JP3755026B2 - Method for estimating rice polishing ratio or broken rice rate of brewing rice - Google Patents

Method for estimating rice polishing ratio or broken rice rate of brewing rice Download PDF

Info

Publication number
JP3755026B2
JP3755026B2 JP2001284847A JP2001284847A JP3755026B2 JP 3755026 B2 JP3755026 B2 JP 3755026B2 JP 2001284847 A JP2001284847 A JP 2001284847A JP 2001284847 A JP2001284847 A JP 2001284847A JP 3755026 B2 JP3755026 B2 JP 3755026B2
Authority
JP
Japan
Prior art keywords
rice
rate
milling
brewing
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001284847A
Other languages
Japanese (ja)
Other versions
JP2003088766A (en
Inventor
和夫 佐藤
健 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute of Brewing
Original Assignee
National Research Institute of Brewing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute of Brewing filed Critical National Research Institute of Brewing
Priority to JP2001284847A priority Critical patent/JP3755026B2/en
Publication of JP2003088766A publication Critical patent/JP2003088766A/en
Application granted granted Critical
Publication of JP3755026B2 publication Critical patent/JP3755026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Adjustment And Processing Of Grains (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酒造原料米を精米する際の音響パワーのスペクトル分析を行うことにより、原料の精米度や砕米率、並びに精米機の稼動状態などを推定して制御を行い、製品の品質を高めかつ効率的に精米を行う技術に関するものである。
【0002】
【従来の技術】
従来、酒造原料米の精米は精米歩合70%の白米を得るのに10〜13時間、吟醸酒用の精米歩合40%の白米を得るのに50〜70時間を必要とする。この間の精米歩合の推定は精米機をいったん停止して精米途中の白米を集め、その全重量をロードセル等により測定して見かけの精米歩合を計算する方法がとられる。この重量計測によって知ることができるのは見かけの精米歩合であって、砕け米を除いた真精米歩合を知るためには精米途中で白米の整粒を肉眼により選別して精密天秤などにより計測するほかはない。この操作はきわめて煩雑であるため、真精米歩合を測定することはほとんど行われない。
【0003】
また、精米操作の巧拙の基準として、白米の形状が玄米により近いことと割れや砕米の発生率が少ないことがあげられるが、これらの条件を決定する操作方法としては精米機内部の金剛ロールの回転数と、排出口の負荷抵抗及び排出口の開度を調整することが行われる。これらは原料米の性質と精米室内の温度や湿度などの要因によっても異なることが普通であるため、長時間にわたる精米工程では一定ではなく精米の都度調整する必要がある。
【0004】
しかし、現状では精米過程における米質の変化を、精米操作を中断することなく連続的に、モニターすることは不可能であるため、米質にあわせて精米を行うことや、精米の巧拙を精米途中で判断することはほとんど不可能であり、精米機の操作は熟練者の経験と勘に依存しているのが実情である。さらに、吟醸酒用原料などの高度精白を行う必要がある場合には徹夜で精米機の監視を行う必要があるため、清酒製造場では労務上の問題から精米の熟練技術者と技術後継者が不足し、外部への委託精米を余儀なくされ、酒造適性のよい原料米を安定して入手することが困難となっている。
【0005】
【発明が解決しようとする課題】
本発明は、酒造原料米など原料穀類の酒造適性を高めかつ効率的に搗精を行う技術を提供することを目的とする。本発明は、従来熟練者の経験と勘で行われてきた精米機の制御をコンピュータによりリアルタイム状態で行うことを可能とするものであって、本発明によって精米機の運転を中断することなく精白度を測定できる。また、従来測定が困難であった酒造原料米の精米途中の砕米率及び真精米歩合を測定することができ、精米操作の適否や精米機の稼動状態をリモートで判断することを可能とする。
【0006】
【課題を解決するための手段】
本発明者らは、上記した目的を達成するため各方面から各種の検討を行ったが、結局、成功に至らなかった。そこで発想の大転換の必要に迫られ、広範且つ鋭意、検討、研究を行い、精米時の「音」に着目した。
【0007】
そして、本発明者らは、酒造原料米の精米時に発生する音を精密騒音計でサンプリングし、DATによりディジタル録音した。この音響データは高速フーリエ変換を行ってパワースペクトルに分解した。0〜12,000Hzまで50Hz刻みの周波数における音圧レベル(dB)について精米歩合と相関の高い周波数成分の抽出を行った。さらに重回帰分析によってこれらの周波数の中から精米歩合及び砕米率と特に相関の高い周波数を選び出し、この周波数における音圧レベルに基づく精米歩合及び砕米率の予測式を作成した。さらに主成分分析に基づいて主成分の抽出を行い、原料米の精米歩合によるグルーピング・マップを作成して原料米の性質を判断する方法を見出した。
【0008】
すなわち、本発明は精米時の音響データを解析することにより、リアルタイムで精米歩合及び醸造原料米の酒造適性を推定し、この結果に基づいて精米機の制御を行うことを可能とする全く新しい方法である。
以下、本発明を、醸造原料米の精米を例にとって説明する。
【0009】
【発明の実施の形態】
本発明において用いられる音響データのサンプリング装置は通常のコンデンサー型マイクロフォンで十分である。また録音装置は低ノイズのものであればどのようなものでもよい。また、音響データをパワースペクトルに分解するための演算は高速フーリエ変換が可能な汎用ソフトウエアを備えたものであれば通常のパーソナル・コンピュータで十分である。
【0010】
酒造原料米の精米時において精米歩合及び砕米率をリアルタイムで推定する場合には、あらかじめ予測式を作成しておく必要がある。酒造原料米の精米においては、精米歩合の変化に応じて精米途中の音響をいくつか収録し、これをパワースペクトルに分解して精米歩合と相関の高い周波数を同定する。このときの周波数の測定範囲は0〜20,000Hz、周波数の刻み幅は50〜数百Hzが適当である。一般的には精米の進行とともに5,000Hz以上の高周波帯域の音圧レベルが相対的に増加し、周波数が小さい帯域の音圧レベルが相対的に減少する傾向が見られる。精米歩合及び砕米率と相関の高いいくつかの波長を用いてそれぞれ重回帰式を作成し、予測式とする。精米時においては(1)音響データの収録、(2)高速フーリエ変換による音響データのパワースペクトルの取得、(3)特定周波数の音圧レベルの抽出、(4)重回帰式による精米歩合又は砕米率の計算、の操作を行う。
【0011】
精米歩合と相関の高い周波数としては、例えば500〜1500Hz、好適には700〜1200Hz、更に好適には900Hz前後の周波数が例挙される。また、砕米発生率と相関の高い周波数としては、例えば3000〜6000Hz、好適には3500〜5500Hz、更に好適には4000〜5200Hz、例えば4750Hz前後の周波数が例挙される。なお、これらの周波数は1例示として示したものであって、本発明はこれらの周波数のみに限定されるものではないし、これらを組合せてもよい。
【0012】
本発明においては、上記したところによって音響データを解析することにより精米歩合を推定ないし測定し、更にその結果に基づいて精米機の制御を行うことができる。
【0013】
このとき、精米機の制御要因は金剛ロールの回転数、排出口の負荷抵抗、排出口の開度などである。これらの値は一般的に精米歩合70%までは比較的大きな値とするが、目標精米歩合が70%以下の場合や原料米が割れやすい場合などは比較的小さな値とする。精米音の計測により精米途中において砕米率が大きいと判断された場合、精米歩合が標準経過と大きく違った場合、その他精米機の異常運転と判断された場合には金剛ロールの回転数、排口の負荷抵抗、排出口の開度などの少なくともひとつを自動的に変更して精米を継続するプログラムを作成することが可能である。
【0014】
次に実施例により本発明を更に説明する。
【0015】
【実施例1】
テストミルによる精米音のパワースペクトル分析による精米歩合の推定
(株)佐竹製作所製のテストミルにより酒造用原料米の精米を行い、見かけの精米歩合30〜90%の白米を調製した。テストミルによる精米では通常は150g程度の玄米をサンプルとするが精米の進行に伴い白米重量が減少し、精米歩合40%では初発重量の1/2.5となる。そこで、白米重量の減少による音圧レベルヘの影響を除くためにあらかじめ精米歩合を行い、それぞれ精米歩合の異なる白米サンプルを調製したのちに一定量(重量50g)を取り出して再度テストミルで精米を行って、発生する音響パワーのスペクトル分析を行った。テストミルによる精米時の音響パワースペクトルは全体的にフラットな音圧レベル分布を示し、11,000Hzを超える周波数領域では急激に減少する。またモーターの回転により発生する音圧レベルは1,500Hzを超える周波数領域では急速に減少するため、米に由来する音の成分の抽出に大きな影響を与えない。
【0016】
砕米を含む見かけの精米歩合と、砕米を除いた整粒のみによる真精米歩合についてそれぞれ相関の高い周波数を抽出したところ、両者ともに900Hzの音圧レベルが最も相関が大きく(いずれも相関係数=0.95、サンプル数=18)、回帰式により高い精度で精米歩合の推定を行うことができた(図1)。この結果から、テストミルによる精米時に発生する音の成分の中に精米による白米の形状変化とともに音圧レベルが変化する特定の周波数が存在し、パワースペクトル分析による回帰式から見かけの精米歩合及び真精米歩合を推定できると結論できる。なお実施例では厳密さを期するためにあらかじめ精米を行った試料から一定重量の白米を取り出して再度精米したが、通常の精米を行った場合においても高い精度で精米歩合の推定を行う回帰式を作成することができる。
【0017】
【実施例2】
精米音のパワースペクトル分析による砕米率の推定
酒造原料米に含まれる砕米の割合は酒造原料米の酒造適性を決定するきわめて重要な因子であって、精米操作の巧拙を判定する指標でもある。そこで砕米率を音響パワー計測で推定することが可能かどうかを調べた。精米歩合70%の白米と砕米をいろいろな割合で混合して実施例1と同様に(株)佐竹製作所製のテストミルにより重量100gの白米を精米し、発生する音響パワーのスペクトル分析を行って砕米率との相関係数の大きな周波数を同定した。このとき砕米率と最も相関の大きかった4,750Hzの音圧レベルにより回帰式を作成したところ、高い精度で砕米率の推定が可能であった(図2、相関係数=0.95、サンプル数=84)。この結果から、テストミルによる精米時に発生する音の成分の中に砕米の含有率とともに音圧レベルが変化する特定の周波数が存在し、精米時の音圧レベルを測定することにより砕米率の推定が可能と結論できる。
【0018】
【実施例3】
実用精米機の精米音パワースペクトル分析による精米歩合の推定
実用精米機による精米時の音響パワースペクトル分析により精米操作を中断することなく、リアルタイムで精米の進行をモニタリングできる。実施例ではチヨダエンジニアリング(株)製の小型精米機を用いて酒造用玄米重量60kgの精米を行い、精米歩合40%に至るまで約2%刻みで精米音を収録し高速フーリエ変換によるパワースペクトルを得た。通常の精米操作では精米の進行とともに金剛ロールの回転数を減少させるが、正確を期すために金剛ロール回転数を一定(1,000rpm)とした。図3(図面代用写真)に見られるように実用精米機の精米時の音響パワースペクトルはテストミルによる精米時と同様に全体的にフラットな音圧レベル分布を示し、11,000Hzを超える周波数領域では急激に減少する。周波数成分の音圧レベルと精米歩合との相関分析によれば、精米歩合の低下とともに低周波数領域の音圧レベルが減少し、逆に高周波領域の音圧レベルが増大することがわかった。
【0019】
そこで重回帰分析によりいくつかの周波数を抽出して回帰式を作成すると精度良く精米歩合を推定することができる。7,350Hzと8,650Hzの2波長の音圧レベルによって重回帰式を作成して見かけの精米歩合を計算すると、実測値との相関係数は0.96という高い値が得られた。なお、通常の精米操作では金剛ロールの回転数は最初に1,400rpm程度とし、精米の進行とともに金剛ロールの回転数を減少させて最終的には900rpm程度とするが、通常の回転数の範囲では音響パワースペクトル解析への影響は無視できる(図4)。
【0020】
【実施例4】
精米音パワースペクトルによる原料米の組織構造または物理化学的性質の分析
精米音パワースペクトルの主成分分析を行うと精米による原料米の物理化学的性質を調ベることができる。実施例3のパワースペクトルデータの主成分分析を行い、2つの主成分を抽出して精米歩合ごとのそれぞれの主成分スコアをプロットした結果を図5に示した。図5では精米歩合72%以上と精米歩合70%以下とで明確に2つのグループに分けられ、精米歩合70%付近を境として米の物理化学的性質が大きく変化することがわかる。このことは精米速度が精米歩合70%付近で急激に低下する事実と一致し、原料米の物理化学的性質がこの値を境として大きく変化することを示すものである。従って精米音パワースペクトルの変化により精米過程における原料米の組織構造または物理化学的性質の違いを調べることができ、醸造適性の新規な判別指標とすることができる。
【0021】
【発明の効果】
本発明は従来熟練者の経験と勘で行われてきた酒造用精米機の制御をコンピュータによりリアルタイム状態で行うことを可能とするものであって、本発明によって精米を中断することなく精米歩合を測定できる。また、測定が困難であった精米途中の真精米歩合の測定も可能であって、砕米発生率その他の醸造適性判別のほか、精米操作の適否や精米機の稼動状態をリモートで判断できるなど、清酒等の醸造用原料白米の酒造適性を高めかつ効率的に精米操作を行うことを可能にする効果がある。
【図面の簡単な説明】
【図1】 同一の酒造用玄米からテストミルにより異なる精米歩合の白米を調製し、これらを再度テストミルで精米したときに発生する音響パワーの高速フーリエ変換を行って得られたパワースペクトルにおいて、見かけの精米歩合または真精米歩合と相関の大きい周波数が存在することを示した図である。900Hzの音圧レベルとの相関係数は両者ともに0.95である。
【図2】 砕米を含む白米をサンプルとしてテストミルにより精米を行った時に発生する音響パワーの高速フーリエ変換を行い、得られたパワースペクトルのなかから最も相関の大きかった4,750Hzの音圧レベルによって砕米率を推定する式を示した図である。砕米率と4,750Hzの音圧レベルとの相関係数は0.95である。
【図3】 実用精米機により酒造用玄米重量60kgを用いて精米歩合40%に至るまで精米を行い、発生する音響パワーの高速フーリエ変換を行って得られたパワースペクトルのうち精米歩合94%と40%のデータ、並びにモーターのみを動かした無負荷時のデータを示した図である(図面代用写真)。
【図4】 実用精米機による精米過程で精米歩合40%に至るまで約2%刻みで収録した精米音のパワースペクトルの重回帰分析を行い、2つの周波数を抽出して作成した回帰式によって得られた精米歩合の計算値と実測値との偏差を示した図である。計算値と実測値との相関係数は0.96である。
【図5】 実用精米機による精米過程で精米歩合40%に至るまで約2%刻みで収録した精米音のパワースペクトルの主成分分析を行い、2つの主成分を抽出してそれぞれの精米歩合の主成分スコアをプロットした図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention performs a spectral analysis of the acoustic power when milling rice for brewing raw materials, thereby estimating and controlling the degree of milling of rice, the rate of pulverization, and the operating status of the milling machine, thereby improving the quality of the product. It also relates to a technology for efficiently polishing rice .
[0002]
[Prior art]
Conventionally, rice brewed from brewing rice requires 10 to 13 hours to obtain 70% polished rice, and 50 to 70 hours to obtain 40% polished rice for ginjo sake. During this period, the rice milling ratio is estimated by stopping the milling machine, collecting white rice during the milling process, measuring the total weight with a load cell or the like, and calculating the apparent rice milling ratio. What can be known by this weight measurement is the apparent rice milling ratio. To know the true rice milling ratio excluding broken rice, the size of white rice is selected with the naked eye during milling and measured with a precision balance. There is nothing else. Since this operation is extremely complicated, it is rare to measure the polished rice ratio.
[0003]
Also, as a skillful standard for rice milling operations, the shape of white rice is closer to that of brown rice, and the incidence of cracking and broken rice is low, but the operating method for determining these conditions is that of the Kongo roll inside the rice milling machine. The rotation speed, the load resistance of the discharge port, and the opening degree of the discharge port are adjusted. Since these usually differ depending on the properties of the raw rice and factors such as the temperature and humidity in the milled rice chamber, the milling process over a long period of time is not constant and needs to be adjusted for each milled rice.
[0004]
However, at present, it is impossible to continuously monitor rice quality changes during the milling process without interrupting the milling operation. It is almost impossible to make a judgment on the way, and the actual situation is that the operation of the rice milling machine depends on the experience and intuition of skilled workers. In addition, when it is necessary to perform high-grade whitening such as raw materials for ginjo sake, it is necessary to monitor the rice milling machine all night, so that at the sake brewery, skilled rice polishing technicians and technical successors are due to labor issues. There is a shortage, it is forced to outsource rice milling to the outside, it is difficult to stably obtain raw rice with good brewing suitability.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a technique for improving the brewing suitability of raw cereals such as brewing raw rice and efficiently scouring. The present invention makes it possible to control a rice milling machine, which has been performed based on the experience and intuition of a conventional expert, in a real-time state by a computer. The degree can be measured. In addition, it is possible to measure the rate of crushed rice and the ratio of true rice during the milling of brewing rice, which has been difficult to measure in the past, so that it is possible to remotely determine the suitability of the rice milling operation and the operating state of the rice mill.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventors have conducted various studies from various directions, but eventually did not achieve success. In response to the need for a radical change in ideas, he conducted extensive and earnest study, research, and focused on the “sound” of rice milling.
[0007]
Then, the present inventors sampled the sound generated during the milling of the brewing raw rice rice with a precision sound level meter and digitally recorded it with DAT. This acoustic data was decomposed into a power spectrum by performing a fast Fourier transform. A frequency component having a high correlation with the rice polishing rate was extracted from the sound pressure level (dB) at a frequency of 50 Hz from 0 to 12,000 Hz. Furthermore, the frequency which has a high correlation with the rice polishing rate and the broken rice rate was selected from these frequencies by multiple regression analysis, and the prediction formula of the rice polishing rate and the broken rice rate based on the sound pressure level at this frequency was made. Furthermore, based on the principal component analysis, we extracted the principal components and created a grouping map based on the percentage of polished rice.
[0008]
That is, the present invention analyzes the acoustic data at the time of rice milling to estimate the rice milling ratio and the brewing suitability of the brewing raw material rice in real time, and to control the rice milling machine based on this result. It is.
Hereinafter, the present invention will be described by taking rice brewed rice as an example.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An ordinary condenser microphone is sufficient as the sound data sampling apparatus used in the present invention. The recording device may be anything as long as it has a low noise. For the calculation for decomposing the acoustic data into the power spectrum, an ordinary personal computer is sufficient as long as it has general-purpose software capable of fast Fourier transform.
[0010]
When estimating the polishing ratio and broken rice rate in real time during the brewing Rice polished rice, it is necessary to create a predictable expression. In the rice milling of brewing rice, some sounds during the milling are recorded according to the change in the milling rate, and the frequency is highly correlated with the milling rate by decomposing it into a power spectrum. The frequency measurement range at this time is suitably 0 to 20,000 Hz, and the frequency step size is suitably 50 to several hundred Hz. Generally, with the progress of rice milling, the sound pressure level in the high frequency band of 5,000 Hz or higher is relatively increased, and the sound pressure level in the low frequency band is relatively decreased. Multiple regression equations are created using several wavelengths that are highly correlated with the rice milling rate and the broken rice rate, respectively, and are used as prediction equations. At the time of rice polishing, (1) recording of acoustic data, (2) acquisition of power spectrum of acoustic data by fast Fourier transform, (3) extraction of sound pressure level of specific frequency, (4) rice polishing rate or broken rice by multiple regression equation Perform rate calculation.
[0011]
Examples of the frequency having a high correlation with the rice polishing rate include, for example, frequencies of 500 to 1500 Hz, preferably 700 to 1200 Hz, and more preferably around 900 Hz. Moreover, as a frequency with a high correlation with the broken rice incidence , for example, a frequency of 3000 to 6000 Hz, preferably 3500 to 5500 Hz, more preferably 4000 to 5200 Hz, for example, 4750 Hz is exemplified. Note that these frequencies are shown as an example, and the present invention is not limited to these frequencies, and these may be combined.
[0012]
In the present invention, the rice milling rate can be estimated or measured by analyzing the acoustic data as described above, and the rice milling machine can be controlled based on the result.
[0013]
At this time, the control factors of the rice mill are the rotation speed of the Kongo roll, the load resistance of the discharge port, the opening degree of the discharge port, and the like. These values are generally relatively large up to 70% of the rice polishing ratio, but are relatively small when the target rice polishing ratio is 70% or less, or when the raw rice is easily broken. If it is determined that the broken rice rate is high in the middle polished rice by the measurement of the polished rice sound, if the polishing ratio is very different to the standard course, the rotation speed of Kongo roll when it is determined that abnormal operation of other rice mill, leaving the exhaust It is possible to create a program for automatically changing at least one of the load resistance of the mouth, the opening of the discharge port, etc. and continuing the rice milling.
[0014]
The following examples further illustrate the present invention.
[0015]
[Example 1]
Estimating the Rice Milling Ratio by Power Spectrum Analysis of Rice Milling Sound Using a Test Mill Rice milled rice was brewed using a test mill manufactured by Satake Corporation, and white rice having an apparent rice milling ratio of 30 to 90% was prepared. In the milling by the test mill, brown rice of about 150 g is usually used as a sample, but the weight of the white rice decreases with the progress of the milling and becomes 1 / 2.5 of the initial weight at a polishing rate of 40%. Therefore, in order to eliminate the influence on the sound pressure level due to the decrease in the weight of the white rice, a rice milling ratio is performed in advance, and after preparing a white rice sample having a different rice milling ratio, a certain amount (weight 50 g) is taken out and then milled again with a test mill. A spectrum analysis of the generated sound power was performed. The sound power spectrum at the time of rice milling by the test mill exhibits a flat sound pressure level distribution as a whole, and rapidly decreases in a frequency region exceeding 11,000 Hz. In addition, the sound pressure level generated by the rotation of the motor rapidly decreases in the frequency range exceeding 1,500 Hz, so that it does not greatly affect the extraction of the sound component derived from rice.
[0016]
When high-correlation frequencies were extracted for apparent rice milling ratio including broken rice and true rice milling ratio by only sizing except for broken rice, the sound pressure level at 900 Hz was the most correlated for both (both correlation coefficient = 0.95, number of samples = 18), and the rice polishing rate could be estimated with high accuracy by the regression equation (FIG. 1). From this result, there is a specific frequency in which the sound pressure level changes with the shape change of polished rice due to polished rice among the components of the sound generated during polished rice by the test mill. From the regression equation based on power spectrum analysis, the apparent polished rice ratio and true polished rice It can be concluded that the commission can be estimated. In the examples, for the sake of strictness, white rice of a certain weight was taken out from a sample that had been previously polished and then polished again, but even when normal polishing was performed, a regression equation that estimates the polishing rate with high accuracy. Can be created.
[0017]
[Example 2]
Estimating the rate of crushed rice by power spectrum analysis of polished rice sound The ratio of crushed rice contained in brewing raw rice is a very important factor that determines the brewing suitability of brewing raw rice and is also an index for judging the skill of rice brewing operation. Therefore, it was investigated whether the rate of broken rice could be estimated by sound power measurement. Milled rice with a proportion of 70% of polished rice and crushed rice were mixed in various proportions, and 100 g of white rice was milled with a test mill manufactured by Satake Corporation in the same manner as in Example 1, and the spectrum of the generated acoustic power was analyzed to break the crushed rice. A frequency with a large correlation coefficient with the rate was identified. At this time, when a regression equation was created based on the sound pressure level of 4,750 Hz, which had the largest correlation with the broken rice rate, it was possible to estimate the broken rice rate with high accuracy (FIG. 2, correlation coefficient = 0.95, sample). Number = 84). From this result, there is a specific frequency in which the sound pressure level changes with the content of broken rice among the components of the sound generated during rice milling by the test mill, and the rate of broken rice can be estimated by measuring the sound pressure level during rice polishing. It can be concluded that it is possible.
[0018]
[Example 3]
Estimating the rice milling rate by analyzing the power of the rice milling sound of the practical rice milling machine The progress of the rice milling can be monitored in real time without interrupting the rice milling operation by analyzing the acoustic power spectrum at the time of rice milling with the rice milling machine. In the example, a rice milling weight of 60 kg is made using a small rice mill manufactured by Chiyoda Engineering Co., Ltd., and the power spectrum by fast Fourier transform is recorded in approximately 2% increments until the rice polishing rate reaches 40%. Obtained. In normal rice milling operation, the rotation speed of the Kongo roll is decreased with the progress of the milling, but the rotation speed of the Kongo roll is set constant (1,000 rpm) for the sake of accuracy. As can be seen in Fig. 3 (drawing substitute photo), the acoustic power spectrum during the milling of the practical rice mill shows a flat sound pressure level distribution as in the case of the milling by the test mill, and in a frequency region exceeding 11,000 Hz. Decreases rapidly. According to the correlation analysis between the sound pressure level of the frequency component and the rice milling rate, it was found that the sound pressure level in the low frequency region decreases with decreasing rice polishing rate, and conversely the sound pressure level in the high frequency region increases.
[0019]
Therefore, if several frequencies are extracted by multiple regression analysis and a regression equation is created, the rice yield can be estimated with high accuracy. When a multiple regression equation was created from the sound pressure levels of two wavelengths of 7,350 Hz and 8,650 Hz and the apparent rice polishing rate was calculated, the correlation coefficient with the measured value was as high as 0.96. In the normal rice milling operation, the rotation speed of the Kongo roll is first set to about 1,400 rpm, and the rotation speed of the Kongo roll is decreased to about 900 rpm as the milling progresses. Then, the influence on the sound power spectrum analysis can be ignored (Fig. 4).
[0020]
[Example 4]
Analysis of the structural structure or physicochemical properties of raw rice by using the polished rice power spectrum If the principal component analysis of the polished rice power spectrum is performed, the physicochemical properties of the raw rice by polished rice can be investigated. The principal component analysis of the power spectrum data of Example 3 was performed, two principal components were extracted, and the respective principal component scores for each rice polishing rate were plotted. FIG. In FIG. 5, it is clearly divided into two groups with a rice polishing rate of 72% or more and a rice polishing rate of 70% or less, and it can be seen that the physicochemical properties of rice greatly change around 70% of the rice polishing rate. This is consistent with the fact that the rice milling rate rapidly decreases around 70% of the rice milling ratio, and shows that the physicochemical properties of the raw rice rice change greatly with this value as a boundary. Therefore, the difference in the structure or physicochemical properties of the raw rice during the milling process can be examined by the change in the rice mill sound power spectrum, and this can be used as a new discrimination index for brewing aptitude.
[0021]
【The invention's effect】
The present invention makes it possible to control a rice brewing machine for sake brewing, which has been performed based on the experience and intuition of conventional experts, in a real-time state using a computer. It can be measured. In addition, it is possible to measure the percentage of true milled rice during the milling process, which was difficult to measure.In addition to determining the rate of crushed rice and other brewing aptitudes, it is possible to remotely determine the suitability of rice milling operations and the operating status of the rice milling machine. This has the effect of increasing the suitability of brewing white rice for sake brewing such as sake, and enabling efficient rice milling operations.
[Brief description of the drawings]
[Fig. 1] In the power spectrum obtained by preparing fast polished rice with different milling ratios from the same brown rice for sake brewing using a test mill and performing fast Fourier transform of the acoustic power generated when these are milled again with a test mill, It is the figure which showed that the frequency with a large correlation with a rice milling rate or a rice polishing rate exists. Both correlation coefficients with the sound pressure level of 900 Hz are 0.95.
[Fig. 2] Fast Fourier transform of the acoustic power generated when milled with a test mill using white rice containing crushed rice as a sample, and according to the sound pressure level of 4,750 Hz, the most correlated among the obtained power spectra. It is the figure which showed the type | formula which estimates a broken rice rate. The correlation coefficient between the broken rice rate and the sound pressure level of 4,750 Hz is 0.95.
[Fig. 3] Rice milling with a practical rice milling machine using 60kg of brown rice weight for sake brewing to a rice milling ratio of 40%, and a power spectrum obtained by performing a fast Fourier transform of the generated acoustic power of 94% rice milling ratio It is the figure which showed 40% of data and the data at the time of no load which moved only the motor (drawing substitute photograph).
[Figure 4] Obtained by the regression equation created by extracting the two frequencies by conducting multiple regression analysis of the power spectrum of the milled rice sound recorded in about 2% increments up to 40% of the milling rate in the milling process with a practical rice mill It is the figure which showed the deviation of the calculated value and the measured value of the obtained rice polishing rate. The correlation coefficient between the calculated value and the actually measured value is 0.96.
[Figure 5] Principal component analysis of the power spectrum of polished rice sound recorded in approximately 2% increments up to 40% of the rice milling rate in the rice milling process with a practical rice milling machine, and extracting two principal components It is the figure which plotted the principal component score.

Claims (6)

酒造原料米における精米歩合70〜40%の精米時の音響パワーのスペクトル分析を行い、精米歩合と相関の高い周波数を同定し、この結果に基づいて精米歩合を推定するか、あるいは、砕米率と相関の高い周波数を同定し、この結果に基づいて砕米率を推定する方法であって、精米時における音響データの収録工程、高速フーリエ変換による音響データのパワースペクトルの取得工程、特定周波数の音圧レベルの抽出工程、重回帰式による精米歩合又は砕米率の算出工程からなること、を特徴とする酒造原料米の精米歩合又は砕米率を推定する方法。Spectral analysis of the polishing power at 70 to 40% of the rice brewing rate in the brewing rice is performed, and a frequency highly correlated with the rice polishing rate is identified, and the rice polishing rate is estimated based on this result, or A method of identifying a highly correlated frequency and estimating the rate of broken rice based on the result, including the process of recording acoustic data during rice milling, the process of acquiring the power spectrum of acoustic data by fast Fourier transform, and the sound pressure at a specific frequency A method for estimating a rice polishing rate or a broken rice rate of a brewing rice, characterized by comprising a level extraction step, a rice polishing rate or a broken rice rate calculating step by a multiple regression equation. 精米時に発生する音について、精密騒音計、コンデンサー型マイクロフォン等通常のサンプリング装置によって音響データのサンプリングを行い、低ノイズ型録音装置で録音し、得られた音響データについて高速フーリエ変換が可能なソフトウエアを備えたコンピュータを用いて処理し、音響データをパワースペクトルに分解すること、を特徴とする請求項1に記載の方法。  Software that samples the sound generated during milling using an ordinary sampling device such as a precision sound level meter or condenser microphone, records it with a low-noise recording device, and performs fast Fourier transform on the resulting sound data The method according to claim 1, wherein the acoustic data is decomposed into a power spectrum by processing using a computer comprising: 精米歩合と相関の高い周波数が100〜12,000Hzの範囲であること、を特徴とする請求項1〜2のいずれか1項に記載の方法。  3. The method according to claim 1, wherein a frequency having a high correlation with the rice milling rate is in a range of 100 to 12,000 Hz. 砕米率と相関の高い周波数が100〜12,000Hzの範囲であること、を特徴とする請求項1〜2のいずれか1項に記載の方法。  The method according to any one of claims 1 to 2, wherein a frequency having a high correlation with the broken rice rate is in a range of 100 to 12,000 Hz. 請求項1〜4のいずれか1項に記載の方法にしたがって推定し、更にその結果に基づいて精米機の制御を行う方法。  The method which estimates according to the method of any one of Claims 1-4, and also controls a rice mill based on the result. 精米機の制御が、金剛ロールの回転数、排出口の負荷抵抗、排出口の開度から選ばれる要因の少なくともひとつの制御であること、を特徴とする請求項5に記載の方法。  6. The method according to claim 5, wherein the control of the rice mill is at least one control selected from the rotational speed of the Kongo roll, the load resistance of the discharge port, and the opening degree of the discharge port.
JP2001284847A 2001-09-19 2001-09-19 Method for estimating rice polishing ratio or broken rice rate of brewing rice Expired - Lifetime JP3755026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001284847A JP3755026B2 (en) 2001-09-19 2001-09-19 Method for estimating rice polishing ratio or broken rice rate of brewing rice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001284847A JP3755026B2 (en) 2001-09-19 2001-09-19 Method for estimating rice polishing ratio or broken rice rate of brewing rice

Publications (2)

Publication Number Publication Date
JP2003088766A JP2003088766A (en) 2003-03-25
JP3755026B2 true JP3755026B2 (en) 2006-03-15

Family

ID=19108099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001284847A Expired - Lifetime JP3755026B2 (en) 2001-09-19 2001-09-19 Method for estimating rice polishing ratio or broken rice rate of brewing rice

Country Status (1)

Country Link
JP (1) JP3755026B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100625168B1 (en) * 2004-08-23 2006-09-20 삼성전자주식회사 Method of inspecting a pattern on a substrate and apparatus for inspecting a pattern using the same

Also Published As

Publication number Publication date
JP2003088766A (en) 2003-03-25

Similar Documents

Publication Publication Date Title
CN101393099B (en) Continuous measurement method for tobacco moisture percentage and apparatus thereof
CN105834835B (en) A kind of tool wear on-line monitoring method based on Multiscale Principal Component Analysis
CN104713849A (en) Method for quickly predicting tobacco mildew based on near-infrared spectrum analysis technique
CN111257277B (en) Tobacco leaf similarity judgment method based on near infrared spectrum technology
CN111104730B (en) Method for quickly judging rice whitening degree based on whiteness
CN105954140A (en) Automatic determination method for paddy rice yield rate
JP3755026B2 (en) Method for estimating rice polishing ratio or broken rice rate of brewing rice
US7043970B2 (en) Method for monitoring wood-drying kiln state
CN108072629A (en) Chinese medicine online detection instrument, method and system
CN111879726B (en) Tobacco hot processing strength and volatility online monitoring method based on synchronous near-infrared analysis before and after processing
Eckhoff et al. A rapid single-kernel wheat hardness tester
CN110887809B (en) Method for measuring stem content in tobacco shreds based on near infrared spectrum technology
AU597189B2 (en) Method for determining physical properties
JP4111723B2 (en) Porous food texture evaluation method and porous food texture evaluation apparatus
Beghi et al. Rapid determination of crucial parameters for the optimization of milling process by using visible/near infrared spectroscopy on intact olives and olive paste
CN107934712A (en) Elevator health degree detection method and device based on statistical models
JP2003083951A (en) Evaluation method of relish in oil fried food, program for allowing computer to execute oil fried food relish evaluation method, and method for evaluating relish in oil fried food
CN109307731A (en) A kind of tobacco leaf position method of discrimination and device
CN112362610A (en) Method for detecting distribution uniformity of formula cut tobacco in thin cigarette
JP2019503647A (en) Roasting method and apparatus
CN107462541B (en) The method for predicting dried meat moisture content and rate of drying during hot air drying
Phoophuangpairoj et al. Computerized recognition of pineapple grades using physicochemical properties and flicking sounds
CN111595816B (en) Method for distinguishing tablet coating end point based on near-infrared PCA analysis and application thereof
CN109270229A (en) Rice assessment method
CN112378880B (en) Detecting system for formula tobacco shred distribution uniformity in fine cigarette

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

R150 Certificate of patent or registration of utility model

Ref document number: 3755026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term