JP3758486B2 - ON-OFF switching device for eddy current type speed reducer - Google Patents

ON-OFF switching device for eddy current type speed reducer Download PDF

Info

Publication number
JP3758486B2
JP3758486B2 JP2000269687A JP2000269687A JP3758486B2 JP 3758486 B2 JP3758486 B2 JP 3758486B2 JP 2000269687 A JP2000269687 A JP 2000269687A JP 2000269687 A JP2000269687 A JP 2000269687A JP 3758486 B2 JP3758486 B2 JP 3758486B2
Authority
JP
Japan
Prior art keywords
support ring
eddy current
cylinder
switching device
current type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000269687A
Other languages
Japanese (ja)
Other versions
JP2002084734A (en
Inventor
晃 斎藤
泰徳 谷
泰隆 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000269687A priority Critical patent/JP3758486B2/en
Publication of JP2002084734A publication Critical patent/JP2002084734A/en
Application granted granted Critical
Publication of JP3758486B2 publication Critical patent/JP3758486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、制動補助装置としてバスやトラック等の大型自動車に取付けられる渦電流式減速装置のON−OFF切換装置に関するものである。
【0002】
【従来の技術】
近年、バスやトラック等の大型自動車には、下り勾配路でのフットブレーキの使用回数を減少させて、ライニングの異常摩耗やフェード現象を防止すると共に、制動停止距離を短縮することを目的として、主ブレーキであるフットブレーキや補助ブレーキである排気ブレーキの他に渦電流式減速装置が取付けられるようになってきた。そして、この渦電流式減速装置も、最近では、特開平1−298948号等のように、磁極として永久磁石を使用し、制動時に通電を必要としないものが多くなってきている。
【0003】
この永久磁石式の渦電流式減速装置は、現在では、単列旋回方式と二列旋回方式のものが多く採用されている。
このうち、単列旋回方式のものは、例えば図7に示したように、軸受けケース1に固定支持されたアルミニウム等の非磁性体からなる支持体2に磁石支持リング3を軸受4を介して回動自在に軸支し、この磁石支持リング3の外周面に、上下磁極面が回転軸5に対し直角方向の断面において円弧面をなす複数個の永久磁石6を等間隔に配設すると共に、この磁石支持リング3に取着した各永久磁石6群の表面に対向して強磁性体からなる複数枚のスイッチ板7を非磁性体の支持部材を介して等間隔に円周配置して支持体2に一体に取着した構成である。そして、ロータ8を回転軸5に嵌着し、その円筒部8aを所定の空隙をもってスイッチ板7に対向させると共に、支持体2には磁石支持リング3を回動させるための駆動装置を円周上に配設している。
【0004】
また、二列旋回方式のものは、例えば図8に示したように、軸受けケース1に固定支持されたアルミニウム等の非磁性体からなる支持体2に2つの磁石支持リングを設け、このうち一方を支持体2に固定支持、また、他方を軸受け4を介して回転が自在なように軸支し、これらの固定支持リング3a及び回動支持リング3bの外周面に、上下磁極面が回転軸5に対し直角方向の断面において円弧面をなす複数個の永久磁石6a,6bを等間隔に配設すると共に、これら固定支持リング3a及び回動支持リング3bに取着した各永久磁石6a,6b群の表面に対向して強磁性体からなるスイッチ板7の複数枚を非磁性体の支持部材を介して等間隔に円周配置して支持体2に一体に取着した構成である。そして、ロータ8を回転軸5に嵌着し、その円筒部8aを所定の空隙をもってスイッチ板7に対向させると共に、支持体2には回動支持リング3bを回動させるための駆動装置を円周上に配設している。
【0005】
このような永久磁石式の渦電流式減速装置にあっては、磁石支持リング3や回動支持リング3bの回動機構は、磁石支持リング3や回動支持リング3b側面から突出したヨークリンク9を介して、油圧シリンダやエアーシリンダ、電動モータなどの駆動源と連接したものなど多岐にわたるが、既設の圧縮エアー源を保有しているトラックやバスなどでは、上記圧縮エアーを利用するエアーシリンダ駆動の回動機構が多く用いられており、また、駆動用シリンダとしては複動型のものが多く用いられている。
【0006】
ところで、上記した駆動に要する力は、ロータとステータからなる磁気回路により発生する磁気的吸引力より大きな力が必要であり、シリンダ駆動では、制動OFFの状態から支持リングを回動し、制動ONの状態に保持し、その後に制動ONの状態から支持リングを回動し制動OFFの状態に保持するのに必要な所要力は、図6に示すように、支持リングの移動位置によって変化し、制動OFFから制動ONの状態に至る間で最大(F1max)となる。従って、シリンダにはF1max以上の所要力を有することが必要となる。
【0007】
一方、制動を解除するのに必要な力(F2max)は、上記した制動時に必要な所要力(F1max)よりも小さく、複動型シリンダによる構成では、制動解除時に圧縮エアーが必要以上に消費されている。
【0008】
このような複動型のエアーシリンダによる回動機構を備えた渦電流式減速装置を頻繁に作動させると、エアーの消費量が圧縮エアータンクヘのエアー供給量を上回る場合に圧縮エアー源のエアー圧力が低下し、渦電流式減速装置のON/OFF作動はもとより、車両各部の圧縮エアー使用部位での機能低下が生じ、車両の安定走行に支障をきたすことになる。
【0009】
従って、渦電流式減速装置の圧縮エアー消費量に見合うだけの大容量のエアータンク及びエアー供給装置を設けることが必要となり、コスト増並びに車両の軽量化を妨げる要因になっていた。
【0010】
そこで、本出願人はこのような問題を解消するため、二つの複動型シリンダのうちの片方のシリンダには制動解除時に圧縮エアーを供給せず、シリンダボディに大気解放ポートを設けることにより、制動解除時の圧縮エアーの消費量を抑えるものを特開平11−150936号で提案した。
【0011】
この場合には、図9に示したように、支持体(2)の円周上に2基配設したエアーシリンダ駆動装置10の一方のエアーシリンダ10bは複動型、他方のエアーシリンダ10aは実質的には単動型のエアーシリンダで、それぞれのピストンロツド10cの先端にはU字状のリンク支持金物11を取着し、これら夫々のリンク支持金物11で前記したヨークリンク9に回転が自在なように枢支したローラ12を抱持状に支持している。
【0012】
そして、それぞれのエアーシリンダ10a,10bのピストン側受圧室10aa,10ba側に設けられたポート10ab及び10bbからピストン側受圧室10aa,10baに圧縮エアーを供給してピストン10dを前進させると(図10参照)、ヨークリンク9を介して回動支持リング3bが一つのスイッチ板7に対向する固定側と回動側の2つの永久磁石6a、6bの極性が同一となる位置まで回動する。この状態では、円周方向に隣接する永久磁石6a、6b間には、隣接するスイッチ板7及びロータ8の円筒部8aの内周面を含めて、図11(b)に矢印で示すように、磁気回路が構成されていわゆる制動ON状態となり、前記した円筒部8aの内周面には渦電流現象が起こり、これによって制動トルクが発生し、その制動トルクに見合って車両は減速される。
【0013】
上記制動ONの状態から制動OFFに切り換える時は、前記したポート10ab及び10bbからピストン側受圧室10aa,10baの圧縮エアーを抜くと共に、複動型エアーシリンダ10bのロッド側受圧室10bc側に設けたポート10bdから複動型エアーシリンダ10bのロッド側受圧室10bcに圧縮エアーを供給すると、ピストン10dが後退し、ヨークリンク9を介して回動支持リング3bが図12に示すように一つのスイッチ板2に対向する固定側と回動側の2つの永久磁石6a、6bの極性が互いに逆となる位置に回動する。この状態では、一つのスイッチ板7とこれに対向する二つの永久磁石6a、6b間で、図12(a)に矢印で示すように、磁気回路が構成され、ロータ8の円筒部8aの内周面には永久磁石6a、6bから発生する磁束が作用しないので、渦電流は流れず制動トルクは発生しなくなって、いわゆる制動OFFの状態となる。
【0014】
なお、この際、単動型のエアーシリンダ10aではヨークリンク9を介してピストン10dが押し戻され、ロッド側受圧室10ac側に設けたポート10adからロッド側受圧室10acに大気が流入する。従って、前記ポート10adには外部から流入する空気を浄化するフィルター機構が内蔵されていて、吸気時に異物等を除去するようになっている。
【0015】
【発明が解決しようとする課題】
すなわち、従来の複動型エアーシリンダを備えた渦電流式減速装置では、エアー消責量が多く、大型・大容量の圧縮エアー源を設ける必要があり、車両の軽量化とコスト低減を果たすことができなかった。
【0016】
また、本出願人が特開平11−150936号において提案した大気開放ポートを備えた単動シリンダを組合わせることにより、圧縮エアーの消費を抑えるものでは、大気解放ポートにシリンダ内部への異物吸入を防止するためのフィルター機構を設ける必要があることから、これがコスト上昇の要因となっている。
【0017】
本発明は、上記した問題点に鑑みてなされたものであり、圧縮エアーの節減とコストダウンを可能とした渦電流式減速装置のON−OFF切換装置を提供することを目的としている。
【0018】
【課題を解決するための手段】
上記した目的を達成するために、本発明に係る渦電流式減速装置のON−OFF切換装置は、単動型エアーシリンダのロッド側受圧室に設けられた給排気ポートをシリンダのロッドブッシュに設け、複動型エアーシリンダのみでONからOFFへの切替えを行なうようにしている。そして、このようにすることで、シリンダ内部への異物吸入を防止するためのフィルター機構を設ける必要がなくなる。
【0019】
また、本発明に係る渦電流式減速装置のON−OFF切換装置は、回動支持リング或いは磁石支持リングを支持体に対し所定の角度回動するために、回動支持リング或いは磁石支持リングの対向する位置に配置した対を成す2個のエアーシリンダのうち、少なくとも一方のシリンダにリターンスプリングを内装して、ONからOFFへの切換をリターンスプリングのみ、或いは、リターンスプリングと複動型シリンダへの圧縮エアー供給によって行うようにすることとしている。そして、このようにすることで、制動ONの状態から制動OFFの状態への切換時、圧縮エアーによるシリンダの駆動力は不要となる。
【0020】
【発明の実施の形態】
本発明に係る第1の渦電流式減速装置のON−OFF切換装置は、回転軸に軸支した支持体に、複数の永久磁石を互いに極性を逆向きにして周設したヨーク用の固定支持リングと回動支持リングを並列配置し、これらの永久磁石群の外周磁極面に、互いに磁気的に絶縁した強磁性体製の複数のスイッチ板を対向配置した二列旋回方式の渦電流減速装置、或いは、回転軸に軸支した支持体に、複数の永久磁石を互いに極性を逆向きにして周設したヨーク用の磁石支持リングを回動自在に軸支し、これら永久磁石群の外周磁極面に、互いに磁気的に絶縁した強磁性体製の複数個のスイッチ板を対向配置した単列旋回方式の渦電流式減速装置の、前記回動支持リング或いは磁石支持リングを回動するために、回動支持リング或いは磁石支持リングの対向する位置に対を成す単動型と複動型の2個のエアーシリンダを配置したON−OFF切替え装置において、単動型エアーシリンダのロッド側受圧室に設けられた給排気ポートをシリンダのロッドブッシュに設け、複動型エアーシリンダのみでONからOFFへの切替えを行なうようにしたものである。
【0021】
本発明に係る第1の渦電流式減速装置のON−OFF切換装置は、単動型エアーシリンダのロッド側受圧室に設けられた給排気ポートをシリンダのロッドブッシュに設け、複動型エアーシリンダのみでONからOFFへの切替えを行なうようにしたので、制動ONの状態から制動OFFの状態への切換時、シリンダ内部に異物を吸入することがなく、フィルター機構を設ける必要がなくなる。
【0022】
また、本発明に係る第2の渦電流式減速装置のON−OFF切換装置は、回転軸に軸支した支持体に、複数の永久磁石を互いに極性を逆向きにして周設したヨーク用の固定支持リングと回動支持リングを並列配置し、これら永久磁石群の外周磁極面に、互いに磁気的に絶縁した強磁性体製の複数個のスイッチ板を対向配置した二列旋回方式の渦電流式減速装置、或いは、回転軸に軸支した支持体に、複数の永久磁石を互いに極性を逆向きにして周設したヨーク用の磁石支持リングを回動自在に軸支し、これら永久磁石群の外周磁極面に、互いに磁気的に絶縁した強磁性体製の複数個のスイッチ板を対向配置した単列旋回方式の渦電流式減速装置の、前記回動支持リング或いは磁石支持リングを支持体に対し所定の角度回動するために、回動支持リング或いは磁石支持リングの対向する位置に対を成す2個のエアーシリンダを配置したON−OFF切換装置において、少なくとも一方のシリンダにリターンスプリングを内装して、ONからOFFへの切換をリターンスプリングのみ、或いは、リターンスプリングと複動型シリンダへの圧縮エアー供給によって行うようにしたものである。
【0023】
本発明に係る第2の渦電流式減速装置のON−OFF切換装置は、対を成す2個のエアーシリンダの少なくとも一方のシリンダにリターンスプリングを内装して、ONからOFFへの切換をリターンスプリングのみ、或いは、リターンスプリングと複動型シリンダへの圧縮エアー供給によって行うようにしたので、制動OFFの状態からシリンダに圧縮エアーを供給し、ピストンを加圧してピストンを前進させ、リターンスプリングを圧縮した制動ONの状態からシリンダの圧縮エアーを抜くか、或いは、シリンダの圧縮エアーを抜き、複動型シリンダのロッド側受圧室に圧縮エアーを供給すると、リターンスプリングの反力、或いは、リターンスプリングの反力と複動型シリンダの駆動力でピストンがストロークδだけ押し戻され、この後は永久磁石群の制動OFFの状態へ戻ろうとする磁力だけで回動支持リング或いは磁石支持リングが回動し、制動OFFの位置に保持される。従って、制動ONの状態から制動OFFの状態への切換時には、圧縮エアーによるシリンダの駆動力は不要になるか、或いは、少なくてすむようになる。
【0024】
また、上記した本発明に係る第2の渦電流式減速装置のON−OFF切換装置において、単動型シリンダのロッド側受圧室に設けられた給排気ポートを渦電流式減速装置内部のシリンダのロッドブッシュに設けた場合には、上記した本発明に係る第1の渦電流式減速装置のON−OFF切換装置と同様、制動ONの状態から制動OFFの状態への切換時、シリンダ内部に異物を吸入することがないので、フィルター機構を設ける必要がなくなる。これが本発明に係る第3の渦電流式減速装置のON−OFF切換装置である。
【0025】
上記した本発明に係る第2或いは第3の渦電流式減速装置のON−OFF切換装置を備えた渦電流式減速装置のうち、
単動型シリンダのみによって回動支持リング或いは磁石支持リングを駆動する渦電流式減速装置において、リターンスプリングは、制動OFFの状態から最大所要力F1maxを必要とするストローク位置(図6におけるδ1 )までの間ではばねの反力が作用せず(図5におけるL1 ≧δ1 )、制動ONの位置から制動OFFに戻す際の所要力F2maxを必要とするストローク位置(図6におけるδ3 )においては、ばねの圧縮反力Fが前記所要力F2maxよりも大きくなるようなばね定数のものを、
また、単動型シリンダと複動型シリンダとで回動支持リング或いは磁石支持リングを駆動する渦電流式減速装置において、リターンスプリングは、制動OFFの状態から最大所要力F1maxを必要とするストローク位置までの間ではばねの反力が作用せず、制動ONの位置から制動OFFに戻す際の所要力F2maxを必要とするストローク位置においては、ばねの圧縮反力Fと複動型シリンダの複動時の駆動力を合せたものが前記所要力F2maxよりも大きくなるようなばね定数のものを採用した場合には、圧縮エアーの消費量を必要最小限に留めることが可能となる(図5参照)。
【0026】
【実施例】
以下、本発明に係る渦電流式減速装置のON−OFF切換装置を図1〜図4に示す実施例に基づいて説明する。
図1は本発明に係る渦電流式減速装置のON−OFF切換装置の第1実施例の概略構成図、図2は本発明に係る渦電流式減速装置のON−OFF切換装置の第2実施例の概略構成図、図3は本発明に係る渦電流式減速装置のON−OFF切換装置の第1実施例の正面図、図4は図3におけるエアーシリンダの構成を断面して示す図である。
【0027】
図1〜図4において、13は回動支持リング3bの回動操作を制御するための制御弁であり、例えば回動支持リング3bを回動自在に支持する支持体2に取付けたものである。この支持体2はアルミニウム等の非磁性体で形成され、例えばトランスミッションのケースに付設されている。
【0028】
このようにトランスミッションのケースに制御弁13を取付けた場合には、エアーシリンダ駆動装置10の一方のシリンダ10aや他方のシリンダ10bまでの距離が短くなって制御性が向上し、車体フレームと渦電流式減速装置間を接続するフレキシブルホース14も1本で良くなって、フレキシブルホース14同士の擦過や干渉に配慮することなく、フレキシブルホース14を配置することができる。
【0029】
ところで、本発明に係る渦電流式減速装置のON−OFF切換装置では、前記した制御弁13を介して圧縮エアーを供給される一方のシリンダ10a及び他方のシリンダ10bを、例えば図1に示したように、リターンスプリング15を内装した単動型シリンダとなして、制動ONからOFFへの切換をリターンスプリング15によって行うようにしたり、また、図2に示したように、一方のシリンダ10aをリターンスプリング15を内装した単動型シリンダと、他方のシリンダ10bをリターンスプリング15を内装した複動型シリンダとなし、制動ONからOFFへの切換を複動型シリンダへの圧縮エアー供給と単動型シリンダのリターンスプリング15によって行うようにしている。
【0030】
そして、これらのリターンスプリング15を内装したシリンダ10a,10bでは、制動ON時に発生する駆動力が図6示す制動ON時に必要な所要力の最大値Flmaxより大きいものが採用される。
【0031】
また、リターンスプリング15は、図1及び図2に示した実施例共に制動OFFの状態から最大所要力F1maxを必要とするストローク位置(図6におけるδ1 )までの間ではばねの反力が作用せず(図5におけるL1 ≧δ1 )、また、制動ONの位置から制動OFFに戻す際の所要力F2maxを必要とするストローク位置(図6におけるδ3 )においては、図1に示した実施例では、ばねの圧縮反力Fが前記所要力F2maxよりも大きくなるようなばね定数のものが、また、図2に示した実施例では、ばねの圧縮反力Fと複動型シリンダ10bの複動時の駆動力を合せたものが前記所要力F2maxよりも大きくなるようなばね定数のものが採用される。
【0032】
上記したような構成の両シリンダ10a,10bを採用した場合、図1及び図2に示す制動OFFの状態から、制御弁13を介して両シリンダ10a,10bのポート10ab,10bbからピストン側受圧室10aa,10baに圧縮空気を供給すると、ピストン10dが前進しヨークリンク9を介して回動支持リング3bを反時計周り方向に回動し、制動ONの状態となる。
【0033】
そして、この時、図1や図2に示した実施例のように、制動OFFの状態から最大所要力F1maxを必要とするストローク位置(図6におけるδ1 )までの間ではばねの反力が作用しないようなリターンスプリング15を採用した場合には、圧縮エアーの消費量を必要最小限に留めることが可能になる。
【0034】
この制動ONの状態から制動OFFに切り換える時は、図1に示した実施例では、ポート10ab,10bbからピストン側受圧室10aa,10baの圧縮エアーを抜くと、制動ON時にピストン10dで圧縮状態に保持されていたリターンスプリング15の反力によりピストン10dがストロークδ(図5参照)だけ後退し、その後は永久磁石6a,6bの吸引力により回動して制動OFFの状態になる。
【0035】
また、図2に示した実施例では、制動ONの状態から他方の複動型シリンダ10bのポート10bdからロッド側受圧室10bcに圧縮エアーを供給しつつ、一方の単動型シリンダ10aのポート10abからピストン側受圧室10aaの圧縮エアーを抜くと、ポート10bdからロッド側受圧室10bcに供給した圧縮エアー及び制動ON時にピストン10dで圧縮状態に保持されていた複動型シリンダ10bのリターンスプリング15の反力と、制動ON時にピストン10dで圧縮状態に保持されていた単動型シリンダ10aのリターンスプリング15の反力によりピストン10dがストロークδ(図5参照)だけ後退し、その後は永久磁石6a,6bの吸引力により回動して制動OFFの状態になる。
【0036】
そして、図4に示したように、図1に示した実施例では、単動型シリンダ10a,10bのロッド側受圧室10ac,10bcのポート10ab,10bdを、また、図2に示した実施例では、単動型シリンダ10aのロッド側受圧室10acのポート10abを、シリンダのロッドブッシュに設けているので、制動ON/OFF切換時、このロッドブシュに設けたポート10ab,10bdからロッド側受圧室10ac,10bcと装置内部との間で給排気がなされることになって、制動ONの状態から制動OFFの状態への切換時、シリンダ内部に異物を吸入することがなくなる。
【0037】
本実施例では二列旋回方式の渦電流式減速装置について説明したが、単列旋回方式の渦電流式減速装置にも適用可能であることは言うまでもない。
また、本実施例では、請求項5及び請求項6に相当するものについて説明したが、請求項5及び請求項6に相当するばね定数のリターンスプリングを採用しなくても、エアー消費量は多くなるものの、従来の渦電流式減速装置のエアー消費量よりは減少することは言うまでもない。
さらに、単動型と複動型シリンダにおけるリターンスプリングの内装状態の組み合わせも、図1や図2に示した実施例に限らないことは言うまでもない。
【0038】
また、本実施例では、単動型シリンダのリターンスプリングを内装した側の給排気ポートをシリンダのロッドブッシュに設け、フィルター機構を省略したものを示したが、大気に開放したものでも圧縮エアー消費量の減少効果は有する。また反対に、シリンダにリターンスプリングを内装せず、単動型シリンダのロッド側受圧室に設けられた給排気ポートをシリンダのロッドブッシュに設け、複動型シリンダのみでONからOFFへの切替えを行なうようにしたものでも、フィルター機構を省略できるという効果を有することは言うまでもない。
【0039】
【発明の効果】
以上説明したように、本発明では、単動型シリンダのロッド側受圧室に設けられた給排気ポートをシリンダのロッドブッシュに設けることにより、外部との給排気を不要とし、フィルター機構を省略することによって、コストの低減を図ることができる。また、制動ONから制動OFFへの切換えは、初期ストロークδを除いた残りのストロークを永久磁石の磁力により行ない、上記切換えの初期ストロークδを動かすのに必要な駆動力をばねの反力又はばねの反力と一部に設けた複動シリンダの複動時の駆動力でまかなうことにより、制動ON/OFF時の圧縮エアーの消費量の低減を図ることができる。従って、車両に既設の小容量エアー源を変更することもなくなる。
【図面の簡単な説明】
【図1】本発明に係る渦電流式減速装置のON−OFF切換装置の第1実施例の概略構成図である。
【図2】本発明に係る渦電流式減速装置のON−OFF切換装置の第2実施例の概略構成図である。
【図3】本発明に係る渦電流式減速装置のON−OFF切換装置の第1実施例の正面図である。
【図4】図3におけるエアーシリンダの構成を断面して示す図である。
【図5】本発明に係る渦電流式減速装置のON−OFF切換装置に使用するリターンスプリングの説明図で、(a)はピストンロッドが退入した位置、(b)はピストンロッドが突出した位置、(c)はシリンダのストロークとリターンスプリングのばね反力の関係を示した図である。
【図6】渦電流式減速装置のON−OFF切換装置におけるシリンダ所要力とストロークの関係を説明した図である。
【図7】単列旋回方式渦電流式減速装置の構造説明図である。
【図8】二列旋回方式渦電流式減速装置の構造説明図である。
【図9】従来の二列旋回方式渦電流式減速装置のON−OFF切換装置の正面図である。
【図10】図8のON−OFF切換装置に使用したシリンダの構造を説明する図である。
【図11】永久磁石式渦電流減速装置の制動ON状態における制動原理の説明図で、(a)は縦断面側面図、(b)は縦断面正面図である。
【図12】永久磁石式渦電流減速装置の制動OFF状態における制動原理の説明図で、(a)は縦断面側面図、(b)は縦断面正面図である。
【符号の説明】
3b 回動支持リング
6b 永久磁石
10a シリンダ
10ad ポート
10b シリンダ
10bd ポート
15 リターンスプリング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ON-OFF switching device for an eddy current type reduction gear attached to a large vehicle such as a bus or a truck as a braking assist device.
[0002]
[Prior art]
In recent years, for large vehicles such as buses and trucks, for the purpose of reducing the number of times of use of foot brakes on downhill roads, preventing abnormal lining wear and fading, and shortening the braking stop distance, In addition to the foot brake, which is the main brake, and the exhaust brake, which is the auxiliary brake, eddy current speed reducers have been installed. In recent years, there have been an increasing number of eddy current reduction devices that use permanent magnets as magnetic poles and do not need to be energized during braking, as disclosed in JP-A-1-298948.
[0003]
At present, many of the permanent magnet type eddy current type speed reducers are employed in a single row swiveling method and a double row swiveling method.
Of these, the single-row swivel type has a magnet support ring 3 attached to a support 2 made of a nonmagnetic material such as aluminum fixedly supported on a bearing case 1 via a bearing 4 as shown in FIG. A plurality of permanent magnets 6 that are pivotally supported and have a circular arc surface in a cross section perpendicular to the rotary shaft 5 are arranged at equal intervals on the outer peripheral surface of the magnet support ring 3. A plurality of switch plates 7 made of a ferromagnetic material are circumferentially arranged at equal intervals through a nonmagnetic support member so as to face the surface of each group of permanent magnets 6 attached to the magnet support ring 3. It is the structure attached to the support body 2 integrally. Then, the rotor 8 is fitted to the rotary shaft 5, and the cylindrical portion 8 a is opposed to the switch plate 7 with a predetermined gap, and the support body 2 is provided with a drive device for rotating the magnet support ring 3. Arranged above.
[0004]
Further, in the two-row swivel type, for example, as shown in FIG. 8, two magnet support rings are provided on a support 2 made of a non-magnetic material such as aluminum fixedly supported on a bearing case 1, and one of them is provided. Is fixedly supported by the support 2 and the other is pivotally supported via a bearing 4 so that the upper and lower magnetic pole surfaces are rotated on the outer peripheral surfaces of the fixed support ring 3a and the rotation support ring 3b. A plurality of permanent magnets 6a, 6b having a circular arc surface in a cross section perpendicular to 5 are arranged at equal intervals, and the permanent magnets 6a, 6b attached to the fixed support ring 3a and the rotation support ring 3b are arranged. A plurality of switch plates 7 made of a ferromagnetic material are arranged circumferentially at equal intervals through a nonmagnetic support member so as to face the surface of the group, and are integrally attached to the support body 2. Then, the rotor 8 is fitted to the rotary shaft 5, and the cylindrical portion 8 a is opposed to the switch plate 7 with a predetermined gap, and the support body 2 is provided with a drive device for rotating the rotation support ring 3 b. It is arranged on the circumference.
[0005]
In such a permanent magnet type eddy current reduction device, the rotation mechanism of the magnet support ring 3 or the rotation support ring 3b is the yoke link 9 protruding from the side surface of the magnet support ring 3 or the rotation support ring 3b. There are various types such as those connected to drive sources such as hydraulic cylinders, air cylinders, electric motors, etc., but in the trucks and buses etc. that have existing compressed air sources, air cylinder drive that uses the above compressed air And a double-acting type is often used as the drive cylinder.
[0006]
By the way, the force required for the driving described above requires a force larger than the magnetic attraction generated by the magnetic circuit composed of the rotor and the stator. In cylinder driving, the support ring is rotated from the brake OFF state, and the brake is turned ON. , And then the required force required to rotate the support ring from the brake-on state and hold it in the brake-off state varies depending on the movement position of the support ring, as shown in FIG. The maximum (F1max) is reached during the period from braking OFF to braking ON. Therefore, the cylinder needs to have a required force of F1max or more.
[0007]
On the other hand, the force (F2max) required to release the brake is smaller than the required force (F1max) required for braking as described above, and in the double-acting cylinder configuration, compressed air is consumed more than necessary when releasing the brake. ing.
[0008]
When the eddy current type speed reducer equipped with such a double-acting air cylinder is operated frequently, the air pressure of the compressed air source is increased when the air consumption exceeds the air supply to the compressed air tank. In addition to the ON / OFF operation of the eddy current type speed reducer, the function of the parts of the vehicle where compressed air is used is reduced, which hinders stable running of the vehicle.
[0009]
Therefore, it is necessary to provide an air tank and an air supply device having a large capacity corresponding to the compressed air consumption of the eddy current type reduction gear, which has been a factor that hinders cost increase and weight reduction of the vehicle.
[0010]
Therefore, in order to solve such a problem, the present applicant does not supply compressed air to one of the two double-acting cylinders when releasing the brake, and provides an air release port in the cylinder body. Japanese Patent Application Laid-Open No. 11-150936 has proposed a method for reducing the consumption of compressed air when braking is released.
[0011]
In this case, as shown in FIG. 9, one air cylinder 10b of the air cylinder driving device 10 provided on the circumference of the support (2) is double-acting, and the other air cylinder 10a is It is substantially a single-acting air cylinder, and a U-shaped link support metal 11 is attached to the tip of each piston rod 10c, and the yoke link 9 can be freely rotated by each link support metal 11. Thus, the roller 12 that is pivotally supported is supported in a holding shape.
[0012]
Then, when compressed air is supplied to the piston side pressure receiving chambers 10aa and 10ba from the ports 10ab and 10bb provided on the piston side pressure receiving chambers 10aa and 10ba of the air cylinders 10a and 10b, the piston 10d is advanced (FIG. 10). The rotation support ring 3b is rotated to a position where the polarities of the two permanent magnets 6a and 6b on the fixed side and the rotation side facing the one switch plate 7 are the same via the yoke link 9. In this state, as shown by an arrow in FIG. 11B, including the adjacent switch plate 7 and the inner peripheral surface of the cylindrical portion 8a of the rotor 8 between the permanent magnets 6a and 6b adjacent in the circumferential direction. Then, the magnetic circuit is configured to be in a so-called braking ON state, and an eddy current phenomenon occurs on the inner peripheral surface of the cylindrical portion 8a, whereby a braking torque is generated, and the vehicle is decelerated in accordance with the braking torque.
[0013]
When switching from the brake-on state to the brake-off state, the compressed air from the piston-side pressure receiving chambers 10aa and 10ba is removed from the ports 10ab and 10bb, and the double-acting air cylinder 10b is provided on the rod-side pressure receiving chamber 10bc side. When compressed air is supplied from the port 10bd to the rod-side pressure receiving chamber 10bc of the double-acting air cylinder 10b, the piston 10d moves backward, and the rotation support ring 3b is connected to one switch plate via the yoke link 9 as shown in FIG. 2 is rotated to a position where the polarities of the two permanent magnets 6a and 6b on the fixed side and the rotating side opposite to 2 are opposite to each other. In this state, a magnetic circuit is formed between one switch plate 7 and the two permanent magnets 6a and 6b facing the switch plate 7 as shown by arrows in FIG. Since the magnetic flux generated from the permanent magnets 6a and 6b does not act on the peripheral surface, eddy current does not flow and braking torque is not generated, so that a so-called braking OFF state is established.
[0014]
At this time, in the single-acting air cylinder 10a, the piston 10d is pushed back through the yoke link 9, and the air flows into the rod-side pressure receiving chamber 10ac from the port 10ad provided on the rod-side pressure receiving chamber 10ac side. Therefore, the port 10ad has a built-in filter mechanism for purifying air flowing in from the outside, and removes foreign matters and the like during intake.
[0015]
[Problems to be solved by the invention]
That is, the conventional eddy current type speed reducer equipped with a double-acting air cylinder requires a large amount of air consumption and a large-sized and large-capacity compressed air source, which reduces the weight and cost of the vehicle. I could not.
[0016]
In addition, in combination with a single-acting cylinder having an air release port proposed by the present applicant in Japanese Patent Application Laid-Open No. 11-150936, in order to suppress the consumption of compressed air, the air release port allows foreign matter to be sucked into the cylinder. Since it is necessary to provide a filter mechanism for preventing this, this is a cause of cost increase.
[0017]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an ON-OFF switching device for an eddy current type speed reducer capable of reducing compressed air and reducing costs.
[0018]
[Means for Solving the Problems]
In order to achieve the above object, an ON / OFF switching device for an eddy current type speed reducer according to the present invention is provided with a supply / exhaust port provided in a rod side pressure receiving chamber of a single acting type air cylinder in a rod bush of the cylinder. The switching from ON to OFF is performed only with the double-acting air cylinder. In this way, it is not necessary to provide a filter mechanism for preventing foreign matter from being sucked into the cylinder.
[0019]
Further, the ON / OFF switching device of the eddy current type speed reducer according to the present invention includes a rotation support ring or a magnet support ring for rotating the rotation support ring or the magnet support ring by a predetermined angle with respect to the support. At least one of the two air cylinders in a pair arranged at opposing positions is equipped with a return spring, and switching from ON to OFF is only a return spring or a return spring and a double-acting cylinder This is done by supplying compressed air. In this way, when switching from the brake-on state to the brake-off state, the cylinder driving force by compressed air becomes unnecessary.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The ON / OFF switching device of the first eddy current type speed reducer according to the present invention is a fixed support for a yoke in which a plurality of permanent magnets are provided around a support that is pivotally supported on a rotating shaft so that their polarities are opposite to each other. Two-row swirl type eddy current reduction device in which a ring and a rotation support ring are arranged in parallel, and a plurality of ferromagnetic ferromagnetic switch plates are arranged opposite to each other on the outer peripheral magnetic pole surface of these permanent magnet groups Alternatively, a magnet support ring for a yoke, in which a plurality of permanent magnets are provided with their polarities opposite to each other, are rotatably supported on a support that is supported by a rotating shaft, and the outer peripheral magnetic poles of these permanent magnets In order to rotate the rotating support ring or the magnet supporting ring of the single row rotating type eddy current type speed reducer in which a plurality of switch plates made of ferromagnetic materials which are magnetically insulated from each other are arranged on the surface. , Rotation support ring or magnet support ring In an ON-OFF switching device in which two air cylinders, a single-acting type and a double-acting type, that are paired at the positions facing each other are arranged, the supply / exhaust port provided in the rod-side pressure receiving chamber of the single-acting air cylinder is connected to the cylinder It is provided on the rod bush and is switched from ON to OFF only with a double-acting air cylinder.
[0021]
An ON-OFF switching device for a first eddy current type speed reducer according to the present invention is provided with a supply / exhaust port provided in a rod side pressure receiving chamber of a single acting type air cylinder in a rod bush of the cylinder, and a double acting type air cylinder Since the switching from the ON state to the OFF state is performed only by this, when switching from the braking ON state to the braking OFF state, foreign matter is not sucked into the cylinder, and there is no need to provide a filter mechanism.
[0022]
Moreover, the ON / OFF switching device of the second eddy current type speed reducer according to the present invention is for a yoke in which a plurality of permanent magnets are circumferentially arranged with their polarities opposite to each other on a support that is pivotally supported on a rotating shaft. Two-row swirl type eddy current in which a fixed support ring and a rotating support ring are arranged in parallel, and a plurality of ferromagnetic magnetic switch plates are arranged opposite to each other on the outer peripheral magnetic pole surface of the permanent magnet group A magnet support ring for a yoke, in which a plurality of permanent magnets are provided with their polarities opposite to each other, are pivotally supported on a support that is pivotally supported on a rotary shaft, and these permanent magnet groups The rotating support ring or the magnet support ring of the single row swirl type eddy current reduction device in which a plurality of ferromagnetic magnetic switch plates are arranged opposite to each other on the outer peripheral magnetic pole surface In order to rotate at a predetermined angle with respect to In an ON-OFF switching device in which two air cylinders that form a pair are arranged at opposite positions of a ring or a magnet support ring, at least one of the cylinders is equipped with a return spring, and only the return spring is switched from ON to OFF. Alternatively, it is performed by supplying compressed air to the return spring and the double acting cylinder.
[0023]
The ON / OFF switching device of the second eddy current type speed reducer according to the present invention has a return spring built into at least one of the paired air cylinders, and switching from ON to OFF is a return spring. Only, or by supplying compressed air to the return spring and the double-acting cylinder, supply compressed air to the cylinder from the brake OFF state, pressurize the piston to advance the piston, and compress the return spring If the compressed air of the cylinder is released from the brake ON state, or the compressed air of the cylinder is extracted and the compressed air is supplied to the rod side pressure receiving chamber of the double acting cylinder, the reaction force of the return spring or the return spring The piston is pushed back by the stroke δ by the reaction force and the driving force of the double-acting cylinder. Just turning the support ring or the magnet support ring force of returning to the state of the brake OFF permanent magnet group is rotated and held in position in the brake OFF. Therefore, when switching from the brake-on state to the brake-off state, the driving force of the cylinder by the compressed air becomes unnecessary or can be reduced.
[0024]
In the ON / OFF switching device of the second eddy current type speed reducer according to the present invention described above, the air supply / exhaust port provided in the rod side pressure receiving chamber of the single acting cylinder is connected to the cylinder inside the eddy current type speed reducer. When it is provided on the rod bushing, as in the above-described ON-OFF switching device of the first eddy current type speed reducer according to the present invention, the foreign matter inside the cylinder is switched from the braking ON state to the braking OFF state. Therefore, it is not necessary to provide a filter mechanism. This is the ON-OFF switching device of the third eddy current type speed reducer according to the present invention.
[0025]
Among the above-described eddy current type reduction gears comprising the ON-OFF switching device of the second or third eddy current type reduction gears according to the present invention,
In an eddy current type speed reducer that drives a rotating support ring or a magnet support ring only by a single-acting cylinder, the return spring extends from the brake OFF state to the stroke position (δ1 in FIG. 6) that requires the maximum required force F1max. The reaction force of the spring does not act during the period (L1 ≧ δ1 in FIG. 5), and at the stroke position (δ3 in FIG. 6) that requires the required force F2max when returning from the brake ON position to the brake OFF, the spring The spring constant is such that the compression reaction force F is greater than the required force F2max.
Further, in an eddy current type speed reducer in which a single-acting cylinder and a double-acting cylinder drive a rotational support ring or a magnet support ring, the return spring is a stroke position that requires the maximum required force F1max from the state of braking OFF. In the stroke position where the reaction force of the spring does not act until the stroke is required and the required force F2max for returning from the brake ON position to the brake OFF is required, the double-acting cylinder double action When a spring constant is used in which the combined driving force is greater than the required force F2max, the consumption of compressed air can be kept to a minimum (see FIG. 5). ).
[0026]
【Example】
Hereinafter, an ON-OFF switching device of an eddy current type speed reducer according to the present invention will be described based on an embodiment shown in FIGS.
FIG. 1 is a schematic configuration diagram of a first embodiment of an ON-OFF switching device for an eddy current type reduction gear according to the present invention, and FIG. 2 is a second embodiment of the ON-OFF switching device for an eddy current type speed reduction device according to the present invention. FIG. 3 is a front view of the first embodiment of the ON-OFF switching device of the eddy current type speed reducer according to the present invention, and FIG. 4 is a cross-sectional view showing the structure of the air cylinder in FIG. is there.
[0027]
1 to 4, reference numeral 13 denotes a control valve for controlling the rotation operation of the rotation support ring 3 b, which is attached to a support body 2 that rotatably supports the rotation support ring 3 b, for example. . The support 2 is made of a nonmagnetic material such as aluminum, and is attached to a transmission case, for example.
[0028]
When the control valve 13 is attached to the transmission case in this way, the distance to the one cylinder 10a and the other cylinder 10b of the air cylinder driving device 10 is shortened, and the controllability is improved. The number of the flexible hose 14 that connects the two types of speed reducers may be one, and the flexible hose 14 can be disposed without considering the friction or interference between the flexible hoses 14.
[0029]
By the way, in the ON / OFF switching device of the eddy current type speed reducer according to the present invention, one cylinder 10a and the other cylinder 10b supplied with compressed air via the control valve 13 are shown in FIG. Thus, the return spring 15 is provided as a single-acting cylinder so that the brake is switched from ON to OFF by the return spring 15, or one cylinder 10a is returned as shown in FIG. A single-acting cylinder with a spring 15 and a double-acting cylinder with a return spring 15 in the other cylinder 10b, and switching from braking ON to OFF with compressed air supply to the double-acting cylinder and a single-acting cylinder This is done by a return spring 15 of the cylinder.
[0030]
In the cylinders 10a and 10b in which the return springs 15 are housed, the driving force generated when the brake is turned on is larger than the maximum required value Flmax required when the brake is turned on as shown in FIG.
[0031]
Further, in the embodiment shown in FIGS. 1 and 2, the return spring 15 is not subjected to the reaction force of the spring from the braking OFF state to the stroke position (δ1 in FIG. 6) that requires the maximum required force F1max. 1 (L1 ≧ δ1 in FIG. 5), and at the stroke position (δ3 in FIG. 6) that requires the required force F2max when returning from the brake ON position to the brake OFF, in the embodiment shown in FIG. In the embodiment shown in FIG. 2, the compression reaction force F of the spring and the double-action cylinder 10b are double-acting so that the compression reaction force F of the spring is larger than the required force F2max. A spring constant is used such that the combined driving force is greater than the required force F2max.
[0032]
When the two cylinders 10a and 10b having the above-described configuration are employed, the piston-side pressure receiving chambers from the ports 10ab and 10bb of the cylinders 10a and 10b through the control valve 13 from the brake OFF state shown in FIGS. When compressed air is supplied to 10aa and 10ba, the piston 10d moves forward, and the rotation support ring 3b is rotated counterclockwise via the yoke link 9, and the brake is turned on.
[0033]
At this time, as in the embodiment shown in FIGS. 1 and 2, the reaction force of the spring acts between the brake OFF state and the stroke position (δ1 in FIG. 6) that requires the maximum required force F1max. When the return spring 15 is used, the consumption of compressed air can be kept to the minimum necessary.
[0034]
When switching from the brake-on state to the brake-off state, in the embodiment shown in FIG. 1, if the compressed air in the piston-side pressure receiving chambers 10aa, 10ba is removed from the ports 10ab, 10bb, the piston 10d is compressed by the piston 10d when the brake is on. The piston 10d is retracted by the stroke δ (see FIG. 5) due to the reaction force of the return spring 15 held, and thereafter, the piston 10d is rotated by the attractive force of the permanent magnets 6a and 6b to be in a braking OFF state.
[0035]
In the embodiment shown in FIG. 2, the compressed air is supplied from the port 10bd of the other double-acting cylinder 10b to the rod-side pressure receiving chamber 10bc from the brake-on state, while the port 10ab of one single-acting cylinder 10a. When the compressed air from the piston side pressure receiving chamber 10aa is removed from the compressed air supplied from the port 10bd to the rod side pressure receiving chamber 10bc and the return spring 15 of the double acting cylinder 10b held in the compressed state by the piston 10d when braking is ON. Due to the reaction force and the reaction force of the return spring 15 of the single acting cylinder 10a held in the compressed state by the piston 10d when braking is turned on, the piston 10d moves backward by the stroke δ (see FIG. 5), and thereafter the permanent magnets 6a, The brake is turned off by rotating by the suction force 6b.
[0036]
As shown in FIG. 4, in the embodiment shown in FIG. 1, the ports 10ab and 10bd of the rod-side pressure receiving chambers 10ac and 10bc of the single acting cylinders 10a and 10b are used, and the embodiment shown in FIG. Then, since the port 10ab of the rod side pressure receiving chamber 10ac of the single acting cylinder 10a is provided in the rod bush of the cylinder, the rod side pressure receiving chamber 10ac from the ports 10ab and 10bd provided in this rod bush at the time of braking ON / OFF switching. , 10bc and the inside of the apparatus are supplied and exhausted, so that foreign matter is not sucked into the cylinder when switching from the brake-on state to the brake-off state.
[0037]
In the present embodiment, the two-row swirling type eddy current type reduction gear has been described, but it goes without saying that the present invention can also be applied to a single row swirling type eddy current type reduction gear.
Further, in the present embodiment, the one corresponding to claim 5 and claim 6 has been described, but even if the return spring having the spring constant corresponding to claim 5 and claim 6 is not adopted, the air consumption is large. However, it goes without saying that the air consumption of the conventional eddy current reduction device is reduced.
Furthermore, it goes without saying that the combination of the return springs in the single-acting type and double-acting type cylinders is not limited to the embodiment shown in FIGS.
[0038]
In this embodiment, the air supply / exhaust port on the side of the return spring of the single acting cylinder is provided in the rod bush of the cylinder, and the filter mechanism is omitted. It has the effect of reducing the amount. On the other hand, the cylinder is not equipped with a return spring, and the air supply / exhaust port provided in the rod-side pressure receiving chamber of the single-acting cylinder is provided in the rod bush of the cylinder, so that switching from ON to OFF is possible only with the double-acting cylinder. Needless to say, even if it is performed, the filter mechanism can be omitted.
[0039]
【The invention's effect】
As described above, according to the present invention, the supply / exhaust port provided in the rod side pressure receiving chamber of the single acting cylinder is provided in the rod bush of the cylinder, thereby eliminating the need for external supply and exhaust and omitting the filter mechanism. As a result, the cost can be reduced. Further, switching from braking ON to braking OFF is performed by the remaining stroke excluding the initial stroke δ by the magnetic force of the permanent magnet, and the driving force required to move the initial stroke δ of the switching is set as the reaction force of the spring or the spring. The amount of compressed air consumed during braking ON / OFF can be reduced by using the reaction force and the driving force at the time of double action of the double action cylinder provided in part. Therefore, the existing small capacity air source in the vehicle is not changed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a first embodiment of an ON-OFF switching device for an eddy current type speed reducer according to the present invention.
FIG. 2 is a schematic configuration diagram of a second embodiment of the ON-OFF switching device of the eddy current reduction device according to the present invention.
FIG. 3 is a front view of the first embodiment of the ON-OFF switching device of the eddy current type speed reducer according to the present invention.
4 is a cross-sectional view showing the configuration of the air cylinder in FIG. 3. FIG.
FIGS. 5A and 5B are explanatory views of a return spring used in the ON / OFF switching device of the eddy current type speed reducer according to the present invention. FIG. 5A is a position where the piston rod is retracted, and FIG. Position (c) is a diagram showing the relationship between the stroke of the cylinder and the spring reaction force of the return spring.
FIG. 6 is a diagram illustrating a relationship between a required cylinder force and a stroke in an ON / OFF switching device of an eddy current type reduction gear.
FIG. 7 is an explanatory diagram of the structure of a single-row swirl type eddy current type speed reducer.
FIG. 8 is an explanatory diagram of the structure of a two-row swirl type eddy current type speed reducer.
FIG. 9 is a front view of an ON-OFF switching device of a conventional two-row swirl type eddy current type speed reducer.
10 is a view for explaining the structure of a cylinder used in the ON-OFF switching device of FIG. 8;
FIGS. 11A and 11B are explanatory views of a braking principle in the braking ON state of the permanent magnet type eddy current reduction device, where FIG. 11A is a longitudinal sectional side view, and FIG. 11B is a longitudinal sectional front view;
FIGS. 12A and 12B are explanatory views of a braking principle in a braking OFF state of the permanent magnet type eddy current reduction device, where FIG. 12A is a longitudinal sectional side view, and FIG. 12B is a longitudinal sectional front view;
[Explanation of symbols]
3b Rotating support ring 6b Permanent magnet 10a Cylinder 10ad Port 10b Cylinder 10bd Port 15 Return spring

Claims (6)

回転軸に軸支した支持体に、複数の永久磁石を互いに極性を逆向きにして周設したヨーク用の固定支持リングと回動支持リングを並列配置し、これらの永久磁石群の外周磁極面に、互いに磁気的に絶縁した強磁性体製の複数のスイッチ板を対向配置した二列旋回方式の渦電流減速装置、或いは、回転軸に軸支した支持体に、複数の永久磁石を互いに極性を逆向きにして周設したヨーク用の磁石支持リングを回動自在に軸支し、これら永久磁石群の外周磁極面に、互いに磁気的に絶縁した強磁性体製の複数個のスイッチ板を対向配置した単列旋回方式の渦電流式減速装置の、前記回動支持リング或いは磁石支持リングを回動するために、回動支持リング或いは磁石支持リングの対向する位置に対を成す単動型と複動型の2個のエアーシリンダを配置したON−OFF切替え装置において、単動型エアーシリンダのロッド側受圧室に設けられた給排気ポートをシリンダのロッドブッシュに設け、複動型エアーシリンダのみでONからOFFへの切替えを行なうようにしたことを特徴とする渦電流減速装置のON−OFF切替え装置。A fixed support ring for a yoke and a rotation support ring, in which a plurality of permanent magnets are provided with their polarities opposite to each other, are arranged in parallel on a support that is pivotally supported on a rotating shaft, and the outer peripheral magnetic pole surface of these permanent magnet groups In addition, a plurality of permanent magnets are mutually polarized on a two-row swivel eddy current reduction device in which a plurality of magnetically insulated ferromagnetic switch plates are arranged opposite to each other, or on a support that is pivotally supported on a rotating shaft. The magnet support ring for the yoke, which is provided in the opposite direction, is pivotally supported, and a plurality of switch plates made of a ferromagnetic material that are magnetically insulated from each other are provided on the outer peripheral magnetic pole surface of the permanent magnet group. A single-acting type of a single-row swivel type eddy current type reduction device arranged opposite to each other, wherein the rotation support ring or the magnet support ring is paired with each other in order to rotate the rotation support ring or the magnet support ring. And two double acting air cylinders In the installed ON-OFF switching device, the air supply / exhaust port provided in the rod side pressure receiving chamber of the single-acting air cylinder is provided in the rod bush of the cylinder, and switching from ON to OFF is performed only with the double-acting air cylinder. An ON-OFF switching device for an eddy current speed reducing device. 回転軸に軸支した支持体に、複数の永久磁石を互いに極性を逆向きにして周設したヨーク用の固定支持リングと回動支持リングを並列配置し、これらの永久磁石群の外周磁極面に、互いに磁気的に絶縁した強磁性体製の複数のスイッチ板を対向配置した二列旋回方式の渦電流式減速装置の、前記回動支持リングを支持体に対し所定の角度回動するために、回動支持リングの対向する位置に対を成す2個のエアーシリンダを配置したON−OFF切換装置において、少なくとも一方のシリンダにリターンスプリングを内装して、ONからOFFへの切換をリターンスプリングのみ、或いは、リターンスプリングと複動型シリンダへの圧縮エアー供給によって行うようにしたことを特徴とする渦電流式減速装置のON−OFF切換装置。A fixed support ring for a yoke and a rotation support ring, in which a plurality of permanent magnets are provided with their polarities opposite to each other, are arranged in parallel on a support that is pivotally supported on a rotating shaft, and the outer peripheral magnetic pole surface of these permanent magnet groups In addition, in order to rotate the rotation support ring at a predetermined angle with respect to the support, in a two-row swing type eddy current type reduction device in which a plurality of switch plates made of ferromagnetic materials magnetically insulated from each other are arranged to face each other In addition, in an ON-OFF switching device in which two air cylinders that form a pair are arranged at opposite positions of the rotation support ring, at least one of the cylinders is provided with a return spring, and switching from ON to OFF is performed as a return spring. Or an ON-OFF switching device for an eddy current type speed reducer, which is performed by supplying compressed air to a return spring and a double-acting cylinder. 回転軸に軸支した支持体に、複数の永久磁石を互いに極性を逆向きにして周設したヨーク用の磁石支持リングを回動自在に軸支し、これら永久磁石群の外周磁極面に、互いに磁気的に絶縁した強磁性体製の複数個のスイッチ板を対向配置した単列旋回方式の渦電流式減速装置の、前記磁石支持リングを支持体に対し所定の角度の回動するために、磁石支持リングの対向する位置に対を成す2個のエアーシリンダを配置したON−OFF切換装置において、少なくとも一方のシリンダにリターンスプリングを内装して、ONからOFFへの切換をリターンスプリングのみ、或いは、リターンスプリングと複動型シリンダへの圧縮エアー供給によって行うようにしたことを特徴とする渦電流式減速装置のON−OFF切換装置。A magnet support ring for a yoke, in which a plurality of permanent magnets are circumferentially arranged with their polarities opposite to each other, is pivotally supported on a support that is pivotally supported on a rotating shaft, and the outer peripheral magnetic pole surfaces of these permanent magnet groups are To rotate the magnet support ring at a predetermined angle with respect to the support in a single-row swivel type eddy current type speed reducer in which a plurality of switch plates made of ferromagnetic materials magnetically insulated from each other are arranged to face each other In the ON-OFF switching device in which two air cylinders that form a pair are arranged at opposing positions of the magnet support ring, at least one of the cylinders is provided with a return spring, and switching from ON to OFF is performed only for the return spring. Alternatively, an ON-OFF switching device for an eddy current type speed reducer, characterized in that it is carried out by supplying compressed air to a return spring and a double acting cylinder. 単動型シリンダのロッド側受圧室に設けられた給排気ポートをシリンダのロッドブッシュに設けたことを特徴とする請求項2又は3記載の渦電流式減速装置のON−OFF切換装置。4. An ON / OFF switching device for an eddy current type speed reducer according to claim 2, wherein a supply / exhaust port provided in the rod side pressure receiving chamber of the single acting cylinder is provided in the rod bush of the cylinder. 請求項2〜4の何れか記載のON−OFF切換装置を備えた渦電流式減速装置のうち、単動型シリンダのみによって回動支持リング或いは磁石支持リングを駆動する渦電流式減速装置において、リターンスプリングは、制動OFFの状態から最大所要力F1maxを必要とするストローク位置までの間ではばねの反力が作用せず、制動ONの位置から制動OFFに戻す際の所要力F2maxを必要とするストローク位置においては、ばねの圧縮反力Fが前記所要力F2maxよりも大きくなるようなばね定数であることを特徴とする渦電流式減速装置のON−OFF切換装置。Of the eddy current type reduction gears comprising the ON-OFF switching device according to any one of claims 2 to 4, in the eddy current type reduction gears that drive the rotation support ring or the magnet support ring only by the single-acting cylinder, In the return spring, the reaction force of the spring does not act between the brake OFF state and the stroke position that requires the maximum required force F1max, and the required force F2max for returning from the brake ON position to the brake OFF is required. An ON-OFF switching device for an eddy current type speed reducer characterized by having a spring constant such that the compression reaction force F of the spring is larger than the required force F2max at the stroke position. 請求項2〜4の何れか記載のON−OFF切換装置を備えた渦電流式減速装置のうち、単動型シリンダと複動型シリンダとで回動支持リング或いは磁石支持リングを駆動する渦電流式減速装置において、リターンスプリングは、制動OFFの状態から最大所要力F1maxを必要とするストローク位置までの間ではばねの反力が作用せず、制動ONの位置から制動OFFに戻す際の所要力F2maxを必要とするストローク位置においては、ばねの圧縮反力Fと複動型シリンダの複動時の駆動力を合せたものが前記所要力F2maxよりも大きくなるようなばね定数であることを特徴とする渦電流式減速装置のON−OFF切換装置。Of the eddy current type speed reducer comprising the ON-OFF switching device according to any one of claims 2 to 4, an eddy current that drives a rotating support ring or a magnet support ring with a single-acting cylinder and a double-acting cylinder. In the return speed reducer, the return spring does not have the reaction force of the spring between the brake OFF state and the stroke position that requires the maximum required force F1max, and the required force for returning from the brake ON position to the brake OFF. At a stroke position that requires F2max, the spring constant is such that the sum of the compression reaction force F of the spring and the driving force during double-acting of the double-acting cylinder is greater than the required force F2max. ON-OFF switching device of eddy current type reduction gear.
JP2000269687A 2000-09-06 2000-09-06 ON-OFF switching device for eddy current type speed reducer Expired - Fee Related JP3758486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000269687A JP3758486B2 (en) 2000-09-06 2000-09-06 ON-OFF switching device for eddy current type speed reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000269687A JP3758486B2 (en) 2000-09-06 2000-09-06 ON-OFF switching device for eddy current type speed reducer

Publications (2)

Publication Number Publication Date
JP2002084734A JP2002084734A (en) 2002-03-22
JP3758486B2 true JP3758486B2 (en) 2006-03-22

Family

ID=18756249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000269687A Expired - Fee Related JP3758486B2 (en) 2000-09-06 2000-09-06 ON-OFF switching device for eddy current type speed reducer

Country Status (1)

Country Link
JP (1) JP3758486B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10132437A1 (en) * 2001-07-04 2003-01-23 Bosch Gmbh Robert Lifting device with synchronization device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3444167B2 (en) * 1997-11-19 2003-09-08 住友金属工業株式会社 Eddy current reduction device and its ON-OFF switching device

Also Published As

Publication number Publication date
JP2002084734A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
KR101689981B1 (en) 3-position operating actuator and permanent-magnet eddy-current deceleration device
US5473209A (en) Permanent magnet braking system for drive shafts
JP2009210054A (en) Wheel construction
JP3758486B2 (en) ON-OFF switching device for eddy current type speed reducer
JP3700567B2 (en) ON-OFF switching device for eddy current type speed reducer
JP3444167B2 (en) Eddy current reduction device and its ON-OFF switching device
JP3858839B2 (en) Eddy current reducer
JP3711854B2 (en) Actuator for eddy current reduction gear
KR101653897B1 (en) Eddy-current-type reduction gear
JP3985612B2 (en) Forced release method and forced release mechanism for braking OFF position in eddy current type speed reducer and eddy current type speed reducer
JP3721991B2 (en) Braking force control method for eddy current type speed reducer
JP2003274634A (en) Eddy current deceleration equipment
JP2914215B2 (en) ON / OFF switching device for eddy current type reduction gear
JP4042357B2 (en) Eddy current reducer
JP2561161Y2 (en) Eddy current type reduction gear
CN115675103B (en) Eddy current retarder
JP2577357Y2 (en) ON / OFF switching device for eddy current type reduction gear
JP3882399B2 (en) Eddy current reducer
JP2001359271A (en) Eddy current decelerator
JP2001057769A (en) Overcurrent type decelerating device
JP3882488B2 (en) Eddy current reducer
JP3395793B2 (en) Actuator of eddy current type reduction gear
JP2596422Y2 (en) Actuator for eddy current type reduction gear
JP2002112528A (en) Eddy-current reduction gear
JPH08107666A (en) Eddy current type retarder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3758486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees