JP3754805B2 - Zoom lens and optical apparatus using the same - Google Patents

Zoom lens and optical apparatus using the same Download PDF

Info

Publication number
JP3754805B2
JP3754805B2 JP24531497A JP24531497A JP3754805B2 JP 3754805 B2 JP3754805 B2 JP 3754805B2 JP 24531497 A JP24531497 A JP 24531497A JP 24531497 A JP24531497 A JP 24531497A JP 3754805 B2 JP3754805 B2 JP 3754805B2
Authority
JP
Japan
Prior art keywords
lens group
diffractive optical
refractive power
optical element
zoom lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24531497A
Other languages
Japanese (ja)
Other versions
JPH10148757A (en
Inventor
博喜 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP24531497A priority Critical patent/JP3754805B2/en
Publication of JPH10148757A publication Critical patent/JPH10148757A/en
Priority to US09/421,367 priority patent/US6606200B1/en
Application granted granted Critical
Publication of JP3754805B2 publication Critical patent/JP3754805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-+-

Description

【0001】
【発明の属する技術分野】
本発明は、銀塩カメラやデジタルカメラ、ビデオカメラに好適に用いられるズームレンズ及びそれを用いた光学機器に関するものである。
【0002】
【従来の技術】
ホームビデオカメラ等の小型軽量化に伴い、撮像用ズームレンズの小型化にもめざましい進歩が見られる。最近では特に全長の短縮化、前玉径の小型化、光学系の構成の簡略化等に力が注がれている。
【0003】
これらの目的を達成する一つの手段として、物体側の第1レンズ群以外のレンズ群を移動させてフォーカスを行う、所謂リアフォーカス式のズームレンズが知られている。一般に、リアフォーカス式のズームレンズは、第1レンズ群を移動させてフォーカスを行うズームレンズに比べて、第1レンズ群の有効径を小さくできるため、レンズ系全体の小型化が容易になる。
【0004】
このようなリアフォーカス式のズームレンズとして、例えば特開昭62−24213号公報、特開昭62−247316号公報では、物体側より順に正の第1レンズ群、負の第2レンズ群、正の第3レンズ群、正の第4レンズ群を有し、第2レンズ群を移動させて変倍を行い、第4レンズ群で変倍に伴う像面変動の補正とフォーカシングを行うズームレンズを開示している。
【0005】
また一方では、10倍以上の高変倍化を達成するズームレンズへのニーズが大きくなってきている。しかしながら、高変倍化を実現しつつ収差を抑えるためには、各レンズ群を構成するレンズの枚数を多くして、各レンズ群の収差補正にかかる分担を小さくする必要がある。各レンズ群を構成するレンズ枚数が増えると、当然ズームレンズ全体は大型化することになる。つまりズームレンズの高変倍化の要求は、小型化への要求とは相反するものであった。
【0006】
この二律背反する要求を達成するため、ズームレンズを構成するレンズに非球面を用いる方法が従来より知られている。ただし、10倍を超える高変倍比においては、色収差の補正も重要な課題となってくるが、非球面レンズでの色収差の補正は難しい。
【0007】
ところで、色収差を良好に補正しつつ、ズームレンズを小型化する方法として、回折光学素子を用いる方法が知られている。
【0008】
例えば米国特許5,268,790号には、バリエーターである第2レンズ群及び/またはコンペンセーターである第3レンズ群に回折光学素子を用いることを開示している。
【0009】
【発明が解決しようとする課題】
本発明は、レンズ系の小型化を図りつつ、高変倍で、良好に色収差の補正された従来存在しない構成のズームレンズを提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本願第1発明のズームレンズは、長い共役側より順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群のみをレンズ群として有し、広角端から望遠端へのズーミングに際して、前記第2レンズ群を移動させることにより像の大きさを変えるとともに、第3レンズ群以降の少なくとも1つのレンズ群を移動させることによりズーミングに伴う像面変動を補正する全体で正の屈折力のズームレンズにおいて、前記第1レンズ群が回折光学素子を有し、前記回折光学素子の位相を、
【外16】

Figure 0003754805
λ :入射光束の波長
Ci:位相を表す係数
h :光軸からの高さ
とするとき、
1×10−4<|C2/C1|<1×10−1 (4a)
1×10−7<|C3/C1|<1×10−4 (5a)
なる条件を満足することを特徴としている。
また、これを5群構成としても構わない。すなわち、本願第2発明のズームレンズは、長い共役側より順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群のみをレンズ群として有し、広角端から望遠端へのズーミングに際して、前記第2レンズ群を移動させることにより像の大きさを変えるとともに、第3レンズ群以降の少なくとも1つのレンズ群を移動させることによりズーミングに伴う像面変動を補正する全体で正の屈折力のズームレンズにおいて、前記第1レンズ群が回折光学素子を有し、前記回折光学素子の位相を式(1)で表すとき、
1×10 −4 <|C2/C1|<1×10 −1 (4a)
1×10 −7 <|C3/C1|<1×10 −4 (5a)
なる条件を満足することを特徴としている。
【0011】
本願第発明のズームレンズは、長い共役側より順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、ズーミング中固定で正の屈折力の第3レンズ群、正の屈折力の第4レンズ群のみをレンズ群として有し、広角端から望遠端へのズーミングに際して、前記第2レンズ群を移動させることにより像の大きさを変えるとともに、第4レンズ群以降の少なくとも1つのレンズ群を移動させることによりズーミングに伴う像面変動を補正するズームレンズにおいて、前記第2レンズ群が回折光学素子を有し、前記回折光学素子の位相を式(1)で表すとき、
1×10−4<|C2/C1|<1×10+1 (4b)
1×10−5<|C3/C1|<1×10−3 (5b)
なる条件を満足することを特徴としている。
また、これを5群構成としても構わない。すなわち、本願第4発明のズームレンズは、長い共役側より順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、ズーミング中固定で正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群のみをレンズ群として有し、広角端から望遠端へのズーミングに際して、前記第2レンズ群を移動させることにより像の大きさを変えるとともに、第4レンズ群以降の少なくとも1つのレンズ群を移動させることによりズーミングに伴う像面変動を補正するズームレンズにおいて、前記第2レンズ群が回折光学素子を有し、前記回折光学素子の位相を式(1)で表すとき、
1×10 −4 <|C2/C1|<1×10 +1 (4b)
1×10 −5 <|C3/C1|<1×10 −3 (5b)
なる条件を満足することを特徴としている。
【0012】
本願第発明のズームレンズは、長い共役側より順に、少なくとも、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、ズーミング中固定で正の屈折力の第3レンズ群、正の屈折力の第4レンズ群のみをレンズ群として有し、広角端から望遠端へのズーミングに際して、前記第2レンズ群を移動させることにより像の大きさを変えるとともに、第4レンズ群以降の少なくとも1つのレンズ群を移動させることによりズーミングに伴う像面変動を補正するズームレンズにおいて、前記第3レンズ群が回折光学素子を有し、前記回折光学素子の位相を式(1)で表すとき、
1×10−4<|C2/C1|<1×10−1 (4c)
1×10−5<|C3/C1|<1×10−2 (5c)
なる条件を満足することを特徴としている。
また、これを5群構成としても構わない。すなわち、本願第6発明のズームレンズは、長い共役側より順に、少なくとも、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、ズーミング中固定で正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群のみをレンズ群として有し、広角端から望遠端へのズーミングに際して、前記第2レンズ群を移動させることにより像の大きさを変えるとともに、第4レンズ群以降の少なくとも1つのレンズ群を移動させることによりズーミングに伴う像面変動を補正するズームレンズにおいて、前記第3レンズ群が回折光学素子を有し、前記回折光学素子の位相を式(1)で表すとき、
1×10 −4 <|C2/C1|<1×10 −1 (4c)
1×10 −5 <|C3/C1|<1×10 −2 (5c)
なる条件を満足することを特徴としている。
【0014】
また、本願第1乃至第3発明のズームレンズにおいて、回折光学素子の位相を式(1)で表すとき、
Ψi・C1<0 (2)
Ψi:回折光学素子を有するレンズ群の屈折力
なる条件を満足することが望ましい。
【0015】
特に、回折光学素子が形成された面(ベース面)の曲率による屈折力をψiとするとき、
ψi・C1<0 (3)
なる条件を満足することが望ましい。
【0017】
また、本願第1発明のズームレンズにおいて、第1レンズ群の焦点距離をF1、回折光学素子の回折光学面のみの焦点距離をFboとするとき、
0. 05<F1/Fbo<0.7 (6a)
なる条件を、本願第2発明のズームレンズにおいて、第2レンズ群の焦点距離をF2、回折光学素子の回折光学面のみの焦点距離をFboとするとき、
0. 1<| F2/Fbo | <0.7 (6b)
なる条件を、本願第3発明のズームレンズにおいて、第3レンズ群の焦点距離をF3、回折光学素子の回折光学面のみの焦点距離をFboとするとき、
0. 05<F3/Fbo<0.2 (6c)
なる条件を満足することが望ましい。
【0018】
なお、ここでいう「回折光学面のみの焦点距離」とは、ベース面の曲率による屈折力を除いた回折光学面の回折作用だけで決まる焦点距離のことである。
【0019】
また、本願第1発明のズームレンズにおいて、第1レンズ群の焦点距離をF1、広角端、望遠端での全系の焦点距離をそれぞれFw、Ftとするとき、
【0020】
【外14】
Figure 0003754805
なる条件を、本願第2発明のズームレンズにおいて、第2レンズ群の焦点距離をF2、広角端、望遠端での全系の焦点距離をそれぞれFw、Ftとするとき、
【0021】
【外15】
Figure 0003754805
なる条件を、本願第4発明のズームレンズにおいて、第3レンズ群の焦点距離をF3、広角端、望遠端での全系の焦点距離をそれぞれFw、Ftとするとき、
【0022】
【外16】
Figure 0003754805
なる条件を満足することが望ましい。
【0023】
また、本願第1発明のズームレンズにおいて、第1レンズ群中、回折光学面が1面のみであり、第1レンズ群の焦点距離をF1、回折光学面のベース面の曲率をRboとするとき、
|F1/Rbo|<1.8 (8a)
なる条件を、本願第2発明のズームレンズにおいて、第2レンズ群中、回折光学面が1面のみであり、第2レンズ群の焦点距離をF2、回折光学面のベース面の曲率をRboとするとき、
|F2/Rbo|<1.8 (8b)
なる条件を、本願第3発明のズームレンズにおいて、第3レンズ群中、回折光学面が1面のみであり、第3レンズ群の焦点距離をF3、該回折光学面のベース面の曲率をRboとするとき、
|F3/Rbo|<0.7 (8c)
なる条件を満足することが望ましい。
【0024】
また、本願第1発明のズームレンズにおいて、第1レンズ群の光軸上の厚みをt1、前記第1レンズ群の焦点距離をF1とするとき、
0.1<t1/F1<0.27 (9a)
なる条件を、本願第2発明のズームレンズにおいて、第2レンズ群の光軸上の厚みをt2、前記第2レンズ群の焦点距離をF2とするとき、
0.05<| t2/F2| <0.4 (9b)
なる条件を、本願第3発明のズームレンズにおいて、第3レンズ群の光軸上の厚みをt3、前記第3レンズ群の焦点距離をF3とするとき、
0.1<t3/F3<0.27 (9c)
なる条件を満足することが望ましい。
【0025】
【発明の実施の形態】
図1〜図8は、数値実施例1〜8に対応するズームレンズである。各図は全て広角端でのレンズ配置であり、広角端から望遠端へのレンズの移動の様子を矢印にて示している。図9〜図16は、それぞれ図1〜図8のレンズ系に対応した広角端、望遠端における収差図である。
【0026】
各図中、物体側(長い共役側)から順に、1は正の屈折力で固定の第1レンズ群、2は負の屈折力で変倍を行う第2レンズ群、3は正の屈折力で固定の第3レンズ群、4は正又は負の屈折力で変倍に伴う像面の補正並びにフォーカシングを行う第4レンズ群、5は正の屈折力で固定の第5レンズ群、Sは絞り、Gは光学フィルター、フェースプレート等、Iは像面、Bは回折光学面を表している。
【0027】
図1、2、4、5、7に示したものは4群構成であり、第4レンズ群は正の屈折力を有している。図3、6に示したものは5群構成であり、第4レンズ群は負の屈折力を有している。
【0028】
次に前述の条件式の意味について説明する。
【0029】
式(2)において、C1は回折光学面による近軸屈折力を表している。式(2)の条件を満たすとき、回折光学素子を有するレンズ群の屈折力が正のときも、負のときも、そのレンズ群を構成する各レンズの曲率を緩くできるため、収差補正上有効である。
【0030】
特に式(3)の条件を満たせば、同一の屈折力を持つ面を設定しても曲率が緩くなるため、色収差を含めた諸収差の発生を小さく抑えることができ、したがって、補正も非常に容易になる。
【0031】
式(4a)〜(4c)、(5a)〜(5c)は、ビデオ用のズームレンズのように小さな径のズームレンズにおいて、有効に収差補正を行うための条件である。この条件式を外れると、収差補正が難しくなるだけでなく、回折光学素子を精度よく製造するのが難しくなる。
【0032】
式(6a)〜(6c)は若干の軸外収差、特に像面湾曲、ディストーションを補正するために、回折光学素子にパワーを与える際の条件である。式(6a)〜(6c)を満たしていれば、回折光学素子の製作も難しくなく、収差補正も良好に行える。
【0033】
式(7a)〜(7c)の範囲であれば、回折光学素子の働きを有効に引き出すことができる。式(7a)〜(7c)の下限値を逸脱すると、回折光学素子を含むレンズ群の屈折力が強すぎて色収差を補正しきれなくなり、また製作も困難になる。上限値を逸脱すると、回折光学素子を使わなくとも色収差の除去が容易になる。ただし、上限値を逸脱する場合であって、第1レンズ群が回折光学素子を有しているときは、所望の焦点距離のレンズを得るために、特に第2レンズ群の屈折力が強くなる。これによりペッツバール和が負に大きくなり、像面湾曲が補正過剰になるため適当でない。また、上限値を逸脱する場合であって、第2レンズ群が回折光学素子を有しているときは、第2レンズ群の移動量が大きくなるため、全長が大型化する。
【0034】
回折光学面が1面だけのとき、式(8a)〜(8c)の条件を逸脱すると、ベースの曲面で発生する収差を回折光学素子で補正しきれず、回折光学系の効果を十分に引き出せない。
【0035】
式(9a)〜(9c)は、回折光学素子を有効に用いられる範囲を示している。回折光学素子を用いると式(2)、(3)のところで述べたように、曲率が緩くても所望の屈折力が得られる。色収差補正のための組み合せレンズを回折光学素子によって廃止できれば、レンズ系の全長が短くなり有効に使われたことになる。
【0036】
式(9a)〜(9c)の上限値を逸脱すると、通常のガラスレンズでも可能な厚みであるため、回折光学素子を有効に使ったことにならない。また下限値を逸脱すると、回折による屈折力が多大に必要となり、収差の発生が大きくなる。
【0037】
本実施形態の回折光学素子は、ホログラフィック光学素子(HOE)の製作手法であるリソグラフィック手法で製作した、所謂バイナリーオプティックス(Binary Optics)と呼ばれる位相型の環状回折格子である。この場合更に回折効率を上げるため、格子の断面形状をキノフォームと呼ばれる鋸歯状の形状にしてもよい。またリソグラフィック手法で製作した型でモールド成型すれば、本実施形態の回折光学素子を安価に製作できる。
【0038】
ところで、色収差係数(共立出版発行、松居吉哉著「レンズ設計法」89ページ参照)といった観点から見ると絞りより物体側のレンズ群では、軸上色収差係数Lと倍率色収差係数Tが同一符号の面に回折光学面を配置し、絞りより像側のレンズ群では双方が逆符号の面に回折光学面を配置するのが好ましい。
【0039】
本実施形態のように回折光学素子にバイナリーオプティックスを用いる場合、収差補正上やむを得ない場合などを除いて、最も物体側の面には回折光学素子を配置しないほうがよい。これは、数ミクロン、あるいはサブミクロンのオーダーの幅の溝で形成されたバイナリーオプティックスを、ゴミ等から守るためである。
【0040】
以下に数値実施例を示すが、riは物体側より順に第i番目のレンズ面の曲率半径、diは物体側より順に第i番目のレンズ厚または空気間隔、niとνiはそれぞれ物体側より順に第i番目のレンズの屈折率とアッベ数である。
【0041】
非球面形状は、光軸方向にX軸、光軸と垂直な方向にY軸、光の進行方向を正とし、レンズの頂点とX軸の交点を原点にとり、rをレンズ面の近軸曲率半径、K、A2、A3、A4、A5を非球面係数とするとき、
【0042】
【外17】
Figure 0003754805
なる式で表される。
【0043】
また、『E−03』の表示は、『10-3』を意味し、長さの単位は(mm)である。
【0044】
【外18】
Figure 0003754805
【0045】
【外19】
Figure 0003754805
【0046】
【外20】
Figure 0003754805
【0047】
【外21】
Figure 0003754805
【0048】
【外22】
Figure 0003754805
【0049】
【外23】
Figure 0003754805
【0050】
【外24】
Figure 0003754805
【0051】
【外25】
Figure 0003754805
【0052】
ところで、各数値実施例において回折光学素子の格子断面形状が、図17に示すようなキノフォーム形状をしているとする。図17中、101は回折光学素子であり、102は基材、103は基材102の表面に紫外線硬化樹脂により形成された環状回折格子である。各数値実施例においては、基材102は回折光学面が形成されるベース面に相当する。図17の回折光学素子は、波長530nmで1次回折光の回折効率が100%となるよう、環状回折格子103の格子厚dを設定している。
【0053】
図18は、図17に示す回折光学素子の1次回折光の回折効率の波長依存特性を示している。図18から明らかなように、設計次数での回折効率は最適化した波長530nmから離れるに従って低下する一方、設計次数近傍の次数の0次、2次回折光の回折効率が増大する。この設計次数以外の回折光は、フレアの原因となるため光学系の解像度の低下につながる。
【0054】
数値実施例8のズームレンズにおいて、回折光学素子の格子断面形状が図17の格子形状である場合の、ワイド端での空間周波数に対するMTF特性を図19に示す。この図で、低周波数領域のMTFが所望の値より低下していることがわかる。
【0055】
ここで、回折光学素子が、図20に示すような積層型の格子断面形状である場合を考える。具体的な構成としては、基材102上に紫外線硬化樹脂(nd=1.499、νd=54)からなる第1の回折格子104を形成し、その上に別の紫外線硬化樹脂(nd=1.598、νd=28)からなる第2の回折格子105を形成している。この材質の組み合わせでは、第1の回折格子部の格子厚dlはdl=13.8μm、第2の回折格子部の格子厚d2はd2=10.5μmとなる。
【0056】
図21は、図20に示す回折光学素子の1次回折光の回折効率の波長依存特性である。図21からわかるように、積層構造の回折格子にすることで、設計次数の回折効率が使用波長城全域で95%以上の高い回折効率を有している。
【0057】
数値実施例8のズームレンズにおいて、回折光学素子の格子断面形状が図20の格子形状である場合の、ワイド端での空間周波数に対するMTF特性を図22に示す。積層構造の回折格子を用いることで、低周波数領域のMTFは改善され、所望のMTF特性が得られる。このように、積層構造の回折格子を回折光学素子として用いることで、光学性能はさらに改善される。
【0058】
なお前述の積層構造の回折光学素子の材質は、紫外線硬化樹脂に限定されるものではなく、他のプラスチック材なども使用できるし、基材によっては、第1の回折格子104を直接基材に形成してもよい。また各格子厚が必ずしも異なる必要はなく、材料の組み合わせによっては図23に示すように2つの格子厚を等しくできる。この場合は、回折光学素子表面に格子形状が形成されないので、防塵性に優れ、回折光学素子の組み立て作業性が向上し、より安価な光学系を提供できる。
【0059】
図24、図25は、本発明のズームレンズを光学機器に適用した例である。
【0060】
図24は本発明のズームレンズをビデオカメラに用いた場合であり、図中10はビデオカメラ本体、11は本発明のズームレンズによって構成される撮像光学系、12はCCD等の撮像素子、13は記録部である。撮像光学系11によって取り込まれた像が撮像素子12上に結像し、画像情報を記録部13に記録する。不図示のファインダー系により観察者は撮影中に撮像素子上に形成された物体像を観察することができる。図24と同様のシステムでデジタルスチルカメラも実現できる。
【0061】
図25は銀塩コンパクトカメラに用いた場合である。図中20はカメラ本体、21は本発明のズームレンズによって構成される撮影光学系、22はフィルム面、23はファインダー光学系である。
【0062】
図24、図25に示したように、本発明のズームレンズを用いることにより、装置の小型化を図りつつ、高変倍で、良好に色収差の補正された光学機器を提供できる。
【0063】
【発明の効果】
以上説明したように本発明によれば、レンズ系の小型化を図りつつ、高変倍で、良好に色収差の補正されたズームレンズを提供することができる。
【図面の簡単な説明】
【図1】本発明の数値実施例1のズームレンズの断面図である。
【図2】本発明の数値実施例2のズームレンズの断面図である。
【図3】本発明の数値実施例3のズームレンズの断面図である。
【図4】本発明の数値実施例4のズームレンズの断面図である。
【図5】本発明の数値実施例5のズームレンズの断面図である。
【図6】本発明の数値実施例6のズームレンズの断面図である。
【図7】本発明の数値実施例7のズームレンズの断面図である。
【図8】本発明の数値実施例8のズームレンズの断面図である。
【図9】本発明の数値実施例1のズームレンズの広角端と望遠端の収差図である。
【図10】本発明の数値実施例2のズームレンズの広角端と望遠端の収差図である。
【図11】本発明の数値実施例3のズームレンズの広角端と望遠端の収差図である。
【図12】本発明の数値実施例4のズームレンズの広角端と望遠端の収差図である。
【図13】本発明の数値実施例5のズームレンズの広角端と望遠端の収差図である。
【図14】本発明の数値実施例6のズームレンズの広角端と望遠端の収差図である。
【図15】本発明の数値実施例7のズームレンズの広角端と望遠端の収差図である。
【図16】本発明の数値実施例8のズームレンズの広角端と望遠端の収差図である。
【図17】回折光学素子の格子断面形状の一例を示す図である。
【図18】図17の回折光学素子の1次回折光の回折効率の波長依存特性を示す図である。
【図19】図17の回折光学素子を有するズームレンズの空間周波数に対するMTF特性を示す図である。
【図20】積層構造の回折光学素子の格子断面形状の一例を示す図である。
【図21】図20の回折光学素子の1次回折効率の波長依存特性を示す図である。
【図22】図20の回折光学素子を有するズームレンズの空間周波数に対するMTF特性を示す図である。
【図23】積層構造の回折光学素子の格子断面形状の別の例を示す図である。
【図24】本発明のズームレンズを有したビデオカメラの要部概略図である。
【図25】本発明のズームレンズを有したコンパクトカメラの要部概略図である。
【符号の説明】
1 第1レンズ群
2 第2レンズ群
3 第3レンズ群
4 第4レンズ群
5 第5レンズ群
S 絞り
G 光学フィルター、フェースプレート等
I 像面
B 回折光学面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a zoom lens suitably used for a silver salt camera, a digital camera, and a video camera, and an optical apparatus using the zoom lens.
[0002]
[Prior art]
With the reduction in size and weight of home video cameras and the like, remarkable progress has been made in reducing the size of imaging zoom lenses. Recently, efforts have been focused on shortening the overall length, reducing the front lens diameter, simplifying the configuration of the optical system, and the like.
[0003]
As one means for achieving these objects, a so-called rear focus type zoom lens that performs focusing by moving a lens group other than the first lens group on the object side is known. In general, a rear focus type zoom lens can reduce the effective diameter of the first lens group compared to a zoom lens that moves the first lens group to perform focusing, and thus the entire lens system can be easily downsized.
[0004]
As such a rear focus type zoom lens, for example, in Japanese Patent Application Laid-Open Nos. 62-24213 and 62-247316, a positive first lens group, a negative second lens group, A zoom lens that has a third lens group, a positive fourth lens group, performs zooming by moving the second lens group, and performs correction and focusing of image plane variation accompanying zooming by the fourth lens group. Disclosure.
[0005]
On the other hand, there is an increasing need for a zoom lens that achieves a zoom ratio of 10 times or more. However, in order to suppress aberrations while realizing high zoom ratio, it is necessary to increase the number of lenses constituting each lens group to reduce the share of aberration correction of each lens group. As the number of lenses constituting each lens group increases, the entire zoom lens naturally becomes larger. That is, the demand for high zoom magnification of the zoom lens is contrary to the demand for miniaturization.
[0006]
In order to achieve this contradictory requirement, a method of using an aspherical surface for a lens constituting a zoom lens has been conventionally known. However, at a high zoom ratio exceeding 10 times, correction of chromatic aberration is an important issue, but correction of chromatic aberration with an aspheric lens is difficult.
[0007]
Incidentally, a method using a diffractive optical element is known as a method for reducing the size of a zoom lens while correcting chromatic aberration satisfactorily.
[0008]
For example, US Pat. No. 5,268,790 discloses the use of a diffractive optical element for a second lens group that is a variator and / or a third lens group that is a compensator.
[0009]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a zoom lens having a structure that does not exist in the related art, with high zoom ratio and good chromatic aberration correction, while reducing the size of the lens system.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the zoom lens according to the first aspect of the present invention includes, in order from the long conjugate side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power . And a fourth lens group having a positive refractive power as a lens group. When zooming from the wide-angle end to the telephoto end, the second lens group is moved to change the image size, and the third lens In a zoom lens having an overall positive refractive power that corrects image plane variation accompanying zooming by moving at least one lens group subsequent to the first group, the first lens group includes a diffractive optical element, and the diffractive optical element Phase of
[Outside 16]
Figure 0003754805
λ: wavelength of incident light beam Ci: coefficient indicating phase h: height from optical axis
1 × 10 −4 <| C2 / C1 | <1 × 10 −1 (4a)
1 × 10 −7 <| C3 / C1 | <1 × 10 −4 (5a)
It is characterized by satisfying the following conditions.
Further, this may be a five-group configuration. That is, the zoom lens according to the second invention of the present application, in order from the long conjugate side, is a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative refraction. Only the fourth lens unit having a positive power and the fifth lens unit having a positive refractive power are used as a lens unit. When zooming from the wide-angle end to the telephoto end, the size of the image is changed by moving the second lens unit. In addition, in the zoom lens having a positive refractive power as a whole, the first lens group has a diffractive optical element. The zoom lens has a positive refractive power as a whole, and corrects the image plane variation caused by zooming by moving at least one lens group after the third lens group. , When the phase of the diffractive optical element is expressed by equation (1),
1 × 10 −4 <| C2 / C1 | <1 × 10 −1 (4a)
1 × 10 −7 <| C3 / C1 | <1 × 10 −4 (5a)
It is characterized by satisfying the following conditions.
[0011]
The zoom lens according to the third aspect of the present application includes, in order from the long conjugate side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power fixed during zooming, Only the fourth lens group having a refractive power of 2 is used as a lens group, and when zooming from the wide-angle end to the telephoto end, the second lens group is moved to change the size of the image, and after the fourth lens group In a zoom lens that corrects image plane variation caused by zooming by moving at least one lens group, the second lens group includes a diffractive optical element, and the phase of the diffractive optical element is expressed by Expression (1). ,
1 × 10 −4 <| C2 / C1 | <1 × 10 +1 (4b)
1 × 10 −5 <| C3 / C1 | <1 × 10 −3 (5b)
It is characterized by satisfying the following conditions.
Further, this may be a five-group configuration. That is, the zoom lens according to the fourth aspect of the present invention includes, in order from the long conjugate side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power fixed during zooming. The fourth lens group having a negative refractive power and the fifth lens group having a positive refractive power are used as a lens group. When zooming from the wide-angle end to the telephoto end, the second lens group is moved to move the image. In the zoom lens that changes the size and corrects the image plane variation caused by zooming by moving at least one lens group after the fourth lens group, the second lens group includes a diffractive optical element, and the diffraction lens When the phase of the optical element is expressed by equation (1),
1 × 10 −4 <| C2 / C1 | <1 × 10 +1 (4b)
1 × 10 −5 <| C3 / C1 | <1 × 10 −3 (5b)
It is characterized by satisfying the following conditions.
[0012]
The zoom lens according to the fifth aspect of the present application includes, in order from the long conjugate side, at least a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power fixed during zooming. The fourth lens group has only a fourth lens group having a positive refractive power as a lens group, and changes the size of the image by moving the second lens group during zooming from the wide-angle end to the telephoto end. In a zoom lens that corrects image plane fluctuations associated with zooming by moving at least one subsequent lens group, the third lens group has a diffractive optical element, and the phase of the diffractive optical element is expressed by equation (1). When representing
1 × 10 −4 <| C2 / C1 | <1 × 10 −1 (4c)
1 × 10 −5 <| C3 / C1 | <1 × 10 −2 (5c)
It is characterized by satisfying the following conditions.
Further, this may be a five-group configuration. That is, in the zoom lens according to the sixth aspect of the present invention, in order from the long conjugate side, at least a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power fixed during zooming. By having only a lens group, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power as a lens group, the second lens group is moved during zooming from the wide-angle end to the telephoto end. In the zoom lens that changes the image size and corrects image plane variation caused by zooming by moving at least one lens group after the fourth lens group, the third lens group includes a diffractive optical element, When the phase of the diffractive optical element is represented by Formula (1),
1 × 10 −4 <| C2 / C1 | <1 × 10 −1 (4c)
1 × 10 −5 <| C3 / C1 | <1 × 10 −2 (5c)
It is characterized by satisfying the following conditions.
[0014]
In the zoom lenses according to the first to third inventions of the present application, when the phase of the diffractive optical element is expressed by Expression (1),
Ψi · C1 <0 (2)
Ψi: It is desirable to satisfy the condition of refractive power of a lens group having a diffractive optical element.
[0015]
In particular, when the refractive power due to the curvature of the surface (base surface) on which the diffractive optical element is formed is ψi,
ψi · C1 <0 (3)
It is desirable to satisfy the following conditions.
[0017]
In the zoom lens of the first invention of the present application, when the focal length of the first lens group is F1, and the focal length of only the diffractive optical surface of the diffractive optical element is Fbo,
0. 05 <F1 / Fbo <0.7 (6a)
In the zoom lens of the second invention of the present application, when the focal length of the second lens group is F2, and the focal length of only the diffractive optical surface of the diffractive optical element is Fbo,
0. 1 <| F2 / Fbo | <0.7 (6b)
In the zoom lens according to the third invention of the present application, when the focal length of the third lens unit is F3 and the focal length of only the diffractive optical surface of the diffractive optical element is Fbo,
0. 05 <F3 / Fbo <0.2 (6c)
It is desirable to satisfy the following conditions.
[0018]
Here, the “focal length of only the diffractive optical surface” is a focal length determined only by the diffractive action of the diffractive optical surface excluding the refractive power due to the curvature of the base surface.
[0019]
In the zoom lens of the first invention of the present application, when the focal length of the first lens group is F1, and the focal lengths of the entire system at the wide-angle end and the telephoto end are Fw and Ft, respectively.
[0020]
[Outside 14]
Figure 0003754805
In the zoom lens of the second invention of the present application, when the focal length of the second lens group is F2, and the focal length of the entire system at the wide-angle end and the telephoto end are Fw and Ft, respectively,
[0021]
[Outside 15]
Figure 0003754805
In the zoom lens according to the fourth invention of the present application, when the focal length of the third lens unit is F3, and the focal lengths of the entire system at the wide-angle end and the telephoto end are Fw and Ft, respectively.
[0022]
[Outside 16]
Figure 0003754805
It is desirable to satisfy the following conditions.
[0023]
In the zoom lens according to the first aspect of the present invention, there is only one diffractive optical surface in the first lens group, the focal length of the first lens group is F1, and the curvature of the base surface of the diffractive optical surface is Rbo. ,
| F1 / Rbo | <1.8 (8a)
In the zoom lens of the second invention of the present application, there is only one diffractive optical surface in the second lens group, the focal length of the second lens group is F2, and the curvature of the base surface of the diffractive optical surface is Rbo. and when,
| F2 / Rbo | <1.8 (8b)
In the zoom lens of the third invention of the present application, there is only one diffractive optical surface in the third lens group, the focal length of the third lens group is F3, and the curvature of the base surface of the diffractive optical surface is Rbo. And when
| F3 / Rbo | <0.7 (8c)
It is desirable to satisfy the following conditions.
[0024]
In the zoom lens according to the first aspect of the present invention, when the thickness of the first lens unit on the optical axis is t1, and the focal length of the first lens unit is F1,
0.1 <t1 / F1 <0.27 (9a)
In the zoom lens of the second invention of the present application, when the thickness on the optical axis of the second lens group is t2, and the focal length of the second lens group is F2,
0.05 <| t2 / F2 | <0.4 (9b)
In the zoom lens according to the third invention of the present application, when the thickness on the optical axis of the third lens unit is t3 and the focal length of the third lens unit is F3,
0.1 <t3 / F3 <0.27 (9c)
It is desirable to satisfy the following conditions.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
1 to 8 are zoom lenses corresponding to Numerical Examples 1 to 8. FIG. Each figure is a lens arrangement at the wide-angle end, and the movement of the lens from the wide-angle end to the telephoto end is indicated by an arrow. 9 to 16 are aberration diagrams at the wide-angle end and the telephoto end corresponding to the lens systems of FIGS. 1 to 8, respectively.
[0026]
In each figure, in order from the object side (long conjugate side), 1 is a first lens group that is fixed with positive refractive power, 2 is a second lens group that performs zooming with negative refractive power, and 3 is positive refractive power. 3 is a fixed third lens group, 4 is a fourth lens group that performs positive and negative refractive power to correct and focus an image plane accompanying zooming, 5 is a fifth lens group that is fixed with positive refractive power, and S is A stop, G is an optical filter, a face plate, I is an image plane, and B is a diffractive optical surface.
[0027]
1, 2, 4, 5, and 7 have a four-group configuration, and the fourth lens group has a positive refractive power. 3 and 6 have a five-group configuration, and the fourth lens group has a negative refractive power.
[0028]
Next, the meaning of the above conditional expression will be described.
[0029]
In Formula (2), C1 represents the paraxial refractive power by the diffractive optical surface. When the condition of Expression (2) is satisfied, the curvature of each lens constituting the lens group can be relaxed regardless of whether the refractive power of the lens group having the diffractive optical element is positive or negative. It is.
[0030]
In particular, if the condition of the expression (3) is satisfied, the curvature becomes gentle even when a surface having the same refractive power is set, so that the occurrence of various aberrations including chromatic aberration can be suppressed to a small level. It becomes easy.
[0031]
Expressions (4a) to (4c) and (5a) to (5c) are conditions for effectively performing aberration correction in a zoom lens having a small diameter such as a zoom lens for video. If this conditional expression is not satisfied, not only aberration correction becomes difficult, but also it becomes difficult to manufacture the diffractive optical element with high accuracy.
[0032]
Expressions (6a) to (6c) are conditions for applying power to the diffractive optical element in order to correct some off-axis aberrations, particularly field curvature and distortion. If the expressions (6a) to (6c) are satisfied, it is not difficult to manufacture a diffractive optical element, and aberration correction can be performed well.
[0033]
If it is the range of Formula (7a)-(7c), the function of a diffractive optical element can be pulled out effectively. If the lower limit value of the expressions (7a) to (7c) is deviated, the refractive power of the lens group including the diffractive optical element is too strong to correct the chromatic aberration, and the manufacture becomes difficult. When the value deviates from the upper limit, chromatic aberration can be easily removed without using a diffractive optical element. However, when the value deviates from the upper limit value and the first lens group has a diffractive optical element, the refractive power of the second lens group is particularly strong in order to obtain a lens having a desired focal length. . As a result, the Petzval sum becomes negative and the field curvature is overcorrected. Further, when the value deviates from the upper limit value and the second lens group has a diffractive optical element, the movement amount of the second lens group becomes large, so that the total length becomes large.
[0034]
When there is only one diffractive optical surface, if it deviates from the conditions of the equations (8a) to (8c), the aberration generated on the curved surface of the base cannot be corrected by the diffractive optical element, and the effect of the diffractive optical system cannot be sufficiently obtained .
[0035]
Expressions (9a) to (9c) indicate a range in which the diffractive optical element is effectively used. When a diffractive optical element is used, a desired refractive power can be obtained even when the curvature is loose, as described in the expressions (2) and (3). If the combination lens for correcting chromatic aberration can be abolished by the diffractive optical element, the total length of the lens system is shortened and it is used effectively.
[0036]
When deviating from the upper limit values of the expressions (9a) to (9c), the thickness is possible even with a normal glass lens, and thus the diffractive optical element is not effectively used. On the other hand, if the value deviates from the lower limit, a great amount of refractive power is required due to diffraction, and the generation of aberration increases.
[0037]
The diffractive optical element of the present embodiment is a phase-type annular diffraction grating called “Binary Optics” manufactured by a lithographic technique that is a manufacturing technique of a holographic optical element (HOE). In this case, in order to further increase the diffraction efficiency, the cross-sectional shape of the grating may be a sawtooth shape called a kinoform. Further, if the mold is manufactured by a mold manufactured by a lithographic technique, the diffractive optical element of this embodiment can be manufactured at low cost.
[0038]
By the way, from the viewpoint of the chromatic aberration coefficient (published by Kyoritsu Publishing Co., Ltd., Yoshiya Matsui, “Lens Design Method” on page 89), the axial chromatic aberration coefficient L and the lateral chromatic aberration coefficient T have the same sign in the lens group closer to the object than the stop. It is preferable to dispose a diffractive optical surface on the surface, and in the lens group on the image side from the stop, both diffractive optical surfaces are disposed on surfaces of opposite signs.
[0039]
When binary optics is used for the diffractive optical element as in this embodiment, it is better not to dispose the diffractive optical element on the surface closest to the object side, except in cases where correction of aberration is unavoidable. This is to protect the binary optics formed by grooves having a width on the order of several microns or submicrons from dust.
[0040]
In the following numerical examples, ri is the radius of curvature of the i-th lens surface in order from the object side, di is the i-th lens thickness or air interval in order from the object side, and ni and νi are in order from the object side. The refractive index and Abbe number of the i-th lens.
[0041]
The aspherical shape is the X axis in the optical axis direction, the Y axis in the direction perpendicular to the optical axis, the light traveling direction is positive, the intersection of the lens apex and the X axis is the origin, and r is the paraxial curvature of the lens surface. When the radius, K, A2, A3, A4, and A5 are aspherical coefficients,
[0042]
[Outside 17]
Figure 0003754805
It is expressed by the following formula.
[0043]
The display of “E-03” means “10 −3 ”, and the unit of length is (mm).
[0044]
[Outside 18]
Figure 0003754805
[0045]
[Outside 19]
Figure 0003754805
[0046]
[Outside 20]
Figure 0003754805
[0047]
[Outside 21]
Figure 0003754805
[0048]
[Outside 22]
Figure 0003754805
[0049]
[Outside 23]
Figure 0003754805
[0050]
[Outside 24]
Figure 0003754805
[0051]
[Outside 25]
Figure 0003754805
[0052]
By the way, in each numerical example, it is assumed that the grating cross-sectional shape of the diffractive optical element has a kinoform shape as shown in FIG. In FIG. 17, 101 is a diffractive optical element, 102 is a base material, and 103 is an annular diffraction grating formed on the surface of the base material 102 by an ultraviolet curable resin. In each numerical example, the substrate 102 corresponds to a base surface on which a diffractive optical surface is formed. In the diffractive optical element of FIG. 17, the grating thickness d of the annular diffraction grating 103 is set so that the diffraction efficiency of the first-order diffracted light is 100% at a wavelength of 530 nm.
[0053]
FIG. 18 shows the wavelength dependence characteristics of the diffraction efficiency of the first-order diffracted light of the diffractive optical element shown in FIG. As is clear from FIG. 18, the diffraction efficiency at the design order decreases with increasing distance from the optimized wavelength of 530 nm, while the diffraction efficiency of the 0th-order and second-order diffracted light near the design order increases. Diffracted light other than this design order causes flare, leading to a decrease in resolution of the optical system.
[0054]
FIG. 19 shows the MTF characteristics with respect to the spatial frequency at the wide end when the grating sectional shape of the diffractive optical element in the zoom lens of Numerical Example 8 is the grating shape shown in FIG. In this figure, it can be seen that the MTF in the low frequency region is lower than the desired value.
[0055]
Here, consider a case where the diffractive optical element has a laminated grating cross-sectional shape as shown in FIG. As a specific configuration, the first diffraction grating 104 made of an ultraviolet curable resin (nd = 1.499, νd = 54) is formed on the substrate 102, and another ultraviolet curable resin (nd = 1) is formed thereon. .598, νd = 28), the second diffraction grating 105 is formed. With this combination of materials, the grating thickness dl of the first diffraction grating portion is dl = 13.8 μm, and the grating thickness d2 of the second diffraction grating portion is d2 = 10.5 μm.
[0056]
FIG. 21 shows the wavelength dependence characteristics of the diffraction efficiency of the first-order diffracted light of the diffractive optical element shown in FIG. As can be seen from FIG. 21, by using a diffraction grating having a laminated structure, the diffraction efficiency of the designed order has a high diffraction efficiency of 95% or more over the entire wavelength range used.
[0057]
FIG. 22 shows the MTF characteristics with respect to the spatial frequency at the wide end in the zoom lens of Numerical Example 8 when the grating cross-sectional shape of the diffractive optical element is that of FIG. By using a diffraction grating having a laminated structure, the MTF in the low frequency region is improved and desired MTF characteristics are obtained. As described above, the optical performance is further improved by using the diffraction grating having the laminated structure as the diffractive optical element.
[0058]
The material of the diffractive optical element having the above-described laminated structure is not limited to the ultraviolet curable resin, and other plastic materials can be used. Depending on the base material, the first diffraction grating 104 can be directly used as the base material. It may be formed. Further, the thicknesses of the lattices are not necessarily different, and the two lattice thicknesses can be made equal as shown in FIG. 23 depending on the combination of materials. In this case, since the grating shape is not formed on the surface of the diffractive optical element, it is excellent in dustproof property, the assembling workability of the diffractive optical element is improved, and a cheaper optical system can be provided.
[0059]
24 and 25 show examples in which the zoom lens of the present invention is applied to an optical apparatus.
[0060]
FIG. 24 shows a case where the zoom lens of the present invention is used in a video camera. In FIG. 24, 10 is a video camera body, 11 is an imaging optical system constituted by the zoom lens of the present invention, 12 is an imaging device such as a CCD, 13 Is a recording part. An image captured by the imaging optical system 11 is formed on the image sensor 12 and image information is recorded in the recording unit 13. A finder system (not shown) allows an observer to observe an object image formed on the image sensor during photographing. A digital still camera can also be realized by the same system as in FIG.
[0061]
FIG. 25 shows a case where it is used in a silver salt compact camera. In the figure, 20 is a camera body, 21 is a photographing optical system constituted by the zoom lens of the present invention, 22 is a film surface, and 23 is a finder optical system.
[0062]
As shown in FIGS. 24 and 25, by using the zoom lens of the present invention, it is possible to provide an optical apparatus that is highly variable in magnification and excellently corrected for chromatic aberration while reducing the size of the apparatus.
[0063]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a zoom lens in which the chromatic aberration is favorably corrected with high zoom ratio while reducing the size of the lens system.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a zoom lens according to Numerical Example 1 of the present invention.
FIG. 2 is a sectional view of a zoom lens according to Numerical Example 2 of the present invention.
FIG. 3 is a sectional view of a zoom lens according to Numerical Example 3 of the present invention.
FIG. 4 is a sectional view of a zoom lens according to Numerical Example 4 of the present invention.
FIG. 5 is a sectional view of a zoom lens according to Numerical Example 5 of the present invention.
FIG. 6 is a cross-sectional view of a zoom lens according to Numerical Example 6 of the present invention.
FIG. 7 is a cross-sectional view of a zoom lens according to Numerical Example 7 of the present invention.
FIG. 8 is a cross-sectional view of a zoom lens according to Numerical Example 8 of the present invention.
FIG. 9 is an aberration diagram at the wide-angle end and a telephoto end of the zoom lens according to Numerical Example 1 of the present invention.
FIG. 10 is an aberration diagram at the wide-angle end and a telephoto end of the zoom lens according to Numerical Example 2 of the present invention.
FIG. 11 is an aberration diagram at the wide-angle end and a telephoto end of the zoom lens according to Numerical Example 3 of the present invention.
FIG. 12 is an aberration diagram at the wide-angle end and a telephoto end of the zoom lens according to Numerical Example 4 of the present invention.
FIG. 13 is an aberration diagram at the wide-angle end and a telephoto end of the zoom lens according to Numerical Example 5 of the present invention.
FIG. 14 is an aberration diagram at the wide-angle end and a telephoto end of the zoom lens according to Numerical Example 6 of the present invention.
15 is an aberration diagram at a wide-angle end and a telephoto end of a zoom lens according to Numerical Example 7 of the present invention. FIG.
FIG. 16 is an aberration diagram at the wide-angle end and a telephoto end of the zoom lens according to Numerical Example 8 of the present invention.
FIG. 17 is a diagram illustrating an example of a grating cross-sectional shape of a diffractive optical element.
18 is a diagram showing the wavelength dependence characteristics of the diffraction efficiency of the first-order diffracted light of the diffractive optical element of FIG.
FIG. 19 is a diagram showing MTF characteristics with respect to the spatial frequency of a zoom lens having the diffractive optical element of FIG. 17;
FIG. 20 is a diagram illustrating an example of a cross-sectional shape of a grating of a diffractive optical element having a laminated structure.
21 is a graph showing the wavelength dependence characteristics of the first-order diffraction efficiency of the diffractive optical element in FIG.
FIG. 22 is a diagram showing MTF characteristics with respect to the spatial frequency of a zoom lens having the diffractive optical element of FIG. 20;
FIG. 23 is a diagram showing another example of a grating cross-sectional shape of a diffractive optical element having a laminated structure.
FIG. 24 is a schematic view of a main part of a video camera having a zoom lens according to the present invention.
FIG. 25 is a schematic view of a main part of a compact camera having a zoom lens according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st lens group 2 2nd lens group 3 3rd lens group 4 4th lens group 5 5th lens group S Diaphragm G Optical filter, face plate, etc. I Image surface B Diffractive optical surface

Claims (29)

長い共役側より順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群のみをレンズ群として有し、広角端から望遠端へのズーミングに際して、前記第2レンズ群を移動させることにより像の大きさを変えるとともに、第3レンズ群以降の少なくとも1つのレンズ群を移動させることによりズーミングに伴う像面変動を補正する全体で正の屈折力のズームレンズにおいて、
前記第1レンズ群が回折光学素子を有し、前記回折光学素子の位相を、
【外1】
Figure 0003754805
λ :入射光束の波長
Ci:位相を表す係数
h:光軸からの高さ
とするとき、
1×10−4<|C2/C1|<1×10−1
1×10−7<|C3/C1|<1×10−4
なる条件を満足することを特徴とするズームレンズ。
In order from the long conjugate side, only the first lens group with positive refractive power, the second lens group with negative refractive power, the third lens group with positive refractive power, and the fourth lens group with positive refractive power are used as lens groups. In zooming from the wide-angle end to the telephoto end, the size of the image is changed by moving the second lens group, and at least one lens group after the third lens group is moved, thereby accompanying zooming . In a zoom lens with positive refractive power as a whole to correct image plane fluctuations,
The first lens group has a diffractive optical element, and the phase of the diffractive optical element is
[Outside 1]
Figure 0003754805
λ: wavelength of incident light beam Ci: coefficient indicating phase h: height from optical axis
1 × 10 −4 <| C2 / C1 | <1 × 10 −1
1 × 10 −7 <| C3 / C1 | <1 × 10 −4
A zoom lens characterized by satisfying the following conditions:
長い共役側より順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群のみをレンズ群として有し、広角端から望遠端へのズーミングに際して、前記第2レンズ群を移動させることにより像の大きさを変えるとともに、第3レンズ群以降の少なくとも1つのレンズ群を移動させることによりズーミングに伴う像面変動を補正する全体で正の屈折力のズームレンズにおいて、
前記第1レンズ群が回折光学素子を有し、前記回折光学素子の位相を、
【外2】
Figure 0003754805
λ :入射光束の波長
Ci:位相を表す係数
h:光軸からの高さ
とするとき、
1×10 −4 <|C2/C1|<1×10 −1
1×10 −7 <|C3/C1|<1×10 −4
なる条件を満足することを特徴とするズームレンズ。
In order from the long conjugate side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive refractive power. In the zooming from the wide-angle end to the telephoto end, the size of the image is changed by moving the second lens group, and at least one of the third and subsequent lens groups is provided. In a zoom lens with positive refractive power as a whole, which corrects image plane fluctuations accompanying zooming by moving the lens group,
The first lens group has a diffractive optical element, and the phase of the diffractive optical element is
[Outside 2]
Figure 0003754805
λ : wavelength of incident light beam
Ci: Coefficient representing phase
h: Height from the optical axis
And when
1 × 10 −4 <| C2 / C1 | <1 × 10 −1
1 × 10 −7 <| C3 / C1 | <1 × 10 −4
A zoom lens characterized by satisfying the following conditions:
前記回折光学素子は、回折光学面を像面側に有することを特徴とする請求項1又は2記載のズームレンズ。 3. The zoom lens according to claim 1, wherein the diffractive optical element has a diffractive optical surface on the image plane side. 前記回折光学素子の位相を、
【外3】
Figure 0003754805
λ :入射光束の波長
Ci:位相を表す係数
h :光軸からの高さ
前記第1レンズ群の屈折力をΨ1とするとき、
Ψ1・C1<0
なる条件を満足することを特徴とする請求項1乃至3いずれかに記載のズームレンズ。
The phase of the diffractive optical element is
[Outside 3]
Figure 0003754805
λ: wavelength of incident light beam Ci: coefficient representing phase h: height from optical axis When the refractive power of the first lens group is ψ1,
Ψ1 · C1 <0
The zoom lens according to any of claims 1 to 3, characterized by satisfying the following condition.
前記回折光学素子の位相を、
【外4】
Figure 0003754805
λ :入射光束の波長
Ci:位相を表す係数
h :光軸からの高さ
前記回折光学素子の回折光学面が形成された面の曲率による屈折力をψ1とするとき、
ψ1・C1<0
なる条件を満足することを特徴とする請求項1乃至4いずれかに記載のズームレンズ。
The phase of the diffractive optical element is
[Outside 4]
Figure 0003754805
λ: wavelength of incident light beam Ci: coefficient representing phase h: height from optical axis When refracting power by the curvature of the surface on which the diffractive optical surface of the diffractive optical element is formed is ψ1,
ψ1 · C1 <0
The zoom lens according to any one of claims 1 to 4, characterized by satisfying the following condition.
前記第1レンズ群の焦点距離をF1、前記回折光学素子の回折光学面のみのの焦点距離をFboとするとき、
0.05<F1/Fbo<0.7
なる条件を満足することを特徴とする請求項1乃至5いずれかに記載のズームレンズ。
When the focal length of the first lens group is F1, and the focal length of only the diffractive optical surface of the diffractive optical element is Fbo,
0.05 <F1 / Fbo <0.7
The zoom lens according to any one of claims 1 to 5, characterized by satisfying the following condition.
前記第1レンズ群の焦点距離をF1、広角端、望遠端での全系の焦点距離をそれぞれFw、Ftとするとき、
【外5】
Figure 0003754805
なる条件を満足することを特徴とする請求項1乃至6いずれかに記載のズームレンズ。
When the focal length of the first lens group is F1, and the focal lengths of the entire system at the wide-angle end and the telephoto end are Fw and Ft, respectively.
[Outside 5]
Figure 0003754805
The zoom lens according to any one of claims 1 to 6, characterized by satisfying the following condition.
前記第1レンズ群中に回折光学面が1面のみであり、前記第1レンズ群の焦点距離をF1、該回折光学面が形成された面の曲率をRboとするとき、
|F1/Rbo|<1.8
なる条件を満足することを特徴とする請求項1乃至7いずれかに記載のズームレンズ。
When there is only one diffractive optical surface in the first lens group, the focal length of the first lens group is F1, and the curvature of the surface on which the diffractive optical surface is formed is Rbo.
| F1 / Rbo | <1.8
The zoom lens according to any one of claims 1 to 7, characterized by satisfying the following condition.
前記第1レンズ群の光軸上の厚みをt1、前記第1レンズ群の焦点距離をF1とするとき、
0.1<t1/F1<0.27
なる条件を満足することを特徴とする請求項1乃至8いずれかに記載のズームレンズ。
When the thickness on the optical axis of the first lens group is t1, and the focal length of the first lens group is F1,
0.1 <t1 / F1 <0.27
The zoom lens according to any one of claims 1 to 8, characterized by satisfying the following condition.
前記回折光学素子は、第1の環状回折格子と、該第1の環状回折格子とは異なる材料で該第1の環状回折格子上に形成された第2の環状回折格子とを有することを特徴とする請求項1乃至9いずれかに記載のズームレンズ。The diffractive optical element includes a first annular diffraction grating and a second annular diffraction grating formed on the first annular diffraction grating with a material different from that of the first annular diffraction grating. the zoom lens according to any claims 1 to 9,. 長い共役側より順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、ズーミング中固定で正の屈折力の第3レンズ群、正の屈折力の第4レンズ群のみをレンズ群として有し、広角端から望遠端へのズーミングに際して、前記第2レンズ群を移動させることにより像の大きさを変えるとともに、第4レンズ群以降の少なくとも1つのレンズ群を移動させることによりズーミングに伴う像面変動を補正するズームレンズにおいて、
前記第2レンズ群が回折光学素子を有し、前記回折光学素子の位相を、
【外6】
Figure 0003754805
λ :入射光束の波長
Ci:位相を表す係数
h :光軸からの高さ
とするとき、
1×10−4<|C2/C1|<1×10+1
1×10−5<|C3/C1|<1×10−3
なる条件を満足することを特徴とするズームレンズ。
In order from the long conjugate side, only a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power fixed during zooming, and a fourth lens group having a positive refractive power only. When zooming from the wide-angle end to the telephoto end, the size of the image is changed by moving the second lens group, and at least one lens group after the fourth lens group is moved. In the zoom lens that corrects the image plane fluctuation accompanying zooming ,
The second lens group has a diffractive optical element, and the phase of the diffractive optical element is
[Outside 6]
Figure 0003754805
λ: wavelength of incident light beam Ci: coefficient indicating phase h: height from optical axis
1 × 10 −4 <| C2 / C1 | <1 × 10 +1
1 × 10 −5 <| C3 / C1 | <1 × 10 −3
A zoom lens characterized by satisfying the following conditions:
長い共役側より順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、ズーミング中固定で正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群のみをレンズ群として有し、広角端から望遠端へのズーミングに際して、前記第2レンズ群を移動させることにより像の大きさを変えるとともに、第4レンズ群以降の少なくとも1つのレンズ群を移動させることによりズーミングに伴う像面変動を補正するズームレンズにおいて、
前記第2レンズ群が回折光学素子を有し、前記回折光学素子の位相を、
【外7】
Figure 0003754805
λ :入射光束の波長
Ci:位相を表す係数
:光軸からの高さ
とするとき、
1×10 −4 <|C2/C1|<1×10 +1
1×10 −5 <|C3/C1|<1×10 −3
なる条件を満足することを特徴とするズームレンズ。
In order from the long conjugate side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power fixed during zooming, a fourth lens group having a negative refractive power, Only the fifth lens group having a positive refractive power is used as a lens group. When zooming from the wide-angle end to the telephoto end, the second lens group is moved to change the size of the image, and the fourth and subsequent lens groups. In a zoom lens that corrects image plane variation due to zooming by moving at least one lens group of
The second lens group has a diffractive optical element, and the phase of the diffractive optical element is
[Outside 7]
Figure 0003754805
λ : wavelength of incident light beam
Ci: Coefficient representing phase
h : Height from the optical axis
And when
1 × 10 −4 <| C2 / C1 | <1 × 10 +1
1 × 10 −5 <| C3 / C1 | <1 × 10 −3
A zoom lens characterized by satisfying the following conditions:
前記回折光学素子の位相を、
【外8】
Figure 0003754805
λ :入射光束の波長
Ci:位相を表す係数
h :光軸からの高さ
前記第2レンズ群の屈折力をΨ2とするとき、
Ψ2・C1<0
なる条件を満足することを特徴とする請求項11又は12記載のズームレンズ。
The phase of the diffractive optical element is
[Outside 8]
Figure 0003754805
λ: wavelength of incident light beam Ci: coefficient representing phase h: height from optical axis When the refractive power of the second lens group is ψ2,
Ψ2 · C1 <0
The zoom lens according to claim 11, wherein the following condition is satisfied.
前記回折光学素子の位相を、
【外9】
Figure 0003754805
λ :入射光束の波長
Ci:位相を表す係数
h :光軸からの高さ
前記回折光学素子の回折光学面が形成された面の曲率による屈折力をψ2とするとき、
ψ2・C1<0
なる条件を満足することを特徴とする請求項11乃至13いずれかに記載のズームレンズ。
The phase of the diffractive optical element is
[Outside 9]
Figure 0003754805
λ: wavelength of incident light beam Ci: coefficient representing phase h: height from optical axis When refracting power by the curvature of the surface on which the diffractive optical surface of the diffractive optical element is formed is ψ2,
ψ2 · C1 <0
The zoom lens according to claim 11, wherein the following condition is satisfied.
前記第2レンズ群の焦点距離をF2、前記回折光学素子の回折光学面の焦点距離をFboとするとき、
0.1<|F2/Fbo|<0.7
なる条件を満足することを特徴とする請求項11乃至14いずれかに記載のズームレンズ。
When the focal length of the second lens group is F2, and the focal length of the diffractive optical surface of the diffractive optical element is Fbo,
0.1 <| F2 / Fbo | <0.7
The zoom lens according to claim 11, wherein the following condition is satisfied.
前記第2レンズ群の焦点距離をF2、広角端、望遠端での全系の焦点距離をそれぞれFw、Ftとするとき、
【外10】
Figure 0003754805
なる条件を満足することを特徴とする請求項11乃至15いずれかに記載のズームレンズ。
When the focal length of the second lens group is F2, and the focal length of the entire system at the wide-angle end and the telephoto end is Fw and Ft, respectively.
[Outside 10]
Figure 0003754805
The zoom lens according to claim 11, wherein the following condition is satisfied.
前記第2レンズ群中に回折光学面が1面のみであり、前記第2レンズ群の焦点距離をF2、該回折光学面が形成された面の曲率をRboとするとき、
|F2/Rbo|<1.8
なる条件を満足することを特徴とする請求項11乃至16いずれかに記載のズームレンズ。
When there is only one diffractive optical surface in the second lens group, the focal length of the second lens group is F2, and the curvature of the surface on which the diffractive optical surface is formed is Rbo.
| F2 / Rbo | <1.8
The zoom lens according to claim 11, wherein the following condition is satisfied.
前記第2レンズ群の光軸上の厚みをt2、前記第2レンズ群の焦点距離をF2とするとき、
0.05<|t2/F2|<0.4
なる条件を満足することを特徴とする請求項11乃至17いずれかに記載のズームレンズ。
When the thickness on the optical axis of the second lens group is t2, and the focal length of the second lens group is F2,
0.05 <| t2 / F2 | <0.4
The zoom lens according to claim 11, wherein the following condition is satisfied.
前記回折光学素子は、第1の環状回折格子と、該第1の環状回折格子とは異なる材料で該第1の環状回折格子上に形成された第2の環状回折格子とを有することを特徴とする請求項11乃至18いずれかに記載のズームレンズ。The diffractive optical element includes a first annular diffraction grating and a second annular diffraction grating formed on the first annular diffraction grating with a material different from that of the first annular diffraction grating. The zoom lens according to claim 11 . 長い共役側より順に、少なくとも、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、ズーミング中固定で正の屈折力の第3レンズ群、正の屈折力の第4レンズ群のみをレンズ群として有し、広角端から望遠端へのズーミングに際して、前記第2レンズ群を移動させることにより像の大きさを変えるとともに、第4レンズ群以降の少なくとも1つのレンズ群を移動させることによりズーミングに伴う像面変動を補正するズームレンズにおいて、
前記第3レンズ群が回折光学素子を有し、前記回折光学素子の位相を、
【外11】
Figure 0003754805
λ :入射光束の波長
Ci:位相を表す係数
h :光軸からの高さ
とするとき、
1×10−4<|C2/C1|<1×10−1
1×10−5<|C3/C1|<1×10−2
なる条件を満足することを特徴とするズームレンズ。
In order from the long conjugate side, at least a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power fixed during zooming, and a fourth lens having a positive refractive power This lens group is the only lens group. When zooming from the wide-angle end to the telephoto end, the image size is changed by moving the second lens group, and at least one lens group after the fourth lens group is moved. In the zoom lens that corrects the image plane variation accompanying zooming by
The third lens group has a diffractive optical element, and the phase of the diffractive optical element is
[Outside 11]
Figure 0003754805
λ: wavelength of incident light beam Ci: coefficient indicating phase h: height from optical axis
1 × 10 −4 <| C2 / C1 | <1 × 10 −1
1 × 10 −5 <| C3 / C1 | <1 × 10 −2
A zoom lens characterized by satisfying the following conditions:
長い共役側より順に、少なくとも、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、ズーミング中固定で正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群のみをレンズ群として有し、広角端から望遠端へのズーミングに際して、前記第2レンズ群を移動させることにより像の大きさを変えるとともに、第4レンズ群以降の少なくとも1つのレンズ群を移動させることによりズーミングに伴う像面変動を補正するズームレンズにおいて、
前記第3レンズ群が回折光学素子を有し、前記回折光学素子の位相を、
【外12】
Figure 0003754805
λ :入射光束の波長
Ci:位相を表す係数
:光軸からの高さ
とするとき、
1×10 −4 <|C2/C1|<1×10 −1
1×10 −5 <|C3/C1|<1×10 −2
なる条件を満足することを特徴とするズームレンズ。
In order from the long conjugate side, at least a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power fixed during zooming, and a fourth lens having a negative refractive power A fifth lens group having a positive refractive power as a lens group, and changing the size of the image by moving the second lens group during zooming from the wide-angle end to the telephoto end; In a zoom lens that corrects image plane variation caused by zooming by moving at least one lens group after the group,
The third lens group has a diffractive optical element, and the phase of the diffractive optical element is
[Outside 12]
Figure 0003754805
λ : wavelength of incident light beam
Ci: Coefficient representing phase
h : Height from the optical axis
And when
1 × 10 −4 <| C2 / C1 | <1 × 10 −1
1 × 10 −5 <| C3 / C1 | <1 × 10 −2
A zoom lens that satisfies the following conditions:
前記回折光学素子の位相を、
【外13】
Figure 0003754805
λ :入射光束の波長
Ci:位相を表す係数
h :光軸からの高さ
前記第3レンズ群の屈折力をΨ3とするとき、
Ψ3・C1<0
なる条件を満足することを特徴とする請求項20又は21記載のズームレンズ。
The phase of the diffractive optical element is
[Outside 13]
Figure 0003754805
λ: wavelength of incident light beam Ci: coefficient representing phase h: height from optical axis When the refractive power of the third lens group is ψ3,
Ψ3 · C1 <0
The zoom lens according to claim 20 or 21, wherein the following condition is satisfied.
前記回折光学素子の位相を、
【外14】
Figure 0003754805
λ :入射光束の波長
Ci:位相を表す係数
h :光軸からの高さ
前記回折光学素子が形成された面の曲率による屈折力をψ3とするとき、
ψ3・C1<0
なる条件を満足することを特徴とする請求項20乃至22いずれかに記載のズームレンズ。
The phase of the diffractive optical element is
[Outside 14]
Figure 0003754805
λ: wavelength of incident light beam Ci: coefficient representing phase h: height from optical axis When refracting power by the curvature of the surface on which the diffractive optical element is formed is ψ3,
ψ3 · C1 <0
The zoom lens according to claim 20, wherein the following condition is satisfied.
前記第3レンズ群の焦点距離をF3、前記回折光学素子の回折光学面のみの焦点距離をFboとするとき、
0.05<F3/Fbo<0.2
なる条件を満足することを特徴とする請求項20乃至23いずれかに記載のズームレンズ。
When the focal length of the third lens group is F3, and the focal length of only the diffractive optical surface of the diffractive optical element is Fbo,
0.05 <F3 / Fbo <0.2
The zoom lens according to claim 20, wherein the following condition is satisfied.
前記第3レンズ群の焦点距離をF3、広角端、望遠端での全系の焦点距離をそれぞれFw、Ftとするとき、
【外15】
Figure 0003754805
なる条件を満足することを特徴とする請求項20乃至24いずれかに記載のズームレンズ。
When the focal length of the third lens group is F3, and the focal length of the entire system at the wide-angle end and the telephoto end is Fw and Ft, respectively.
[Outside 15]
Figure 0003754805
The zoom lens according to claim 20, wherein the following condition is satisfied.
前記第3レンズ群中回折光学面が1面のみであり、前記第3レンズ群の焦点距離をF3、該回折光学面の曲率をRboとするとき、
|F3/Rbo|<0.7
なる条件を満足することを特徴とする請求項20乃至25いずれかに記載のズームレンズ。
When there is only one diffractive optical surface in the third lens group, the focal length of the third lens group is F3, and the curvature of the diffractive optical surface is Rbo,
| F3 / Rbo | <0.7
The zoom lens according to claim 20, wherein the following condition is satisfied.
前記第3レンズ群の光軸上の厚みをt3、前記第3レンズ群の焦点距離をF3とするとき、
0.1<t3/F3<0.27
なる条件を満足することを特徴とする請求項20乃至26いずれかに記載のズームレンズ。
When the thickness on the optical axis of the third lens group is t3 and the focal length of the third lens group is F3,
0.1 <t3 / F3 <0.27
27. The zoom lens according to claim 20, wherein the following condition is satisfied.
前記回折光学素子は、第1の環状回折格子と、該第1の環状回折格子とは異なる材料で該第1の環状回折格子上に形成された第2の環状回折格子とを有することを特徴とする請求項20乃至27いずれかに記載のズームレンズ。The diffractive optical element includes a first annular diffraction grating and a second annular diffraction grating formed on the first annular diffraction grating with a material different from that of the first annular diffraction grating. The zoom lens according to any one of claims 20 to 27 . 請求項1乃至28記載のズームレンズを有するカメラ。Camera with a zoom lens according to claim 1 to 28.
JP24531497A 1996-09-19 1997-09-10 Zoom lens and optical apparatus using the same Expired - Fee Related JP3754805B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24531497A JP3754805B2 (en) 1996-09-19 1997-09-10 Zoom lens and optical apparatus using the same
US09/421,367 US6606200B1 (en) 1996-09-19 1999-10-19 Zoom lens device and optical apparatus provided with the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-247837 1996-09-19
JP24783796 1996-09-19
JP24531497A JP3754805B2 (en) 1996-09-19 1997-09-10 Zoom lens and optical apparatus using the same

Publications (2)

Publication Number Publication Date
JPH10148757A JPH10148757A (en) 1998-06-02
JP3754805B2 true JP3754805B2 (en) 2006-03-15

Family

ID=26537169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24531497A Expired - Fee Related JP3754805B2 (en) 1996-09-19 1997-09-10 Zoom lens and optical apparatus using the same

Country Status (1)

Country Link
JP (1) JP3754805B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704149B2 (en) 1998-04-21 2004-03-09 Minolta Co., Ltd. Lens optical system
US7295387B1 (en) 1998-04-21 2007-11-13 Minolta Co., Ltd. Lens optical system
JP4447706B2 (en) * 1999-10-29 2010-04-07 キヤノン株式会社 Variable magnification optical system having anti-vibration function and optical apparatus including the same
US6473232B2 (en) 2000-03-08 2002-10-29 Canon Kabushiki Kaisha Optical system having a diffractive optical element, and optical apparatus
JP3467018B2 (en) * 2000-03-08 2003-11-17 キヤノン株式会社 Optical system and optical equipment
JP2001318316A (en) 2000-05-12 2001-11-16 Canon Inc Zoom lens and optical apparatus using the same
JP4672860B2 (en) * 2000-12-14 2011-04-20 キヤノン株式会社 Zoom lens and optical apparatus using the same
JP4903418B2 (en) * 2005-11-18 2012-03-28 イーストマン コダック カンパニー Zoom lens
JP2008122880A (en) * 2006-11-15 2008-05-29 Olympus Imaging Corp Zoom lens and electronic imaging apparatus
JP5006634B2 (en) * 2006-12-20 2012-08-22 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2008304708A (en) * 2007-06-07 2008-12-18 Konica Minolta Opto Inc Zoom lens and imaging apparatus
JP5549134B2 (en) * 2008-07-15 2014-07-16 株式会社ニコン Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
US8416506B2 (en) 2009-02-20 2013-04-09 Nikon Corporation Zoom lens, optical apparatus equipped therewith and method for manufacturing the zoom lens
US8614855B2 (en) 2009-02-26 2013-12-24 Tamron Co., Ltd. Zoom lens
JP5393278B2 (en) * 2009-06-16 2014-01-22 オリンパスイメージング株式会社 Zoom lens and image pickup apparatus including the same
US8320051B2 (en) 2009-10-13 2012-11-27 Panasonic Corporation Zoom lens system, imaging device and camera
JP5780727B2 (en) * 2010-09-16 2015-09-16 オリンパス株式会社 4 group zoom lens and image pickup apparatus including the same
JP5601586B2 (en) * 2011-01-13 2014-10-08 株式会社ニコン Optical system and optical equipment
WO2012137421A1 (en) * 2011-04-06 2012-10-11 株式会社ニコン Zoom optical system and imaging device having same
JP5659961B2 (en) * 2011-06-13 2015-01-28 コニカミノルタ株式会社 Large-aperture variable magnification optical system and imaging device
JP6016537B2 (en) * 2012-09-05 2016-10-26 キヤノン株式会社 Optical system and imaging apparatus having the same
CN105209951B (en) * 2013-01-25 2017-09-22 柯尼卡美能达株式会社 Zoom lens and camera device
JP2018180365A (en) 2017-04-17 2018-11-15 キヤノン株式会社 Zoom lens and image capturing device having the same
CN111505814B (en) * 2020-06-30 2020-12-01 嘉兴中润光学科技有限公司 High-resolution image pickup device and high-definition zoom lens

Also Published As

Publication number Publication date
JPH10148757A (en) 1998-06-02

Similar Documents

Publication Publication Date Title
JP3754805B2 (en) Zoom lens and optical apparatus using the same
US7133221B2 (en) Lens system and optical device having the same
US6606200B1 (en) Zoom lens device and optical apparatus provided with the same
JP4898410B2 (en) Zoom lens and imaging apparatus having the same
US6577450B2 (en) Zoom lens and optical apparatus using the same
US6639721B2 (en) Zoom lens system and optical apparatus using the same
US8228616B2 (en) Zoom lens and image pickup apparatus having the same
JP2010243637A5 (en)
JP3832935B2 (en) Zoom lens
US6865027B2 (en) Zoom lens and camera having the same
JP3792846B2 (en) Zoom lens
JPH11133305A (en) Zoom lens
JP3505980B2 (en) Imaging device
JP2003021783A (en) Zoom lens and optical equipment using the same
JP2011085653A (en) Zoom lens system, imaging apparatus and camera
US20230244066A1 (en) Optical system, optical apparatus, and method of manufacturing optical system
JP2019086607A (en) Zoom lens and image capturing device having the same
JP3792847B2 (en) Zoom lens
JP2011085654A (en) Zoom lens system, imaging apparatus and camera
JP2000147379A (en) Zoom lens
JP4951915B2 (en) Zoom lens
JP2004012504A (en) Zoom lens and optical equipment having it
US6757103B2 (en) Zoom lens and optical equipment using the same
JP5845886B2 (en) Zoom lens and imaging device
US20210191112A1 (en) Optical system, optical apparatus, and method of manufacturing optical system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees