JP3758382B2 - Mass spectrometer - Google Patents

Mass spectrometer Download PDF

Info

Publication number
JP3758382B2
JP3758382B2 JP29682598A JP29682598A JP3758382B2 JP 3758382 B2 JP3758382 B2 JP 3758382B2 JP 29682598 A JP29682598 A JP 29682598A JP 29682598 A JP29682598 A JP 29682598A JP 3758382 B2 JP3758382 B2 JP 3758382B2
Authority
JP
Japan
Prior art keywords
ion
optical system
electrodes
mass spectrometer
ion transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29682598A
Other languages
Japanese (ja)
Other versions
JP2000123780A (en
Inventor
純一 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP29682598A priority Critical patent/JP3758382B2/en
Publication of JP2000123780A publication Critical patent/JP2000123780A/en
Application granted granted Critical
Publication of JP3758382B2 publication Critical patent/JP3758382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/062Ion guides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスクロマトグラフ質量分析装置(GC/MS)や液体クロマトグラフ質量分析装置(LC/MS)に利用される質量分析装置に関し、更に詳しくは、イオン源で発生したイオンを四重極フィルタなどの質量分離部まで輸送するためのイオン輸送光学系に関する。
【0002】
【従来の技術】
図4は一般的な質量分析装置の基本的構成を示す図である。イオン源10は電子衝撃イオン化法、化学イオン化法などの各種イオン化法を用いて試料分子をイオン化し、そこで発生したイオンを四重極フィルタなどの質量分離部11へ導入して質量数(質量/電荷)毎にイオンを分離した後に検出器12にて検出している。イオン源10から質量分離部11へ至るまでの間にイオンが光軸Cを大きく外れてしまうと検出感度や精度が低下することになるから、イオン源10で発生したイオンをできるだけ漏れなく質量分離部11へ送るために、いわゆるイオン輸送光学系が利用されることが多い。
【0003】
図5は従来のイオン輸送光学系の構成図である。円環状(又はドーナツ板状、扁平円筒状)の電極13がイオン光軸Cに沿って多数並べて配設され、隣接する電極間13に電圧源14より位相が180度異なる高周波電圧が印加される。この電圧により電極13の内側には略円筒状の擬似的な電位壁を有するイオン通過路15が形成されるため、その一端面側から導入されたイオンはイオン通過路15からはみ出ないように進んで反対側端面に到達する。
【0004】
【発明が解決しようとする課題】
しかしながら、上記構成のイオン輸送光学系では多数の電極13をそれぞれ所定間隔離間させて固定しなければならず、電極13の保持機構の構造が複雑になる。また、各電極13にそれぞれ電圧を印加しなければならず、配線も複雑になる。
【0005】
本発明はこのような課題を解決するために成されたものであり、その目的とするところは、保持構造や配線が簡単であるイオン輸送光学系を備えた質量分析装置を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために成された本発明は、イオン源で発生したイオンを質量分離部へ輸送するためのイオン輸送光学系を備えた質量分析装置において、該イオン輸送光学系は、それぞれ螺旋状に巻回した二個の電極をイオン光軸方向に各電極の巻きが交互に存在し且つ互いに分離するように遊嵌して成り、該二個の電極にそれぞれ位相の異なる高周波電圧を印加することを特徴としている。
【0007】
【発明の実施の形態】
この発明に係るイオン輸送光学系では、二個の電極にはそれぞれ互いに位相が180度異なる高周波電圧を印加するのが最も好ましい。このような電圧を印加すると二個の電極の螺旋状の巻きの内側にはイオン光軸方向に略円筒形状の擬似的な電位壁を有するイオン通過路が形成される。したがって、電極の一開放端面からイオン通過路内に導入されたイオンは外側に発散することなく電極の他開放端面まで通り抜ける。
【0008】
【発明の効果】
この発明に係るイオン輸送光学系では、各電極毎に一箇所ずつ電圧の印加ポイントを設ければよいので、配線が非常に簡単になる。また、電極として或る程度剛性の高い材料を使用しさえすれば各巻き毎に保持する必要はなく、例えば各電極毎にその両縁端部でのみ保持すればよい。このようなことから、従来のイオン輸送光学系よりもコストを下げることができる。
【0009】
【実施例】
本発明の質量分析装置におけるイオン輸送光学系の一実施例を図1、図2により説明する。図1はこのイオン輸送光学系の斜視図、図2はこのイオン輸送光学系側面図である。図1では1組の電極のうちの一方は両端部のみを示している。
【0010】
このイオン輸送光学系は、細長い金属棒体を螺旋状に巻回して成形した電極を二個(符号をそれぞれ1a、1bとする)有しており、各電極1a、1bの巻きがイオン光軸C方向に交互に所定間隔離間して存在するように配設されている。各電極1a、1bは高い剛性を有していて撓みは殆ど無いので、図2に示すように絶縁体から成るホルダ2でもって両端部の巻きの適宜箇所を保持することによって安定的に固定することができる。また、各電極の1a、1bは所定箇所(各一箇所)でそれぞれ電圧源3に接続されており、それぞれ同一振幅、同一周波数であって位相のみが互いに180度相違する高周波電圧が印加されるようになっている。
【0011】
このような電圧が各電極1a、1bに印加されると、螺旋状の電極1a、1bの内側には上記従来技術とほぼ同様の、略円筒形状の擬似的な電位壁を有するイオン通過路4が形成される。このイオン通過路4の一端面に導入されたイオンは、イオン通過路4から外側にはみ出ないように進み、他の開放端面に到達して抜け出る。したがって、イオン源にて発生したイオンをこのイオン輸送光学系に導入することにより、効率良く後段(例えば質量分離部)へ送ることができる。
【0012】
なお、電極1a、1bは、棒体でなく所定の幅を有する帯状の金属板を螺旋状に巻回したものでもよい。
【0013】
図3は、本発明に係るイオン輸送光学系の他の実施例を示す斜視図である。上記実施例では電極1a、1bは各巻きが略同一径の円状に巻回されていたが、この実施例では、電極1a、1bの各巻きの径はイオンの進行方向に対して徐々に小さくなるように形成されている。
【0014】
このような形状の電極1a、1bに上述のような位相の逆転した高周波電圧が印加されると、円錐体の頂部を円断面で切り取った形状のイオン通過路4が形成される。すなわち、イオン通過路4の一端面(上記円錐体の底面側端面)に導入されたイオンは進むに伴いイオン光軸C近傍に収束される。したがって、図3に示すようにイオン輸送光学系の後段に小径のオリフェスを有するスキマー5を配置するような場合に、イオンを収束して効率良くオリフェスを通過させることができる。
【0015】
また、電極1a、1bの隣接する巻きの間に生じる電界強度はその巻きの離間間隔(つまりピッチ)が狭いほど大きくなる。したがって、図1の実施例のように電極1a、1bの各巻きを略同一径に巻回する場合でも、イオンの進行方向に対して徐々にピッチを狭くすることによりイオン通過路4を図3に示したような形状とすることができる。
【0016】
なお、上記実施例は一例であって、本発明の趣旨の範囲で適宜変更や修正を行なえることは明らかである。
【図面の簡単な説明】
【図1】 本発明の質量分析装置におけるイオン輸送光学系の一実施例の斜視図。
【図2】 図1の実施例の側面図。
【図3】 本発明の質量分析装置におけるイオン輸送光学系の他の実施例の斜視図。
【図4】 一般的な質量分析装置の基本構成図。
【図5】 従来のイオン輸送光学系の構成図。
【符号の説明】
1a、1b…電極
2…ホルダ
3…電圧源
4…イオン通過路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mass spectrometer used in a gas chromatograph mass spectrometer (GC / MS) and a liquid chromatograph mass spectrometer (LC / MS), and more particularly, a quadrupole filter for ions generated in an ion source. The present invention relates to an ion transport optical system for transporting to a mass separation unit.
[0002]
[Prior art]
FIG. 4 is a diagram showing a basic configuration of a general mass spectrometer. The ion source 10 ionizes sample molecules by using various ionization methods such as an electron impact ionization method and a chemical ionization method, and introduces the ions generated therein to a mass separation unit 11 such as a quadrupole filter to obtain a mass number (mass / mass / The ions are separated for each charge) and then detected by the detector 12. If the ions greatly deviate from the optical axis C from the ion source 10 to the mass separation unit 11, the detection sensitivity and accuracy will be reduced, so that the ions generated from the ion source 10 are mass separated without leakage as much as possible. In order to send to the unit 11, a so-called ion transport optical system is often used.
[0003]
FIG. 5 is a block diagram of a conventional ion transport optical system. A large number of annular (or donut plate-like, flat cylindrical) electrodes 13 are arranged along the ion optical axis C, and a high-frequency voltage whose phase is 180 degrees different from that of the voltage source 14 is applied between the adjacent electrodes 13. . By this voltage, an ion passage 15 having a substantially cylindrical pseudo potential wall is formed inside the electrode 13, so that ions introduced from one end surface side thereof do not protrude from the ion passage 15. To reach the opposite end face.
[0004]
[Problems to be solved by the invention]
However, in the ion transport optical system configured as described above, a large number of electrodes 13 must be fixed at predetermined intervals, and the structure of the holding mechanism for the electrodes 13 becomes complicated. In addition, a voltage must be applied to each electrode 13 and the wiring becomes complicated.
[0005]
The present invention has been made to solve such problems, and an object of the present invention is to provide a mass spectrometer equipped with an ion transport optical system with a simple holding structure and wiring. .
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a mass spectrometer including an ion transport optical system for transporting ions generated in an ion source to a mass separation unit, wherein each of the ion transport optical systems is a spiral. The two electrodes wound in a shape are loosely fitted in the direction of the ion optical axis so that the windings of each electrode are alternately present and separated from each other, and high-frequency voltages with different phases are applied to the two electrodes, respectively. It is characterized by doing.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the ion transport optical system according to the present invention, it is most preferable to apply a high-frequency voltage having a phase difference of 180 degrees to the two electrodes. When such a voltage is applied, an ion passage having a substantially cylindrical potential wall in the direction of the ion optical axis is formed inside the spiral winding of the two electrodes. Therefore, ions introduced into the ion passage from one open end surface of the electrode pass through to the other open end surface of the electrode without diverging outward.
[0008]
【The invention's effect】
In the ion transport optical system according to the present invention, it is only necessary to provide one voltage application point for each electrode, so that wiring becomes very simple. Further, as long as a material having a certain degree of rigidity is used as the electrode, it is not necessary to hold it for each winding. For example, each electrode may be held only at both edge portions. For this reason, the cost can be reduced as compared with the conventional ion transport optical system.
[0009]
【Example】
An embodiment of an ion transport optical system in the mass spectrometer of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view of the ion transport optical system, and FIG. 2 is a side view of the ion transport optical system. In FIG. 1, one of the pair of electrodes shows only both ends.
[0010]
This ion transport optical system has two electrodes (reference numerals 1a and 1b, respectively) formed by spirally winding an elongated metal rod, and the winding of each electrode 1a and 1b is an ion optical axis. They are arranged so as to be alternately spaced apart at a predetermined interval in the C direction. Since each electrode 1a, 1b has high rigidity and hardly bends, as shown in FIG. 2, it is stably fixed by holding appropriate portions of windings at both ends with a holder 2 made of an insulator. be able to. Each electrode 1a, 1b is connected to a voltage source 3 at a predetermined location (one location), and a high-frequency voltage having the same amplitude and the same frequency but having a phase difference of 180 degrees is applied. It is like that.
[0011]
When such a voltage is applied to the electrodes 1a and 1b, the ion passage 4 having a substantially cylindrical pseudo potential wall inside the spiral electrodes 1a and 1b, which is substantially the same as the above-described conventional technique. Is formed. The ions introduced into one end surface of the ion passage 4 proceed so as not to protrude outward from the ion passage 4, reach the other open end surface, and escape. Therefore, by introducing ions generated in the ion source into the ion transport optical system, the ions can be efficiently sent to the subsequent stage (for example, a mass separation unit).
[0012]
The electrodes 1a and 1b may be formed by spirally winding a band-shaped metal plate having a predetermined width instead of a rod.
[0013]
FIG. 3 is a perspective view showing another embodiment of the ion transport optical system according to the present invention. In the above-described embodiment, the windings of the electrodes 1a and 1b are wound in a circle having substantially the same diameter. However, in this embodiment, the diameter of each winding of the electrodes 1a and 1b is gradually increased with respect to the ion traveling direction. It is formed to be smaller.
[0014]
When the above-described high-frequency voltage with reversed phase is applied to the electrodes 1a and 1b having such a shape, the ion passage 4 having a shape obtained by cutting the top of the cone with a circular cross section is formed. That is, ions introduced into one end surface of the ion passage 4 (the end surface on the bottom surface side of the cone) are converged in the vicinity of the ion optical axis C as they travel. Therefore, as shown in FIG. 3, when the skimmer 5 having a small-diameter orifice is arranged at the subsequent stage of the ion transport optical system, the ions can be converged and the orifice can be efficiently passed.
[0015]
In addition, the electric field strength generated between the adjacent turns of the electrodes 1a and 1b increases as the distance between the turns (that is, the pitch) decreases. Therefore, even when the respective windings of the electrodes 1a and 1b are wound to substantially the same diameter as in the embodiment of FIG. 1, the ion passage 4 is formed by gradually narrowing the pitch with respect to the ion traveling direction. It can be made into the shape as shown in.
[0016]
The above-described embodiment is an example, and it is obvious that changes and modifications can be made as appropriate within the scope of the present invention.
[Brief description of the drawings]
FIG. 1 is a perspective view of an embodiment of an ion transport optical system in a mass spectrometer of the present invention.
FIG. 2 is a side view of the embodiment of FIG.
FIG. 3 is a perspective view of another embodiment of the ion transport optical system in the mass spectrometer of the present invention.
FIG. 4 is a basic configuration diagram of a general mass spectrometer.
FIG. 5 is a configuration diagram of a conventional ion transport optical system.
[Explanation of symbols]
1a, 1b ... electrode 2 ... holder 3 ... voltage source 4 ... ion passage

Claims (1)

イオン源で発生したイオンを質量分離部へ輸送するためのイオン輸送光学系を備えた質量分析装置において、該イオン輸送光学系は、それぞれ螺旋状に巻回した二個の電極をイオン光軸方向に各電極の巻きが交互に存在し且つ互いに分離するように遊嵌して成り、該二個の電極にそれぞれ位相の異なる高周波電圧を印加することを特徴とする質量分析装置。In a mass spectrometer equipped with an ion transport optical system for transporting ions generated from an ion source to a mass separation unit, the ion transport optical system includes two electrodes wound in a spiral shape in the direction of the ion optical axis. The mass spectrometer is characterized in that windings of each electrode are alternately present and loosely fitted so as to be separated from each other, and high frequency voltages having different phases are applied to the two electrodes.
JP29682598A 1998-10-19 1998-10-19 Mass spectrometer Expired - Fee Related JP3758382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29682598A JP3758382B2 (en) 1998-10-19 1998-10-19 Mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29682598A JP3758382B2 (en) 1998-10-19 1998-10-19 Mass spectrometer

Publications (2)

Publication Number Publication Date
JP2000123780A JP2000123780A (en) 2000-04-28
JP3758382B2 true JP3758382B2 (en) 2006-03-22

Family

ID=17838654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29682598A Expired - Fee Related JP3758382B2 (en) 1998-10-19 1998-10-19 Mass spectrometer

Country Status (1)

Country Link
JP (1) JP3758382B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3264443A1 (en) 2016-06-30 2018-01-03 Bruker Daltonics, Inc. Mass spectrometer comprising a radio frequency ion guide having continuous electrodes

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002213699A1 (en) 2000-10-23 2002-05-06 Simon Fraser University Method and apparatus for producing a discrete particle
GB0028586D0 (en) * 2000-11-23 2001-01-10 Univ Warwick An ion focussing and conveying device
GB2403592A (en) * 2000-11-23 2005-01-05 Univ Warwick An ion guide formed from apertured electrodes
CA2419866C (en) * 2000-11-29 2005-02-01 Micromass Limited Mass spectrometers and methods of mass spectrometry
GB2370685B (en) * 2000-11-29 2003-01-22 Micromass Ltd Mass spectrometers and methods of mass spectrometry
GB2397690B (en) * 2000-11-29 2005-03-23 Micromass Ltd Mass spectrometers and methods of mass spectrometry
CA2391140C (en) 2001-06-25 2008-10-07 Micromass Limited Mass spectrometer
US6762404B2 (en) 2001-06-25 2004-07-13 Micromass Uk Limited Mass spectrometer
US7095013B2 (en) 2002-05-30 2006-08-22 Micromass Uk Limited Mass spectrometer
US6794641B2 (en) 2002-05-30 2004-09-21 Micromass Uk Limited Mass spectrometer
US6800846B2 (en) 2002-05-30 2004-10-05 Micromass Uk Limited Mass spectrometer
US6791078B2 (en) 2002-06-27 2004-09-14 Micromass Uk Limited Mass spectrometer
US6884995B2 (en) 2002-07-03 2005-04-26 Micromass Uk Limited Mass spectrometer
US7071467B2 (en) 2002-08-05 2006-07-04 Micromass Uk Limited Mass spectrometer
US6977371B2 (en) 2003-06-10 2005-12-20 Micromass Uk Limited Mass spectrometer
WO2006098230A1 (en) * 2005-03-15 2006-09-21 Shimadzu Corporation Mass analyzer
JP5297773B2 (en) * 2008-11-28 2013-09-25 トヨタ自動車株式会社 Charged particle transport method, guide device, and manufacturing method thereof
CN111081528A (en) * 2019-12-20 2020-04-28 暨南大学 Funnel-shaped ion guide device and mass spectrometer with same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3264443A1 (en) 2016-06-30 2018-01-03 Bruker Daltonics, Inc. Mass spectrometer comprising a radio frequency ion guide having continuous electrodes
US9899199B2 (en) 2016-06-30 2018-02-20 Bruker Daltonics, Inc. Mass spectrometer comprising a radio frequency ion guide having continuous electrodes

Also Published As

Publication number Publication date
JP2000123780A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
JP3758382B2 (en) Mass spectrometer
US7550717B1 (en) Quadrupole FAIMS apparatus
US7696474B2 (en) Methods and apparatus of ion mobility spectrometer
US5436446A (en) Analyzing time modulated electrospray
US6727495B2 (en) Ion mobility spectrometer with high ion transmission efficiency
US7858934B2 (en) Quadrupole FAIMS apparatus
US8378297B2 (en) Method and apparatus to produce steady beams of mobility selected ions via time-dependent electric fields
US7375320B2 (en) Virtual ion trap
US7723679B2 (en) Coaxial hybrid radio frequency ion trap mass analyzer
US8362420B2 (en) Apparatus and methods for analyzing ions
US20020134932A1 (en) Apparatus and method for desolvating and focussing ions for introduction into a mass spectrometer
US20110147575A1 (en) Ion funnel for mass spectrometry
WO1999047912A1 (en) Ion mobility storage trap and method
US20120256082A1 (en) Phase shift rf ion trap device
WO2016079780A1 (en) Ion mobility analysis device
US8362421B2 (en) Use ion guides with electrodes of small dimensions to concentrate small charged species in a gas at relatively high pressure
US8049167B2 (en) Pneumatic ion beam focusing in high-field asymmetric waveform ion mobility spectrometry (FAIMS)
US6573495B2 (en) High capacity ion cyclotron resonance cell
US7989765B2 (en) Method and apparatus for trapping ions
JP2000243347A (en) Ion trap type mass spectrometer and ion trap mass spectrometry
US20220163481A1 (en) Ion mobility spectrometer and method of analyzing ions
JP2005259481A (en) Mass spectroscope
US11874251B2 (en) Ion mobility spectrometer and method of analyzing ions
Blase High resolution ion mobility spectrometry with increased ion transmission: Exploring the analytical utility of periodic-focusing DC ion guide drift cells
JPH07282772A (en) Fourier transform mass spectrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees