automobile control system characterized by:
請求項7において、
前記制御手段は、切り換えられた前記エンジンの空燃比となるように補正燃料噴射係数を算出し、前記基本燃料噴射幅とから燃料噴射幅を算出することを特徴とする自動車制御システム。
In claim 7,
The vehicle control system characterized in that the control means calculates a corrected fuel injection coefficient so as to be the air-fuel ratio of the switched engine, and calculates a fuel injection width from the basic fuel injection width.
少なくとも検出された前方車両との車間距離及び後方車両の車間距離の情報に基づいて渋滞状況を判別する走行環境判別手段と、
前記走行環境判別手段による判別結果に基づきエンジンの空燃比を制御する制御手段とを有し、
前記走行環境判別手段は、前記前方車両との車間距離及び前記後方車両の車間距離とから前記前方車両の車間距離の時間的変化及び前記後方車両の車間距離の時間的変化を算出し、算出された前記前方車両の車間距離の時間的変化又は前記後方車両の車間距離の時間的変化と、予め定めた所定値とから渋滞の有無を判別することを特徴とする自動車の制御装置。
A traveling environment determining means for determining a traffic jam situation based on at least information of the detected inter-vehicle distance with the preceding vehicle and the inter-vehicle distance of the rear vehicle;
Control means for controlling the air-fuel ratio of the engine based on the determination result by the traveling environment determination means,
The travel environment determining means calculates a temporal change in the inter-vehicle distance of the front vehicle and a temporal change in the inter-vehicle distance of the rear vehicle from the inter-vehicle distance from the front vehicle and the inter-vehicle distance of the rear vehicle. An automobile control device that determines whether or not there is a traffic jam from a temporal change in the inter-vehicle distance of the preceding vehicle or a temporal change of the inter-vehicle distance of the rear vehicle and a predetermined value.
請求項9において、
自車両の加速度を取り込み、
前記走行環境判別手段は、前記前方車両との車間距離の時間的変化と前記後方車両との車間距離の時間的変化と前記自車両の加速度と、予め保持されている所定値とから渋滞の有無を判別することを特徴とする自動車の制御装置。
In claim 9,
Capture the acceleration of your vehicle,
The travel environment determining means is configured to determine whether there is a traffic jam based on a temporal change in an inter-vehicle distance with the preceding vehicle, an temporal change in an inter-vehicle distance with the rear vehicle, an acceleration of the host vehicle, and a predetermined value held in advance. The control apparatus of the motor vehicle characterized by distinguishing.
請求項9又は10において、
自車両の所定時間の平均車速を取り込み、
前記走行環境判別手段は、前記前方車両との車間距離の時間的変化と前記後方車両との車間距離の時間的変化と前記自車両の平均車速と、予め保持されている所定値とから渋滞の有無を判別することを特徴とする自動車の制御装置。
In claim 9 or 10,
Take the average vehicle speed of your vehicle for a predetermined time,
The travel environment determining means is configured to detect a traffic jam based on a temporal change in the inter-vehicle distance with the preceding vehicle, a temporal change in the inter-vehicle distance with the rear vehicle, the average vehicle speed of the host vehicle, and a predetermined value that is held in advance. A control apparatus for an automobile characterized by determining presence or absence.
請求項9乃至11のいずれか1項において、
エンジン回転数と基本燃料噴射幅で特定される空燃比の値を保持する記憶手段を有し、
前記制御手段は、前記走行環境判別手段による判別結果に基づき、前記記憶手段に保持された前記エンジンの空燃比を切り換えることを特徴とする自動車の制御装置。
In any one of Claims 9 thru | or 11,
Storage means for holding an air-fuel ratio value specified by the engine speed and the basic fuel injection width;
The control device for an automobile, wherein the control means switches the air-fuel ratio of the engine held in the storage means based on a determination result by the traveling environment determination means.
請求項12において、
前記走行環境判別手段によって渋滞と判別されれば、前記制御手段は、前記空燃比を燃焼安定空燃比より大きな値に基づいて制御することを特徴とする自動車の制御装置。
In claim 12,
The vehicle control apparatus according to claim 1, wherein if the travel environment determination unit determines that the traffic is jammed, the control unit controls the air-fuel ratio based on a value larger than a combustion stable air-fuel ratio.
請求項12において、
前記走行環境判別手段によって渋滞と判別されれば、前記制御手段は、前記空燃比を
14.7 より大きな値に基づいて制御することを特徴とする自動車の制御装置。
In claim 12,
The vehicle control apparatus according to claim 1, wherein if the travel environment determination unit determines that the traffic is jammed, the control unit controls the air-fuel ratio based on a value greater than 14.7.
請求項12において、
前記制御手段は、前記走行環境判別手段による判別結果に基づき、切り換えられた前記エンジンの空燃比と基本燃料噴射幅から燃料噴射幅を算出し、算出された前記燃料噴射幅に従って、前記エンジンを制御することを特徴とする自動車の制御装置。
In claim 12,
The control means calculates a fuel injection width from the switched air-fuel ratio and basic fuel injection width based on the determination result by the traveling environment determination means, and controls the engine according to the calculated fuel injection width. A control apparatus for an automobile.
請求項15において、
前記制御手段は、切り換えられた前記エンジンの空燃比となるように補正燃料噴射係数を算出し、前記基本燃料噴射幅とから燃料噴射幅を算出することを特徴とする自動車の制御装置。
In claim 15,
The control device for an automobile, wherein the control means calculates a corrected fuel injection coefficient so as to be the air-fuel ratio of the switched engine, and calculates a fuel injection width from the basic fuel injection width.
JP2001272854A 2001-09-10 2001-09-10 Control apparatus and control method for automobile Expired - Fee Related JP3758539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001272854A JP3758539B2 (en) 2001-09-10 2001-09-10 Control apparatus and control method for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001272854A JP3758539B2 (en) 2001-09-10 2001-09-10 Control apparatus and control method for automobile

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5334926A Division JPH07189795A (en) 1993-12-28 1993-12-28 Controller and control method for automobile

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001312104A Division JP3758547B2 (en) 2001-10-10 2001-10-10 Control device and control method for automobile

Publications (2)

Publication Number Publication Date
JP2002130046A JP2002130046A (en) 2002-05-09
JP3758539B2 true JP3758539B2 (en) 2006-03-22

Family

ID=19098152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001272854A Expired - Fee Related JP3758539B2 (en) 2001-09-10 2001-09-10 Control apparatus and control method for automobile

Country Status (1)

Country Link
JP (1) JP3758539B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157611A (en) * 1984-01-28 1985-08-17 Toshiba Corp Controller of unmanned conveying car
JPS62140110A (en) * 1985-12-16 1987-06-23 Toyoda Autom Loom Works Ltd Method for deciding driving course of image type unmanned carrier
JPS63160348U (en) * 1987-04-07 1988-10-20
JP2707546B2 (en) * 1987-05-06 1998-01-28 日産自動車株式会社 Vehicle steering control device
JP2709936B2 (en) * 1988-04-07 1998-02-04 マツダ株式会社 Output control device for engine with automatic transmission
JPH0331558A (en) * 1989-06-28 1991-02-12 Mazda Motor Corp Controller for engine
JPH0833175B2 (en) * 1989-11-24 1996-03-29 株式会社ユニシアジェックス Automatic transmission for vehicle
JP2934330B2 (en) * 1991-02-28 1999-08-16 株式会社豊田中央研究所 Vehicle operation amount determination device
JP2939370B2 (en) * 1991-09-03 1999-08-25 マツダ株式会社 Learning control car
JPH05225496A (en) * 1992-02-10 1993-09-03 Matsushita Electric Ind Co Ltd Automobile speed control system

Also Published As

Publication number Publication date
JP2002130046A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
JPH07189795A (en) Controller and control method for automobile
US8352150B2 (en) Engine control apparatus
EP1445452B1 (en) Method for setting target driving torque and corresponding vehicle control
KR100806007B1 (en) Driving control apparatus of vehicle and driving control method thereof
US7546197B2 (en) Driving force control device of vehicle
JP4380742B2 (en) Control device and control method for automatic transmission
JPH0921457A (en) Controller for automatic transmission for vehicle
WO2016152750A1 (en) Cruise control device and cruise control method
JPH0950597A (en) Control device corresponding to forward road state of automobile
JP4916939B2 (en) Vehicle engine control device
JP5997496B2 (en) Vehicle driving force control device
CN111086517A (en) Vehicle control device
US20020056583A1 (en) Apparatus for controlling vehicle driving force
CN110651141B (en) Vehicle control device
JP4770280B2 (en) Driving assistance device
JP2008232110A (en) Control device for vehicle
JP3758547B2 (en) Control device and control method for automobile
JP3758539B2 (en) Control apparatus and control method for automobile
JP4221840B2 (en) Vehicle control device
JPH10169765A (en) Driving direction judging device
JPH10103101A (en) Vehicular control device
JPH09240321A (en) Controller for vehicle
JPH10148147A (en) Driving force control device for vehicle
JP2022015999A (en) Vehicle control device
JPH11280879A (en) Shift control device of continuously variable transmission

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees