JP3757616B2 - Absorbent slurry flow rate control method and apparatus for flue gas desulfurization apparatus - Google Patents

Absorbent slurry flow rate control method and apparatus for flue gas desulfurization apparatus Download PDF

Info

Publication number
JP3757616B2
JP3757616B2 JP12736398A JP12736398A JP3757616B2 JP 3757616 B2 JP3757616 B2 JP 3757616B2 JP 12736398 A JP12736398 A JP 12736398A JP 12736398 A JP12736398 A JP 12736398A JP 3757616 B2 JP3757616 B2 JP 3757616B2
Authority
JP
Japan
Prior art keywords
absorbent
amount
flow rate
absorbent slurry
absorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12736398A
Other languages
Japanese (ja)
Other versions
JPH11319475A (en
Inventor
訓 木村
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP12736398A priority Critical patent/JP3757616B2/en
Publication of JPH11319475A publication Critical patent/JPH11319475A/en
Application granted granted Critical
Publication of JP3757616B2 publication Critical patent/JP3757616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排煙脱硫装置の吸収剤スラリー流量制御方法及び装置に関するものである。
【0002】
【従来の技術】
一般に、発電所等においては、石炭焚ボイラ等から排出される排ガスからSO2(硫黄酸化物)を吸収除去するために、吸収剤として炭酸カルシウム(CaCO3)を用いた排煙脱硫装置が設けられるが、該排煙脱硫装置は、通常、図4に示されるように、下部に吸収液1の液溜部1aが形成され且つ上部に多数のスプレーノズル2が配設された吸収塔3と、該吸収塔3の液溜部1aの吸収液1を汲み上げ前記スプレーノズル2から噴霧させて循環させる複数台の循環ポンプ4と、前記吸収塔3の液溜部1aに酸化空気を供給する酸化空気ブロワ5とを備えてなる構成を有している。
【0003】
前述の如き排煙脱硫装置の場合、吸収液1が循環ポンプ4の作動によりスプレーノズル2から噴霧されつつ循環しており、図示していない石炭焚ボイラ等から吸収塔3に送り込まれた排ガスは、前記スプレーノズル2から噴霧される吸収液1と接触することにより、SO2(硫黄酸化物)が吸収除去された後、外部へ排出される。
【0004】
一方、前記排ガスからSO2を吸収した吸収液1は、液溜部1aに滴下し、酸化空気ブロワ5の作動によって液溜部1a内へ供給される酸化空気により強制的に酸化され、石膏(硫酸カルシウム(CaSO4))が生成され、該石膏を含む液溜部1a内の吸収液1の一部は、吸収塔3の底部から石膏スラリーとして抜き出され、図示していない石膏回収系へ導かれ、該石膏回収系において石膏スラリーから水分が除去され石膏が生成されて回収されるようになっている。
【0005】
又、前記吸収塔3には、必要に応じて適宜、流量調整弁8の開度を制御することにより、所要量の吸収剤スラリーが供給されるようになっているが、その制御系は、吸収塔3内における吸収液1のpH(ペーハー)を検出するpH計7と、脱硫ガス流量Aを検出する脱硫ガス流量計9と、吸収塔入口SO2濃度Bを検出する吸収塔入口SO2濃度計10と、吸収剤スラリー流量Dを検出する吸収剤スラリー流量計12と、吸収剤スラリー濃度Eを検出する吸収剤スラリー濃度計13とを備えると共に、前記脱硫ガス流量計9で検出された脱硫ガス流量Aと、前記吸収塔入口SO2濃度計10で検出された吸収塔入口SO2濃度Bと、前記pH計7で検出された吸収液1のpHと、前記吸収剤スラリー濃度計13で検出された吸収剤スラリー濃度Eとに基づき、前記吸収液1のpHを設定pH値に保持するのに必要となる設定吸収剤スラリー流量28(図5参照)を求め、前記吸収剤スラリー流量Dが設定吸収剤スラリー流量28と等しくなるよう、前記流量調整弁8へ開度指令32を出力する制御器6とを備えてなる構成を有している。
【0006】
前記制御器6は、図5に示される如く、前記吸収塔入口SO2濃度計10で検出された吸収塔入口SO2濃度Bに対して設定脱硫率(例えば90%)を掛けることにより、脱硫SO2濃度14を求めて出力する乗算器15と、
前記脱硫ガス流量計9で検出された脱硫ガス流量Aに対して前記乗算器15から出力される脱硫SO2濃度14を掛けることにより、排ガス中から除去すべき吸収塔3へ流入してくるSO2量16を求めて出力する乗算器17と、
該乗算器17から出力されるSO2量16に対して(吸収剤量/SO2量)の値を掛けることにより、吸収剤量18を求めて出力する乗算器19と、
該乗算器19から出力される吸収剤量18に対して設定吸収剤過剰率(例えば1.02)を掛けることにより、実際に必要となる必要吸収剤量20を求めて出力する乗算器21と、
予め設定された設定pH値(例えば5.0)と前記pH計7で検出された吸収液1のpHとの差を求め、pH偏差22を出力する減算器23と、
該減算器23から出力されるpH偏差22を比例積分処理して該pH偏差22をなくすための吸収剤換算量24を出力する比例積分調節器25と、
前記乗算器21から出力される必要吸収剤量20に対して前記比例積分調節器25から出力される吸収剤換算量24を加えることにより、pH考慮必要吸収剤量26を求めて出力する加算器27と、
該加算器27から出力されるpH考慮必要吸収剤量26を前記吸収剤スラリー濃度計13で検出された吸収剤スラリー濃度Eで割ることにより、設定吸収剤スラリー流量28を求めて出力する除算器29と、
該除算器29から出力される設定吸収剤スラリー流量28と前記吸収剤スラリー流量計12で検出された吸収剤スラリー流量Dとの差を求め、吸収剤スラリー偏差30を出力する減算器31と、
該減算器31から出力される吸収剤スラリー偏差30を比例積分処理して該吸収剤スラリー偏差30をなくすための流量調整弁8の開度指令32を出力する比例積分調節器33と
を備えてなる構成を有している。
【0007】
前記排煙脱硫装置の運転時には、pH計7で検出された吸収液1のpHと、脱硫ガス流量計9で検出された脱硫ガス流量Aと、吸収塔入口SO2濃度計10で検出された吸収塔入口SO2濃度Bと、吸収剤スラリー流量計12で検出された吸収剤スラリー流量Dと、吸収剤スラリー濃度計13で検出された吸収剤スラリー濃度Eとが制御器6へ入力され、該制御器6の乗算器15において前記吸収塔入口SO2濃度計10で検出された吸収塔入口SO2濃度Bに対して設定脱硫率を掛けることにより、脱硫SO2濃度14が求められて乗算器17へ出力され、該乗算器17において前記脱硫ガス流量計9で検出された脱硫ガス流量Aに対して前記乗算器15から出力される脱硫SO2濃度14を掛けることにより、排ガス中から除去すべき吸収塔3へ流入してくるSO2量16が求められて乗算器19へ出力され、該乗算器19において前記乗算器17から出力されるSO2量16に対して(吸収剤量/SO2量)の値を掛けることにより、吸収剤量18が求められて乗算器21へ出力され、該乗算器21において前記乗算器19から出力される吸収剤量18に対して設定吸収剤過剰率を掛けることにより、実際に必要となる必要吸収剤量20が求められて加算器27へ出力される一方、減算器23において予め設定された設定pH値と前記pH計7で検出された吸収液1のpHとの差が求められてpH偏差22が比例積分調節器25へ出力され、該比例積分調節器(フィードバック制御演算を行なっている調節器)25において前記減算器23から出力されるpH偏差22が比例積分処理され該pH偏差22をなくすための吸収剤換算量24が加算器27へ出力され、該加算器27において前記乗算器21から出力される必要吸収剤量20に対して前記比例積分調節器25から出力される吸収剤換算量24を加えることにより、pH考慮必要吸収剤量26が求められて除算器29へ出力され、該除算器29において前記加算器27から出力されるpH考慮必要吸収剤量26を前記吸収剤スラリー濃度計13で検出された吸収剤スラリー濃度Eで割ることにより、設定吸収剤スラリー流量28が求められて減算器31へ出力され、該減算器31において前記除算器29から出力される設定吸収剤スラリー流量28と前記吸収剤スラリー流量計12で検出された吸収剤スラリー流量Dとの差が求められ、吸収剤スラリー偏差30が比例積分調節器33へ出力され、該比例積分調節器33において前記減算器31から出力される吸収剤スラリー偏差30が比例積分処理され該吸収剤スラリー偏差30をなくすための開度指令32が流量調整弁8へ出力され、該流量調整弁8の開度が調節され、前記吸収剤スラリー流量Dが設定吸収剤スラリー流量28と等しくなるよう制御が行われ、これにより前記吸収液1のpHを設定pH値に保持するようになっている。
【0008】
【発明が解決しようとする課題】
しかしながら、前述の如き従来の制御系においては、吸収液1のpHを設定pH値に保持するための比例積分調節器25の比例定数並びに積分定数は、負荷(吸収塔3へ流入してくるSO2量16)の変化に関係なく一定となっているため、例えば、前記比例積分調節器25の比例定数並びに積分定数が、負荷が高い時に適正となっている場合に、負荷が低くなって吸収塔3へ流入してくるSO2量16が少なくなると、吸収液1のpH偏差22が高負荷時と同じであって吸収塔3へ供給される吸収剤スラリーの量が同じであったとしても、実際には過剰な量の吸収剤スラリーが吸収塔3へ供給される形となり、吸収液1のpHが不安定となる一方、逆に、前記比例積分調節器25の比例定数並びに積分定数が、負荷が低い時に適正となっている場合に、負荷が高くなって吸収塔3へ流入してくるSO2量16が多くなると、吸収液1のpH偏差22が低負荷時と同じであって吸収塔3へ供給される吸収剤スラリーの量が同じであったとしても、実際には吸収塔3へ供給される吸収剤スラリーが不足する形となり、吸収液1のpH偏差22の収束が遅くなってしまうという欠点を有していた。
【0009】
本発明は、斯かる実情に鑑み、低負荷から高負荷にかけて吸収液のpH偏差を速やかに収束させることができ、吸収液のpHを安定させ得る排煙脱硫装置の吸収剤スラリー流量制御方法及び装置を提供しようとするものである。
【0010】
【課題を解決するための手段】
本発明は、検出された脱硫ガス流量と吸収塔入口SO2濃度とに基づいて吸収塔へ流入してくるSO2量を求め、該SO2量に基づいて実際に必要となる必要吸収剤量を求める一方、予め設定された設定pH値と検出された吸収液のpHとのpH偏差を求め、該pH偏差を比例積分処理して該pH偏差をなくすための吸収剤換算量を求め、前記必要吸収剤量に対して吸収剤換算量を加えることにより、pH考慮必要吸収剤量を求め、該pH考慮必要吸収剤量を検出された吸収剤スラリー濃度で割ることにより、前記吸収液のpHを設定pH値に保持するのに必要となる設定吸収剤スラリー流量を求め、検出された吸収剤スラリー流量が設定吸収剤スラリー流量と等しくなるよう、制御を行う排煙脱硫装置の吸収剤スラリー流量制御方法において、pH偏差を比例積分処理する際の比例定数と積分定数とをそれぞれ、吸収塔へ流入してくるSO2量に基づいて設定することを特徴とする排煙脱硫装置の吸収剤スラリー流量制御方法にかかるものである。
【0011】
又、本発明は、吸収塔内における吸収液のpHを検出するpH計と、脱硫ガス流量を検出する脱硫ガス流量計と、吸収塔入口SO2濃度を検出する吸収塔入口SO2濃度計と、吸収剤スラリー流量を検出する吸収剤スラリー流量計と、吸収剤スラリー濃度を検出する吸収剤スラリー濃度計と、吸収塔内へ供給される吸収剤スラリー流量を調節する流量調整弁と、
前記脱硫ガス流量と前記吸収塔入口SO2濃度とに基づいて吸収塔へ流入してくるSO2量を求め、該SO2量に基づいて実際に必要となる必要吸収剤量を求める一方、予め設定された設定pH値と前記吸収液のpHとのpH偏差を求め、該pH偏差を前記SO2量に基づいて設定される比例定数と積分定数とを用いて比例積分処理して該pH偏差をなくすための吸収剤換算量を求め、前記必要吸収剤量に対して吸収剤換算量を加えることにより、pH考慮必要吸収剤量を求め、該pH考慮必要吸収剤量を前記吸収剤スラリー濃度で割ることにより、前記吸収液のpHを設定pH値に保持するのに必要となる設定吸収剤スラリー流量を求め、前記吸収剤スラリー流量が設定吸収剤スラリー流量と等しくなるよう、前記流量調整弁へ開度指令を出力する制御器とを備えたことを特徴とする排煙脱硫装置の吸収剤スラリー流量制御装置にかかるものである。
【0012】
上記手段によれば、以下のような作用が得られる。
【0013】
本発明の排煙脱硫装置の吸収剤スラリー流量制御方法においては、運転時には、検出された脱硫ガス流量と吸収塔入口SO2濃度とに基づいて吸収塔へ流入してくるSO2量が求められ、該SO2量に基づいて実際に必要となる必要吸収剤量が求められる一方、予め設定された設定pH値と検出された吸収液のpHとのpH偏差が求められ、該pH偏差が比例積分処理されて該pH偏差をなくすための吸収剤換算量が求められ、前記必要吸収剤量に対して吸収剤換算量を加えることにより、pH考慮必要吸収剤量が求められ、該pH考慮必要吸収剤量を検出された吸収剤スラリー濃度で割ることにより、前記吸収液のpHを設定pH値に保持するのに必要となる設定吸収剤スラリー流量が求められ、検出された吸収剤スラリー流量が設定吸収剤スラリー流量と等しくなるよう、制御が行われるが、前記pH偏差が比例積分処理される際の比例定数と積分定数とはそれぞれ、吸収塔へ流入してくるSO2量に基づいて設定される。
【0014】
又、本発明の排煙脱硫装置の吸収剤スラリー流量制御装置においては、運転時には、pH計で検出された吸収液のpHと、脱硫ガス流量計で検出された脱硫ガス流量と、吸収塔入口SO2濃度計で検出された吸収塔入口SO2濃度と、吸収剤スラリー流量計で検出された吸収剤スラリー流量と、吸収剤スラリー濃度計で検出された吸収剤スラリー濃度とが制御器へ入力され、該制御器において、前記脱硫ガス流量と前記吸収塔入口SO2濃度とに基づいて吸収塔へ流入してくるSO2量が求められ、該SO2量に基づいて実際に必要となる必要吸収剤量が求められる一方、予め設定された設定pH値と前記吸収液のpHとのpH偏差が求められ、該pH偏差が前記SO2量に基づいて設定される比例定数と積分定数とを用いて比例積分処理されて該pH偏差をなくすための吸収剤換算量が求められ、前記必要吸収剤量に対して吸収剤換算量を加えることにより、pH考慮必要吸収剤量が求められ、該pH考慮必要吸収剤量を前記吸収剤スラリー濃度で割ることにより、前記吸収液のpHを設定pH値に保持するのに必要となる設定吸収剤スラリー流量が求められ、前記吸収剤スラリー流量が設定吸収剤スラリー流量と等しくなるよう、前記流量調整弁へ開度指令が出力され、該流量調整弁の開度が調節される。
【0015】
この結果、本発明の排煙脱硫装置の吸収剤スラリー流量制御方法及び装置においては、吸収液のpHを設定pH値に保持するために行われる比例積分処理の際の比例定数並びに積分定数は、吸収塔へ流入してくるSO2量の変化に応じて常に適正な値に設定し直されるため、例えば、負荷が低く吸収塔へ流入してくるSO2量が少ない時には、吸収液のpH偏差が高負荷時と同じであっても吸収塔へ供給される吸収剤スラリーの量は、高負荷時より所要量だけ少なくなり、過剰な量の吸収剤スラリーが吸収塔へ供給されることがなくなり、吸収液のpHが安定する一方、逆に、負荷が高く吸収塔へ流入してくるSO2量が多い時には、吸収液のpH偏差が低負荷時と同じであっても吸収塔へ供給される吸収剤スラリーの量は、低負荷時より所要量だけ多くなり、吸収塔へ供給される吸収剤スラリーが不足することがなくなり、吸収液のpH偏差の収束が速やかに行われることとなる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図示例と共に説明する。
【0017】
図1は本発明を実施する形態の一例であって、図中、図4及び図5と同一の符号を付した部分は同一物を表わしており、基本的な構成は図4及び図5に示す従来のものと同様であるが、本図示例の特徴とするところは、図1に示す如く、SO2量16に基づき比例積分調節器25の比例定数34を求めて該比例積分調節器25へ出力する関数発生器35と、SO2量16に基づき比例積分調節器25の積分定数36を求めて該比例積分調節器25へ出力する関数発生器37とを追加装備した点にある。
【0018】
尚、前記関数発生器35には、図2に示されるような関数が入力されており、該関数は、SO2量16の増減に対し略比例させて比例定数34を増減させることを表わしている。又、前記関数発生器37には、図3に示されるような関数が入力されており、該関数は、SO2量16の増減に対し略比例させて積分定数36を増減させることを表わしている。
【0019】
次に、上記図示例の作動を説明する。
【0020】
排煙脱硫装置の運転時には、pH計7で検出された吸収液1のpHと、脱硫ガス流量計9で検出された脱硫ガス流量Aと、吸収塔入口SO2濃度計10で検出された吸収塔入口SO2濃度Bと、吸収剤スラリー流量計12で検出された吸収剤スラリー流量Dと、吸収剤スラリー濃度計13で検出された吸収剤スラリー濃度Eとが制御器6へ入力され、該制御器6の乗算器15において前記吸収塔入口SO2濃度計10で検出された吸収塔入口SO2濃度Bに対して設定脱硫率を掛けることにより、脱硫SO2濃度14が求められて乗算器17へ出力され、該乗算器17において前記脱硫ガス流量計9で検出された脱硫ガス流量Aに対して前記乗算器15から出力される脱硫SO2濃度14を掛けることにより、排ガス中から除去すべき吸収塔3へ流入してくるSO2量16が求められて乗算器19へ出力され、該乗算器19において前記乗算器17から出力されるSO2量16に対して(吸収剤量/SO2量)の値を掛けることにより、吸収剤量18が求められて乗算器21へ出力され、該乗算器21において前記乗算器19から出力される吸収剤量18に対して設定吸収剤過剰率を掛けることにより、実際に必要となる必要吸収剤量20が求められて加算器27へ出力される。
【0021】
一方、減算器23において予め設定された設定pH値と前記pH計7で検出された吸収液1のpHとの差が求められてpH偏差22が比例積分調節器25へ出力され、該比例積分調節器25において前記減算器23から出力されるpH偏差22が比例積分処理され該pH偏差22をなくすための吸収剤換算量24が加算器27へ出力されるが、ここで、前記乗算器17から出力されるSO2量16に基づき関数発生器35において比例積分調節器25の比例定数34が求められて該比例積分調節器25へ出力されると共に、前記乗算器17から出力されるSO2量16に基づき関数発生器37において比例積分調節器25の積分定数36が求められて該比例積分調節器25へ出力され、その時のSO2量16に応じて前記比例積分調節器25の比例定数34と積分定数36とが設定し直される形となるので比例積分演算器25では、吸収塔液pHを速く安定させる演算が実行される。
【0022】
前記加算器27においては、前記乗算器21から出力される必要吸収剤量20に対して前記比例積分調節器25から出力される吸収剤換算量24を加えることにより、pH考慮必要吸収剤量26が求められて除算器29へ出力され、該除算器29において前記加算器27から出力されるpH考慮必要吸収剤量26を前記吸収剤スラリー濃度計13で検出された吸収剤スラリー濃度Eで割ることにより、設定吸収剤スラリー流量28が求められて減算器31へ出力され、該減算器31において前記除算器29から出力される設定吸収剤スラリー流量28と前記吸収剤スラリー流量計12で検出された吸収剤スラリー流量Dとの差が求められ、吸収剤スラリー偏差30が比例積分調節器33へ出力され、該比例積分調節器33において前記減算器31から出力される吸収剤スラリー偏差30が比例積分処理され該吸収剤スラリー偏差30をなくすための開度指令32が流量調整弁8へ出力され、該流量調整弁8の開度が調節され、前記吸収剤スラリー流量Dが設定吸収剤スラリー流量28と等しくなるよう制御が行われる。
【0023】
この結果、前述したように、吸収液1のpHを設定pH値に保持するための比例積分調節器25の比例定数34並びに積分定数36は、負荷(吸収塔3へ流入してくるSO2量16)の変化に応じて常に適正な値に設定し直されるため、例えば、負荷が低く吸収塔3へ流入してくるSO2量16が少ない時には、吸収液1のpH偏差22が高負荷時と同じであっても吸収塔3へ供給される吸収剤スラリーの量は、高負荷時より所要量だけ少なくなり、過剰な量の吸収剤スラリーが吸収塔3へ供給されることがなくなり、吸収液1のpHが安定する一方、逆に、負荷が高く吸収塔3へ流入してくるSO2量16が多い時には、吸収液1のpH偏差22が低負荷時と同じであっても吸収塔3へ供給される吸収剤スラリーの量は、低負荷時より所要量だけ多くなり、吸収塔3へ供給される吸収剤スラリーが不足することがなくなり、吸収液1のpH偏差22の収束が速やかに行われることとなる。
【0024】
こうして、低負荷から高負荷にかけて吸収液1のpH偏差22を速やかに収束させることができ、吸収液1のpHを安定させ得る。
【0025】
尚、本発明の排煙脱硫装置の吸収剤スラリー流量制御方法及び装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0026】
【発明の効果】
以上、説明したように本発明の排煙脱硫装置の吸収剤スラリー流量制御方法及び装置によれば、低負荷から高負荷にかけて吸収液のpH偏差を速やかに収束させることができ、吸収液のpHを安定させ得るという優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明を実施する形態の一例の制御ブロック図である。
【図2】図1に示す関数発生器35に入力されている関数を表わす線図である。
【図3】図1に示す関数発生器37に入力されている関数を表わす線図である。
【図4】従来例の全体概要構成図である。
【図5】図4に示される制御器の制御ブロック図である。
【符号の説明】
1 吸収液
3 吸収塔
6 制御器
7 pH計
8 流量調整弁
9 脱硫ガス流量計
10 吸収塔入口SO2濃度計
12 吸収剤スラリー流量計
13 吸収剤スラリー濃度計
16 SO2
20 必要吸収剤量
22 pH偏差
24 吸収剤換算量
25 比例積分調節器
26 pH考慮必要吸収剤量
28 設定吸収剤スラリー流量
32 開度指令
34 比例定数
35 関数発生器
36 積分定数
37 関数発生器
A 脱硫ガス流量
B 吸収塔入口SO2濃度
D 吸収剤スラリー流量
E 吸収剤スラリー濃度
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorbent slurry flow rate control method and apparatus for a flue gas desulfurization apparatus.
[0002]
[Prior art]
In general, in power plants, in order to absorb and remove SO 2 (sulfur oxide) from exhaust gas discharged from coal fired boilers, a flue gas desulfurization device using calcium carbonate (CaCO 3 ) as an absorbent is provided. However, as shown in FIG. 4, the flue gas desulfurization apparatus normally has an absorption tower 3 in which a liquid reservoir 1a of the absorption liquid 1 is formed in the lower part and a number of spray nozzles 2 are arranged in the upper part. A plurality of circulation pumps 4 that pump up the absorption liquid 1 in the liquid reservoir 1a of the absorption tower 3 and circulate by spraying it from the spray nozzle 2, and oxidation that supplies oxidized air to the liquid reservoir 1a of the absorption tower 3 The air blower 5 is provided.
[0003]
In the case of the flue gas desulfurization apparatus as described above, the absorbing liquid 1 is circulated while being sprayed from the spray nozzle 2 by the operation of the circulation pump 4, and the exhaust gas sent to the absorption tower 3 from a coal fired boiler or the like not shown is The SO 2 (sulfur oxide) is absorbed and removed by contact with the absorbing liquid 1 sprayed from the spray nozzle 2 and then discharged to the outside.
[0004]
On the other hand, the absorbing liquid 1 that has absorbed SO 2 from the exhaust gas is dropped into the liquid reservoir 1 a and is forcibly oxidized by the oxidized air supplied into the liquid reservoir 1 a by the operation of the oxidizing air blower 5. Calcium sulfate (CaSO 4 )) is generated, and a part of the absorbent 1 in the liquid reservoir 1a containing the gypsum is extracted as a gypsum slurry from the bottom of the absorption tower 3 and is sent to a gypsum recovery system (not shown). In the gypsum recovery system, water is removed from the gypsum slurry, and gypsum is generated and recovered.
[0005]
The absorber 3 is supplied with a required amount of absorbent slurry by appropriately controlling the opening degree of the flow rate adjusting valve 8 as necessary. A pH meter 7 that detects the pH (pH) of the absorbent 1 in the absorption tower 3, a desulfurization gas flow meter 9 that detects the desulfurization gas flow rate A, and an absorption tower inlet SO 2 that detects the absorption tower inlet SO 2 concentration B. A densitometer 10, an absorbent slurry flow meter 12 that detects the absorbent slurry flow rate D, and an absorbent slurry concentration meter 13 that detects the absorbent slurry concentration E, and are detected by the desulfurization gas flow meter 9. The desulfurization gas flow rate A, the absorption tower inlet SO 2 concentration B detected by the absorption tower inlet SO 2 concentration meter 10, the pH of the absorbent 1 detected by the pH meter 7, and the absorbent slurry concentration meter 13 Absorbent slurry concentration detected in Based on the above, a set absorbent slurry flow rate 28 (see FIG. 5) required to maintain the pH of the absorbent 1 at the set pH value is obtained, and the absorbent slurry flow rate D is set to the set absorbent slurry flow rate 28. A controller 6 that outputs an opening degree command 32 to the flow rate adjusting valve 8 is provided so as to be equal.
[0006]
As shown in FIG. 5, the controller 6 desulfurizes by multiplying the absorption tower inlet SO 2 concentration B detected by the absorption tower inlet SO 2 concentration meter 10 by a set desulfurization rate (for example, 90%). A multiplier 15 for obtaining and outputting the SO 2 concentration 14;
By multiplying the desulfurization gas flow rate A detected by the desulfurization gas flow meter 9 by the desulfurization SO 2 concentration 14 output from the multiplier 15, the SO flowing into the absorption tower 3 to be removed from the exhaust gas. A multiplier 17 for obtaining and outputting two quantities 16;
A multiplier 19 that obtains and outputs an absorbent amount 18 by multiplying the SO 2 amount 16 output from the multiplier 17 by a value of (absorbent amount / SO 2 amount);
A multiplier 21 that obtains and outputs the necessary amount 20 of the absorbent that is actually required by multiplying the amount of absorbent 18 that is output from the multiplier 19 by a set absorbent excess rate (for example, 1.02); ,
A subtractor 23 for obtaining a difference between a preset pH value (for example, 5.0) set in advance and the pH of the absorbent 1 detected by the pH meter 7 and outputting a pH deviation 22;
A proportional-plus-integral controller 25 that outputs an absorbent conversion amount 24 for eliminating the pH deviation 22 by proportionally integrating the pH deviation 22 output from the subtractor 23;
An adder that obtains and outputs a pH-considered necessary absorbent amount 26 by adding an absorbent conversion amount 24 output from the proportional-plus-integral regulator 25 to the required absorbent amount 20 output from the multiplier 21. 27,
A divider that obtains and outputs a set absorbent slurry flow rate 28 by dividing the absorbent-considered absorbent amount 26 output from the adder 27 by the absorbent slurry concentration E detected by the absorbent slurry concentration meter 13. 29,
A subtractor 31 for calculating a difference between the set slurry flow rate 28 outputted from the divider 29 and the absorbent slurry flow rate D detected by the absorbent slurry flow meter 12 and outputting an absorbent slurry deviation 30;
And a proportional integral controller 33 for outputting an opening degree command 32 of the flow rate adjusting valve 8 for eliminating the absorbent slurry deviation 30 by proportionally integrating the absorbent slurry deviation 30 output from the subtractor 31. It has the composition which becomes.
[0007]
During the operation of the flue gas desulfurization apparatus, the pH of the absorption liquid 1 detected by the pH meter 7, the desulfurization gas flow rate A detected by the desulfurization gas flow meter 9, and the absorption tower inlet SO 2 concentration meter 10 were detected. The absorption tower inlet SO 2 concentration B, the absorbent slurry flow rate D detected by the absorbent slurry flow meter 12, and the absorbent slurry concentration E detected by the absorbent slurry concentration meter 13 are input to the controller 6, By multiplying the absorption tower inlet SO 2 concentration B detected by the absorption tower inlet SO 2 concentration meter 10 in the multiplier 15 of the controller 6 by the set desulfurization rate, the desulfurization SO 2 concentration 14 is obtained and multiplied. The desulfurization gas flow rate A detected by the desulfurization gas flow meter 9 in the multiplier 17 is multiplied by the desulfurization SO 2 concentration 14 output from the multiplier 15 to be removed from the exhaust gas. Should be an absorption tower Is coming SO 2 amount 16 flows outputted to the multiplier 19 is determined to respect SO 2 amount 16 outputted from the multiplier 17 in the multiplier 19 (absorbent weight / SO 2 volume) By multiplying the value, the absorbent amount 18 is obtained and output to the multiplier 21, and the multiplier 21 multiplies the absorbent amount 18 output from the multiplier 19 by the set absorbent excess rate. The required absorbent amount 20 actually required is obtained and output to the adder 27, while the preset pH value preset in the subtracter 23 and the pH of the absorbent 1 detected by the pH meter 7 The pH deviation 22 is output to the proportional integral controller 25, and the pH deviation 22 output from the subtractor 23 in the proportional integral controller (controller performing feedback control calculation) 25 is proportional. Integration Then, an absorbent conversion amount 24 for eliminating the pH deviation 22 is output to the adder 27, and the adder 27 outputs the necessary absorbent amount 20 output from the multiplier 21 from the proportional-integral controller 25. By adding the output amount 24 of the absorbent conversion, a pH-considered necessary absorbent amount 26 is obtained and output to the divider 29, and the pH-considered absorbent amount output from the adder 27 in the divider 29. 26 is divided by the absorbent slurry concentration E detected by the absorbent slurry concentration meter 13, the set absorbent slurry flow rate 28 is obtained and output to the subtractor 31. The difference between the output set absorbent slurry flow rate 28 and the absorbent slurry flow rate D detected by the absorbent slurry flow meter 12 is obtained, and the absorbent slurry deviation 30 is the ratio. An example of the opening degree command 32 for eliminating the absorbent slurry deviation 30 is obtained by proportionally integrating the absorbent slurry deviation 30 outputted from the subtractor 31 in the proportional integral regulator 33. Output to the regulating valve 8, the opening degree of the flow regulating valve 8 is adjusted, and control is performed so that the absorbent slurry flow rate D becomes equal to the set absorbent slurry flow rate 28, thereby adjusting the pH of the absorbent 1. The set pH value is maintained.
[0008]
[Problems to be solved by the invention]
However, in the conventional control system as described above, the proportionality constant and integral constant of the proportional-plus-integral regulator 25 for maintaining the pH of the absorbent 1 at the set pH value are the load (the SO that flows into the absorption tower 3). since is constant regardless of the variations of the amount of 16), for example, proportional constant and integral constant of the proportional integral controller 25, if that is the proper when the load is high, the load becomes lower absorption When the amount of SO 2 16 flowing into the tower 3 decreases, the pH deviation 22 of the absorbent 1 is the same as when the load is high, and the amount of absorbent slurry supplied to the absorber 3 is the same. Actually, an excessive amount of the absorbent slurry is supplied to the absorption tower 3, and the pH of the absorbent 1 becomes unstable. On the contrary, the proportional constant and integral constant of the proportional integral controller 25 are different. Appropriate when the load is low When the load increases and the SO 2 amount 16 flowing into the absorption tower 3 increases, the pH deviation 22 of the absorption liquid 1 is the same as when the load is low, and the absorbent supplied to the absorption tower 3 Even if the amount of the slurry is the same, the absorbent slurry actually supplied to the absorption tower 3 is insufficient, and the convergence of the pH deviation 22 of the absorbent 1 is delayed. It was.
[0009]
In view of such circumstances, the present invention can quickly converge the pH deviation of the absorbent from a low load to a high load, and can stabilize the pH of the absorbent. The device is to be provided.
[0010]
[Means for Solving the Problems]
The present invention obtains the amount of SO 2 flowing into the absorption tower based on the detected desulfurization gas flow rate and the absorption tower inlet SO 2 concentration, and the necessary amount of absorbent actually required based on the SO 2 amount. On the other hand, a pH deviation between a preset pH value set in advance and the detected pH of the absorbing solution is obtained, and an absorbent conversion amount for eliminating the pH deviation is obtained by proportionally integrating the pH deviation, By adding the equivalent amount of the absorbent to the amount of the necessary absorbent, the pH-required necessary amount of absorbent is obtained, and the pH of the absorbent is obtained by dividing the pH-required necessary amount of absorbent by the detected concentration of the absorbent slurry. Obtain the set absorbent slurry flow rate required to maintain the set pH value, and adjust the detected exhaust slurry flow rate so that the detected absorbent slurry flow rate becomes equal to the set absorbent slurry flow rate. In the control method the absorbent slurry flow control method for flue gas desulfurization apparatus and sets, based on the SO 2 amount proportional constant and integral constant and, respectively, come to flow into the absorption column at the time of proportional integral processing the pH deviation It is such a thing.
[0011]
Further, the present invention includes a pH meter for detecting the pH of the absorption liquid in the absorption tower, the desulfurization gas flow meter for detecting the desulfurized gas flow rate, and the absorption tower inlet SO 2 concentration meter for detecting the absorption tower inlet SO 2 concentration An absorbent slurry flow meter for detecting the absorbent slurry flow rate, an absorbent slurry concentration meter for detecting the absorbent slurry concentration, and a flow rate adjusting valve for adjusting the flow rate of the absorbent slurry supplied into the absorption tower,
The amount of SO 2 flowing into the absorption tower is determined based on the desulfurization gas flow rate and the absorption tower inlet SO 2 concentration, and the necessary amount of absorbent actually required is calculated based on the amount of SO 2. A pH deviation between the set pH value and the pH of the absorbing solution is obtained, and the pH deviation is proportionally integrated using a proportional constant and an integral constant set based on the SO 2 amount. To determine the amount of the absorbent required for pH consideration by adding the amount of the equivalent of the absorbent to the amount of the required absorbent, and determine the amount of the absorbent necessary for pH consideration as the concentration of the absorbent slurry. The flow rate adjustment valve is determined so that the set absorbent slurry flow rate required to maintain the pH of the absorbent at the set pH value is obtained by dividing the absorbent slurry flow rate by the set absorbent slurry flow rate. Open the opening command to In which according to the absorbent slurry flow controller flue gas desulfurization apparatus characterized by comprising a controller for.
[0012]
According to the above means, the following operation can be obtained.
[0013]
In the method of controlling the flow rate of the absorbent slurry of the flue gas desulfurization apparatus of the present invention, during operation, the amount of SO 2 flowing into the absorption tower is determined based on the detected desulfurization gas flow rate and the absorption tower inlet SO 2 concentration. On the other hand, the necessary amount of absorbent actually required is obtained based on the amount of SO 2, while the pH deviation between the preset set pH value and the detected pH of the absorbent is obtained, and the pH deviation is proportional Absorbent equivalent amount for eliminating the pH deviation after integration processing is obtained, and by adding the absorbent equivalent amount to the required absorbent amount, the pH-required absorbent amount is obtained, and the pH consideration is necessary. By dividing the absorbent amount by the detected absorbent slurry concentration, the set absorbent slurry flow rate required to maintain the pH of the absorbent at the set pH value is obtained, and the detected absorbent slurry flow rate is Set absorbent To be equal to Larry flow, the control is carried out, the pH deviation is respectively the proportional constant and integral constant in the proportional integration processing is set based on the SO 2 content coming flows into the absorption tower.
[0014]
Further, in the absorbent slurry flow control device of the flue gas desulfurization apparatus of the present invention, during operation, the pH of the absorption liquid detected by the pH meter, the desulfurization gas flow rate detected by the desulfurization gas flow meter, and the absorption tower inlet The absorption tower inlet SO 2 concentration detected by the SO 2 concentration meter, the absorbent slurry flow rate detected by the absorbent slurry flow meter, and the absorbent slurry concentration detected by the absorbent slurry concentration meter are input to the controller. In the controller, the amount of SO 2 flowing into the absorption tower is determined based on the desulfurization gas flow rate and the absorption tower inlet SO 2 concentration, and it is actually necessary based on the SO 2 amount. While the amount of the absorbent is obtained, a pH deviation between a preset pH value set in advance and the pH of the absorbent is obtained, and a proportional constant and an integral constant are set based on the SO 2 amount. Proportional integral processing using Absorbent equivalent amount for eliminating pH deviation is determined, and by adding the absorbent equivalent amount to the necessary absorbent amount, the pH-required absorbent amount is obtained, and the pH-required absorbent amount By dividing by the absorbent slurry concentration, the set absorbent slurry flow rate required to maintain the pH of the absorbent at the set pH value is determined, so that the absorbent slurry flow rate becomes equal to the set absorbent slurry flow rate. An opening degree command is output to the flow rate adjustment valve, and the opening degree of the flow rate adjustment valve is adjusted.
[0015]
As a result, in the absorbent slurry flow rate control method and apparatus of the flue gas desulfurization apparatus of the present invention, the proportionality constant and the integral constant at the time of the proportional-integration processing performed to maintain the pH of the absorbent at the set pH value are: Since it is always set to an appropriate value according to the change in the amount of SO 2 flowing into the absorption tower, for example, when the load is low and the amount of SO 2 flowing into the absorption tower is small, the pH deviation of the absorption liquid Even if the load is the same as when the load is high, the amount of the absorbent slurry supplied to the absorption tower is reduced by a required amount compared to the case of a high load, and an excessive amount of the absorbent slurry is not supplied to the absorption tower. On the other hand, when the pH of the absorption liquid is stabilized, on the contrary, when the load is high and the amount of SO 2 flowing into the absorption tower is large, the absorption liquid is supplied to the absorption tower even if the pH deviation of the absorption liquid is the same as at low load. The amount of absorbent slurry is required from low load Only increases, prevents the absorbent slurry supplied to the absorption tower is insufficient convergence of pH deviation of the absorption liquid is be carried out promptly.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
FIG. 1 shows an example of an embodiment of the present invention. In the figure, the same reference numerals as those in FIGS. 4 and 5 denote the same components, and the basic configuration is shown in FIGS. Although the same as the conventional one shown in FIG. 1, the characteristic feature of this example is that the proportionality constant 34 of the proportional-plus-integral regulator 25 is obtained based on the SO 2 amount 16 as shown in FIG. And a function generator 37 for obtaining an integral constant 36 of the proportional-plus-integral regulator 25 based on the SO 2 amount 16 and outputting it to the proportional-plus-integral regulator 25.
[0018]
The function generator 35 is input with a function as shown in FIG. 2, which indicates that the proportional constant 34 is increased or decreased in proportion to the increase or decrease in the SO 2 amount 16. Yes. Further, the function generator 37 is input with a function as shown in FIG. 3, which indicates that the integration constant 36 is increased or decreased in proportion to the increase or decrease of the SO 2 amount 16. Yes.
[0019]
Next, the operation of the illustrated example will be described.
[0020]
During operation of the flue gas desulfurization apparatus, the pH of the absorbent 1 detected by the pH meter 7, the desulfurization gas flow rate A detected by the desulfurization gas flow meter 9, and the absorption detected by the absorption tower inlet SO 2 concentration meter 10. The tower inlet SO 2 concentration B, the absorbent slurry flow rate D detected by the absorbent slurry flow meter 12, and the absorbent slurry concentration E detected by the absorbent slurry concentration meter 13 are input to the controller 6, The multiplier 15 of the controller 6 multiplies the absorption tower inlet SO 2 concentration B detected by the absorption tower inlet SO 2 concentration meter 10 by the set desulfurization rate to obtain the desulfurization SO 2 concentration 14 and the multiplier. The desulfurization gas flow rate A detected by the desulfurization gas flow meter 9 in the multiplier 17 is multiplied by the desulfurization SO 2 concentration 14 output from the multiplier 15 to be removed from the exhaust gas. To the power absorption tower 3 Input to come SO 2 amount 16 is outputted to the multiplier 19 being sought, the value of the relative SO 2 amount 16 outputted from the multiplier 17 in the multiplier 19 (absorber weight / SO 2 volume) , The amount of the absorbent 18 is obtained and output to the multiplier 21, and the multiplier 21 multiplies the amount of absorbent 18 output from the multiplier 19 by the set absorbent excess rate. The necessary amount of absorbent 20 that is actually required is obtained and output to the adder 27.
[0021]
On the other hand, the difference between the preset pH value set in advance in the subtractor 23 and the pH of the absorbent 1 detected by the pH meter 7 is obtained, and the pH deviation 22 is output to the proportional integration controller 25, where the proportional integration is performed. In the regulator 25, the pH deviation 22 output from the subtractor 23 is subjected to proportional integration processing and an absorbent conversion amount 24 for eliminating the pH deviation 22 is output to the adder 27. Here, the multiplier 17 The function generator 35 obtains the proportionality constant 34 of the proportional-plus-integral regulator 25 based on the SO 2 amount 16 outputted from the proportional-plus-integral regulator 25 and outputs it to the proportional-plus-integral regulator 25 and the SO 2 outputted from the multiplier 17. output in function generator 37 based on the amount 16 is demanded integration constant 36 of the proportional integral controller 25 to the proportional integral controller 25, the proportional integral controller 25 in accordance with the SO 2 volume 16 at that time Example constant 34 and the integral constant 36 and the proportional-plus-integral calculator since the form is re-set 25, operations are performed to quickly stabilize the absorption tower fluid pH.
[0022]
In the adder 27, an absorbent conversion amount 24 output from the proportional-plus-integration controller 25 is added to the required absorbent amount 20 output from the multiplier 21, thereby obtaining a pH-required required absorbent amount 26. Is obtained and output to the divider 29, and the divider-required absorbent amount 26 in consideration of pH output from the adder 27 is divided by the absorbent slurry concentration E detected by the absorbent slurry concentration meter 13. As a result, the set absorbent slurry flow rate 28 is obtained and output to the subtractor 31, which is detected by the set absorbent slurry flow rate 28 output from the divider 29 and the absorbent slurry flow meter 12. The difference from the absorbent slurry flow rate D is obtained, and the absorbent slurry deviation 30 is output to the proportional-plus-integral adjuster 33. The absorbent slurry deviation 30 output from 1 is proportionally integrated, and an opening degree command 32 for eliminating the absorbent slurry deviation 30 is outputted to the flow rate adjustment valve 8, and the opening degree of the flow rate adjustment valve 8 is adjusted, Control is performed so that the absorbent slurry flow rate D becomes equal to the set absorbent slurry flow rate 28.
[0023]
As a result, as described above, the proportionality constant 34 and the integration constant 36 of the proportional-plus-integral controller 25 for maintaining the pH of the absorbent 1 at the set pH value are the load (the amount of SO 2 flowing into the absorption tower 3). 16) is always reset to an appropriate value in accordance with the change in 16). For example, when the load 16 is low and the amount of SO 2 flowing into the absorption tower 3 is small, the pH deviation 22 of the absorbent 1 is high. The amount of the absorbent slurry supplied to the absorption tower 3 is less than the required amount even when the load is high, so that an excessive amount of the absorbent slurry is not supplied to the absorption tower 3 and the absorption On the other hand, when the pH of the liquid 1 is stabilized, on the contrary, when the load is high and the SO 2 amount 16 flowing into the absorption tower 3 is large, even if the pH deviation 22 of the absorption liquid 1 is the same as that at the low load, the absorption tower The amount of absorbent slurry supplied to 3 is the required amount from the time of low load Only increases, prevents a shortage of the absorbent slurry supplied to the absorption tower 3, the convergence of pH deviation 22 of the absorbing liquid 1 is be carried out promptly.
[0024]
Thus, the pH deviation 22 of the absorbent 1 can be quickly converged from a low load to a high load, and the pH of the absorbent 1 can be stabilized.
[0025]
In addition, the absorbent slurry flow rate control method and apparatus of the flue gas desulfurization apparatus of the present invention is not limited to the above illustrated examples, and various modifications can be made without departing from the scope of the present invention. Of course.
[0026]
【The invention's effect】
As described above, according to the absorbent slurry flow rate control method and apparatus of the flue gas desulfurization apparatus of the present invention, the pH deviation of the absorption liquid can be quickly converged from low load to high load, and the pH of the absorption liquid It is possible to achieve an excellent effect that can be stabilized.
[Brief description of the drawings]
FIG. 1 is a control block diagram illustrating an example of an embodiment of the present invention.
FIG. 2 is a diagram representing a function input to a function generator 35 shown in FIG.
FIG. 3 is a diagram representing a function input to the function generator 37 shown in FIG.
FIG. 4 is an overall schematic configuration diagram of a conventional example.
FIG. 5 is a control block diagram of the controller shown in FIG. 4;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Absorbent 3 Absorption tower 6 Controller 7 pH meter 8 Flow control valve 9 Desulfurization gas flow meter 10 Absorption tower inlet SO 2 concentration meter 12 Absorbent slurry flow meter 13 Absorbent slurry concentration meter 16 SO 2 amount 20 Necessary amount of absorbent 22 pH deviation 24 Absorbent conversion amount 25 Proportional integral controller 26 Absorbent amount required for pH 28 Setting absorbent slurry flow rate 32 Opening command 34 Proportional constant 35 Function generator 36 Integration constant 37 Function generator A Desulfurization gas flow rate B Absorption Tower inlet SO 2 concentration D Absorbent slurry flow rate E Absorbent slurry concentration

Claims (2)

検出された脱硫ガス流量と吸収塔入口SO2濃度とに基づいて吸収塔へ流入してくるSO2量を求め、該SO2量に基づいて実際に必要となる必要吸収剤量を求める一方、予め設定された設定pH値と検出された吸収液のpHとのpH偏差を求め、該pH偏差を比例積分処理して該pH偏差をなくすための吸収剤換算量を求め、前記必要吸収剤量に対して吸収剤換算量を加えることにより、pH考慮必要吸収剤量を求め、該pH考慮必要吸収剤量を検出された吸収剤スラリー濃度で割ることにより、前記吸収液のpHを設定pH値に保持するのに必要となる設定吸収剤スラリー流量を求め、検出された吸収剤スラリー流量が設定吸収剤スラリー流量と等しくなるよう、制御を行う排煙脱硫装置の吸収剤スラリー流量制御方法において、pH偏差を比例積分処理する際の比例定数と積分定数とをそれぞれ、吸収塔へ流入してくるSO2量に基づいて設定することを特徴とする排煙脱硫装置の吸収剤スラリー流量制御方法。While obtaining the amount of SO 2 flowing into the absorption tower based on the detected desulfurization gas flow rate and the absorption tower inlet SO 2 concentration, and obtaining the necessary amount of absorbent actually required based on the amount of SO 2 , Obtain a pH deviation between a preset pH value set in advance and the pH of the detected absorbent, determine an absorbent conversion amount for eliminating the pH deviation by proportionally integrating the pH deviation, and the required amount of absorbent By adding the amount in terms of the absorbent to the pH, the pH-required absorbent amount is obtained, and the pH-required absorbent amount is divided by the detected absorbent slurry concentration to set the pH of the absorbent to the set pH value. In the absorbent slurry flow rate control method of the flue gas desulfurization apparatus that performs control so as to obtain a set absorbent slurry flow rate required to maintain the flow rate and to make the detected absorbent slurry flow rate equal to the set absorbent slurry flow rate, pH deviation Absorbent slurry flow control method for flue gas desulfurization apparatus characterized by setting proportionality constant in the proportional integration processing and integral constants and the respective, based on the SO 2 content coming flows into the absorption tower. 吸収塔内における吸収液のpHを検出するpH計と、脱硫ガス流量を検出する脱硫ガス流量計と、吸収塔入口SO2濃度を検出する吸収塔入口SO2濃度計と、吸収剤スラリー流量を検出する吸収剤スラリー流量計と、吸収剤スラリー濃度を検出する吸収剤スラリー濃度計と、吸収塔内へ供給される吸収剤スラリー流量を調節する流量調整弁と、
前記脱硫ガス流量と前記吸収塔入口SO2濃度とに基づいて吸収塔へ流入してくるSO2量を求め、該SO2量に基づいて実際に必要となる必要吸収剤量を求める一方、予め設定された設定pH値と前記吸収液のpHとのpH偏差を求め、該pH偏差を前記SO2量に基づいて設定される比例定数と積分定数とを用いて比例積分処理して該pH偏差をなくすための吸収剤換算量を求め、前記必要吸収剤量に対して吸収剤換算量を加えることにより、pH考慮必要吸収剤量を求め、該pH考慮必要吸収剤量を前記吸収剤スラリー濃度で割ることにより、前記吸収液のpHを設定pH値に保持するのに必要となる設定吸収剤スラリー流量を求め、前記吸収剤スラリー流量が設定吸収剤スラリー流量と等しくなるよう、前記流量調整弁へ開度指令を出力する制御器とを備えたことを特徴とする排煙脱硫装置の吸収剤スラリー流量制御装置。
A pH meter for detecting the pH of the absorption liquid in the absorption tower, the desulfurization gas flow meter for detecting the desulfurized gas flow rate, and the absorption tower inlet SO 2 concentration meter for detecting the absorption tower inlet SO 2 concentration, the absorbent slurry flow rate An absorbent slurry flow meter for detecting, an absorbent slurry concentration meter for detecting the absorbent slurry concentration, a flow rate adjusting valve for adjusting the flow rate of the absorbent slurry supplied into the absorption tower,
The amount of SO 2 flowing into the absorption tower is determined based on the desulfurization gas flow rate and the absorption tower inlet SO 2 concentration, and the necessary amount of absorbent actually required is calculated based on the amount of SO 2. A pH deviation between the set pH value and the pH of the absorbing solution is obtained, and the pH deviation is proportionally integrated using a proportional constant and an integral constant set based on the SO 2 amount. To determine the amount of the absorbent required for pH consideration by adding the amount of the equivalent of the absorbent to the amount of the required absorbent, and determine the amount of the absorbent necessary for pH consideration as the concentration of the absorbent slurry. The flow rate adjustment valve is determined so that the set absorbent slurry flow rate required to maintain the pH of the absorbent at the set pH value is obtained by dividing the absorbent slurry flow rate by the set absorbent slurry flow rate. Open the opening command to Absorbent slurry flow controller flue gas desulfurization apparatus characterized by comprising a controller for.
JP12736398A 1998-05-11 1998-05-11 Absorbent slurry flow rate control method and apparatus for flue gas desulfurization apparatus Expired - Lifetime JP3757616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12736398A JP3757616B2 (en) 1998-05-11 1998-05-11 Absorbent slurry flow rate control method and apparatus for flue gas desulfurization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12736398A JP3757616B2 (en) 1998-05-11 1998-05-11 Absorbent slurry flow rate control method and apparatus for flue gas desulfurization apparatus

Publications (2)

Publication Number Publication Date
JPH11319475A JPH11319475A (en) 1999-11-24
JP3757616B2 true JP3757616B2 (en) 2006-03-22

Family

ID=14958117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12736398A Expired - Lifetime JP3757616B2 (en) 1998-05-11 1998-05-11 Absorbent slurry flow rate control method and apparatus for flue gas desulfurization apparatus

Country Status (1)

Country Link
JP (1) JP3757616B2 (en)

Also Published As

Publication number Publication date
JPH11319475A (en) 1999-11-24

Similar Documents

Publication Publication Date Title
JPH06182148A (en) Controlling apparatus for wet flue gas desulfurization apparatus
JP2013086054A (en) Wet type limestone-gypsum method desulfurization apparatus using seawater
JP3879204B2 (en) Absorbent slurry flow rate control method and apparatus when starting and stopping absorption tower circulation pump of flue gas desulfurization apparatus
JP3757616B2 (en) Absorbent slurry flow rate control method and apparatus for flue gas desulfurization apparatus
CN105786034A (en) Control system and method for boiler denitration outlet nitrogen oxide content
JPH11244646A (en) Control of flow rate of absorbent slurry of stack gas desulfurizer and device therefor
JP2948810B1 (en) Method and apparatus for controlling wet flue gas desulfurization system
JP3788038B2 (en) Absorbent slurry flow rate control method and apparatus for flue gas desulfurization apparatus
JPH11244648A (en) Control of absorbent slurry flow rate of wet stack gas desulfurizer and device therefor
JP3757597B2 (en) Absorbent slurry flow rate control method and apparatus for flue gas desulfurization apparatus
JPH0355171B2 (en)
JPH0919623A (en) Wet type waste gas desulfurizing method and device therefor
JP3864566B2 (en) Absorbent slurry concentration control device for flue gas desulfurization equipment
JP2565686B2 (en) Absorption liquid circulation flow controller for wet flue gas desulfurization equipment
JPH0445205B2 (en)
JP2001017825A (en) Flue gas desulfurization method and apparatus
JP2710790B2 (en) Control method for wet flue gas desulfurization unit
JP2933664B2 (en) Absorbent PH control unit for wet flue gas desulfurization unit
JP2809411B2 (en) Slurry circulation control system for wet flue gas desulfurization unit
JPH0147215B2 (en)
JPH11207144A (en) Method for controlling flow rate of oxidizing air of desulfurizer for stack gas and device therefor
JPS62204829A (en) Method for desulfurizing wet off-gas
JPH0573452B2 (en)
JPH0417691B2 (en)
JP2798973B2 (en) Exhaust gas desulfurization equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

EXPY Cancellation because of completion of term