JP3754609B2 - Hemming probe - Google Patents

Hemming probe Download PDF

Info

Publication number
JP3754609B2
JP3754609B2 JP2000247964A JP2000247964A JP3754609B2 JP 3754609 B2 JP3754609 B2 JP 3754609B2 JP 2000247964 A JP2000247964 A JP 2000247964A JP 2000247964 A JP2000247964 A JP 2000247964A JP 3754609 B2 JP3754609 B2 JP 3754609B2
Authority
JP
Japan
Prior art keywords
hemming
probe
bent portion
arms
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000247964A
Other languages
Japanese (ja)
Other versions
JP2001133204A (en
Inventor
聡 有益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000247964A priority Critical patent/JP3754609B2/en
Publication of JP2001133204A publication Critical patent/JP2001133204A/en
Application granted granted Critical
Publication of JP3754609B2 publication Critical patent/JP3754609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、三次元座標測定装置を使用して被測定物のヘミング部の屈曲部稜線の形状を測定すべく、該稜線に接触させつゝその長手方向へ移動させる、ヘミング部測定用プローブに関する。
【0002】
【従来の技術】
三次元座標測定装置は、例えば特開平8−261745号公報に開示されるように、公知である。
【0003】
【発明が解決しようとする課題】
従来、三次元座標測定装置を使用して被測定物のヘミング部の屈曲部稜線の形状を測定する際、針状のプローブで前記屈曲部稜線をなぞることが行われている。しかしながら、前記屈曲部稜線を針状のプローブで捉えるのには、一般に勘に頼っており、高度の熟練を要するものである。
【0004】
本発明は、かゝる事情に鑑みてなされたもので、被測定物のヘミング部の屈曲部稜線の形状を、特別な熟練を要することなく、高精度をもって簡単に測定し得るようにした、前記ヘミング部測定用プローブを提供することを目的とする。
【0005】
【課題を解決するための装置】
上記目的を達成するために、本発明は、三次元座標測定装置の多関節アーム先端に設けられるヘミング部測定用プローブであって、被測定物のヘミング部の屈曲部稜線の形状を測定すべく、該稜線に接触させつゝその長手方向へ移動させるようにしたものにおいて、前記ヘミング部の屈曲部を跨いで、その両側面に対向する一対の挟み腕と、各挟み腕に設けられて対応するヘミング部の側面上を転動し得る転がり部材と、前記三次元座標測定装置により前記ヘミング部の屈曲部稜線の各位置を正確に検出するために前記両挟み腕間に支持されて前記ヘミング部の屈曲部稜線上を転動し得るローラ型検出部とで構成したことを第1の特徴とする。
【0006】
この第1の特徴によれば、ヘミング部に対する両挟み腕の挟持により、プローブを、その検出部がヘミング部の屈曲部稜線に接触する正しい姿勢に保持することができる。そこで、プローブをヘミング部の屈曲部稜線に沿って移動させれば、検出部は、該屈曲部稜線上を転動しながら、その検出部に対応した該屈曲部稜線の各位置を三次元座標測定装置により正確に検出して、その形状を測定することができる。しかも、両挟み腕の転がり部材のローラのヘミング部側面での転動と、検出部の屈曲部稜線上での転動とにより、プローブを正しい姿勢でスムーズに移動させることができる。
【0007】
また本発明は、上記特徴に加えて、前記一対の挟み腕の間隔を調節可能にし、両挟み腕間に配設した支持軸に前記検出部を回転及び摺動可能に支承させると共に、前記両挟み腕間に、前記検出部を両挟み腕間の中央位置に付勢する一対のバランスばねを介裝したことを第2の特徴とする。
【0008】
この第2の特徴によれば、両挟み腕の間隔の調節により、厚みが異なる種々のヘミング部の測定に対応することができる。しかも、バランスばねのバランス作用により、検出部を常に両挟み腕間の中央位置に自動的に保持することができて、前記屈曲部稜線の測定精度の向上を図ることができる。
【0009】
さらに本発明は、三次元座標測定装置の多関節アーム先端に設けられるヘミング部測定用プローブであって、被測定物のヘミング部の屈曲部稜線の形状を測定すべく、該稜線に接触させつゝその長手方向へ移動させるようにしたものにおいて、シャンクと、このシャンクの先端から二股に分岐し、前記ヘミング部の屈曲部を跨いで、その両側面上を摺動し得る一対の挟み腕とから構成し、前記シャンクには、前記三次元座標測定装置により前記ヘミング部の屈曲部稜線の各位置を正確に検出するために両挟み腕間側に突出して前記ヘミング部の屈曲部稜線上を摺動し得る検出突起を形成したことを第3の特徴とする。
【0010】
この第3の特徴によれば、両挟み腕によりヘミング部を挟むと共に、検出突起をヘミング部の屈曲部稜線に接触させて、プローブを前記屈曲部稜線に沿って摺動させるという簡単な操作により、その検出突起に対応した該屈曲部稜線の各位置を三次元座標測定装置により正確に検出して、その形状を測定することができる。しかもプローブの構造は極めて簡単で、これを安価に提供することができる。
【0011】
さらにまた本発明は、第3の特徴に加えて、前記検出突起の横断面を半円柱状に形成したことを第4の特徴とする。
【0012】
この第4の特徴によれば、ヘミング部の、特に凸状角部の測定を的確に行うことができる。
【0013】
さらにまた本発明は、第3の特徴に加えて、前記検出突起の横断面を三角柱状に形成したことを第5の特徴とする。
【0014】
この第5の特徴によれば、ヘミング部の、特に凹状角部の測定を的確に行うことができる。
【0015】
【発明の実施の形態】
本発明の実施形態を、添付図面に示す本発明の実施例に基づいて以下に説明する。
【0016】
図1〜図5は本発明の第1実施例を示すもので、図1は本発明のヘミング部測定用プローブを備えた三次元座標測定装置の側面図、図2は上記プローブの拡大側面図、図3は図2の3−3矢視図、図4は図2の4−4線断面図、図5は上記プローブの被測定物へのセット過程を示す、図1に対応する側面図である。
【0017】
先ず、図1において、三次元座標測定装置10は、床上に設置される基台9と、この基台9上に立設される支柱11と、この支柱11に支持される多関節(図示例では3関節)アーム12と、この多関節アーム12の先端部に首振り可能に連結されるヘミング部測定用プローブ13と、このプローブ13における後述の検出部18の位置を演算してその結果をディスプレイに表示したりプリントアウトしたりするコンピュータ14とからなっている。
【0018】
図2〜図4に示すように、ヘミング部測定用プローブ13は、多関節アーム12の先端に首振り可能に連結されるベース部15と、このベース部15に設けられる一対の挟み腕16,17と、これら挟み腕16,17間に支持されるローラ型の検出部18とを備える。一方の挟み腕16はベース部15の一端に固設された固定挟み腕となっており、他方の挟み腕17は、ベース部15に形成されたレール19に摺動可能に係合して固定挟み腕16に対して進退し得る可動挟み腕となっている。固定挟み腕16には、レール19と平行に延びて可動挟み腕17を貫通する支持ボルト20(本発明の支持軸に対応)の基端が固着され、この支持ボルト20の先端に蝶ナット21が螺合される。
【0019】
支持ボルト20には、両挟み腕16,17間において、ローラ型の検出部18が回転及び摺動自在に支承されると共に、この検出部18を両挟み腕16,17間の中央位置に付勢する一対のバランスばね22,23が装着される。
【0020】
両挟み腕16,17は、これらの間に被測定物、例えば自動車ボディDのヘミング部26を挿入し得る充分な間隔に開くことができるようになっており、その間隔は蝶ナット21の螺合具合によって調節することができる。
【0021】
両挟み腕16,17には、これらの間に挿入されるヘミング部26に接するローラ27,27;28,28(本発明の転がり部材に対応)がそれぞれ複数個(図示例で二個宛)付設される。その際、各ローラ27,28は、その軸線が支持ボルト20の軸線を通る平面に直交するように配置される。
【0022】
次に、この実施例の作用について説明する。
【0023】
ヘミング部測定用プローブ13の使用に当たっては、先ず、検出部18により被測定物である自動車ボディB上の任意の三点を基準点として読み取る。次いで、図5に示すように、蝶ナット21を緩めて両挟み腕16,17の間隔を充分に広げて、それらの間に自動車ボディDのヘミング部26を挿入する。次いで、蝶ナット21を締めていき、各ローラ27,28がヘミング部26の対向面に接触するように両挟み腕16,17の間隔を調節し、同時に検出部18の外周面をヘミング部26の屈曲部26aに接触させる。すると、両挟み腕16,17は、ローラ27,28を介してヘミング部26を正しく挟持することにより、検出部18を,その外周面がヘミング部26の屈曲部稜線Lに接する正しい姿勢に保持することになる。
【0024】
そこで、作業者がプローブ13の基部を把持して、プローブ13をヘミング部26の屈曲部稜線Lに沿って移動させれば、検出部18は、該屈曲部稜線L上を転動しながら、該屈曲部稜線Lの各位置を前記三基準点に基づき正確に検知して、その形状(即ち直線状、波うち状などの)を測定することができる。しかも、両挟み腕16,17のローラ27,28のヘミング部26側面での転動と、検出部18の屈曲部稜線L上での転動とにより、プローブ13の移動がスムースであり、したがって検出部18の正しい姿勢の保持が容易となる。
【0025】
このように、ヘミング部26に対する両挟み腕16,17の挟持状態で、プローブ13をヘミング部26の屈曲部稜線Lに沿って移動するという簡単な操作により、該屈曲部稜線Lの形状を高精度をもって測定することができるので、何人も特別な熟練を要することなく、これを操作することができる。
【0026】
また、蝶ナット21の螺合調節により可動挟み腕17を固定挟み腕16に対して進退させ、両挟み腕16,17の間隔を自由に調節し得るので、厚みが異なる種々のヘミング部26の測定に対応することができ、その利用範囲が広い。しかも、その際、検出部18と両挟み腕16,17との各間に縮設したコイルばね22,23のバランス作用により、検出部18を常に両挟み腕16,17間の中央位置に自動的に保持することができて、前記屈曲部稜線Lの測定精度の向上に寄与し得る。
【0027】
次に、図6〜図8に示す本発明の第2実施例について説明する。図6は本発明の第2実施例に係るヘミング部測定用プローブを備えた三次元座標測定装置の斜視図、図7は図6の7−7線拡大断面図、図8は図7の8−8矢視図である。
【0028】
図6において、三次元座標測定装置110は、床上に設置される基台109、この基台109に取り付けられた、8個の関節J1〜J8を持つ多関節アーム112とを備えており、その多関節アーム112の最先端アームとして、ヘミング部測定用プローブ113が設けられる。
【0029】
図7及び図8に示すように、このプローブ113は、シャンク30と、このシャンク30の先端から二股に分岐して互いに対向する一対の挟み腕31,31′とからなっている。両挟み腕31,31′の対向面には、円錐状又半球状のガイド突起32,32′が形成され、これらガイド突起32,32′間は、その間に被測定物、例えば自動車用ドアDのヘミング部26を摺動可能に挿入し得る間隔に設定される。またシャンク30には、両挟み腕31,31′間側に突出する半円柱状の検出突起33が一体に形成され、この検出突起33は、上記ヘミング部26の稜線L上を摺動し得るようになっている。
【0030】
而して、プローブ13の使用に当たっては、この場合もプローブ113のシャンク30の検出突起33によりドアDの任意の三点を基準点として読み取り、次いで、両挟み腕31,31′間にドアDのヘミング部26を挿入すると共に、円柱状の検出突起33をヘミング部26の屈曲部に接触させる。そして、作業者がプローブ113のシャンク30を把持して、プローブ113をヘミング部26の屈曲部稜線Lに沿って移動させれば、検出突起33は、該屈曲部稜線L上を摺動しながら、前記三基準点の基づいて該屈曲部稜線Lの各位置を正確に検知して、その形状を測定することができる。特に、円柱状の検出突起33は、図8に示すように、ヘミング部26の凸状角部の測定に有効である。しかも、両挟み腕31,31′のガイド突起32,32′と検出突起33の三点がヘミング部26に接触することでプローブ113の正しい姿勢を確保でき、測定精度の向上に寄与し得る。
【0031】
次に、図9に示す本発明の第3実施例のプローブについて説明する。
【0032】
この第3実施例のプローブ213は、上記第2実施例のプローブ113における半円柱状の検出突起33を、三角柱状の検出突起34に置き換えたものに当り、その他の構成は、第2実施例と同様であるので、第2実施例と対応する部分には同一の参照符号を付して、その詳細な説明は省略する。
【0033】
このような三角柱状の検出突起133を持つプローブ213は、例えば自動車用テールゲートTのヘミング部26の凹状角部の測定に有効である。
【0034】
本発明は、上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。例えば、第1実施例において、各挟み腕16,17には、複数のローラ27,28に代えて、複数のボールを付設することもできる。
【0035】
【発明の効果】
以上のように本発明の第1の特徴によれば、三次元座標測定装置の多関節アーム先端に設けられるヘミング部測定用プローブであって、被測定物のヘミング部の屈曲部稜線の形状を測定すべく、該稜線に接触させつゝその長手方向へ移動させるようにしたものにおいて、前記ヘミング部の屈曲部を跨いで、その両側面に対向する一対の挟み腕と、各挟み腕に設けられて対応するヘミング部の側面上を転動し得る転がり部材と、前記三次元座標測定装置により前記ヘミング部の屈曲部稜線の各位置を正確に検出するために前記両挟み腕間に支持されて前記ヘミング部の屈曲部稜線上を転動し得るローラ型検出部とで構成したので、ヘミング部に対する両挟み腕の挟持により、プローブを、その検出部がヘミング部の屈曲部稜線に接触する正しい姿勢に保持することができ、したがってプローブをヘミング部の屈曲部稜線に沿って移動させるという簡単な操作により、その検出部に対応した該屈曲部稜線の各位置を三次元座標測定装置により正確に検出して、その形状を測定することができ、その操作には特別な熟練を要しない。しかも、両挟み腕の転がり部材のローラのヘミング部側面での転動と、ロータ型検出部の屈曲部稜線上での転動とにより、プローブプローブを正しい姿勢でスムーズに移動させることができる。
【0036】
また本発明の第2の特徴によれば、前記一対の挟み腕の間隔を調節可能にし、両挟み腕間に配設した支持軸に前記プローブを回転及び摺動可能に支承させると共に、前記両挟み腕間に、前記プローブを両挟み腕間の中央位置に付勢する一対のバランスばねを介裝したので、両挟み腕の間隔の調節により、厚みが異なる種々のヘミング部の測定に対応することができ、その利用範囲が広い。しかも、バランスばねのバランス作用により、プローブを常に両挟み腕間の中央位置に自動的に保持することができて、前記屈曲部稜線の測定精度の向上を図ることができる。
【0037】
さらに本発明の第3の特徴によれば、三次元座標測定装置の多関節アーム先端に設けられるヘミング部測定用プローブであって、被測定物のヘミング部の屈曲部稜線の形状を測定すべく、該稜線に接触させつゝその長手方向へ移動させるようにしたものにおいて、シャンクと、このシャンクの先端から二股に分岐し、前記ヘミング部の屈曲部を跨いで、その両側面上を摺動し得る一対の挟み腕とから構成し、前記シャンクには、前記三次元座標測定装置により前記ヘミング部の屈曲部稜線の各位置を正確に検出するために両挟み腕間側に突出して前記ヘミング部の屈曲部稜線上を摺動し得る検出突起を形成したので、両挟み腕によりヘミング部を挟むと共に、検出突起をヘミング部の屈曲部稜線に接触させて、プローブを前記屈曲部稜線に沿って摺動させるという簡単な操作により、その検出突起に対応した該屈曲部稜線の各位置を三次元座標測定装置により正確に検出して、その形状を測定することができる。しかもプローブの構造は極めて簡単で、これを安価に提供することができる。
【0038】
さらにまた本発明の第4の特徴によれば、前記検出突起の横断面を半円柱状に形成したので、ヘミング部の、特に凸状角部の測定を的確に行うことができる。
【0039】
さらにまた本発明の第5の特徴によれば、前記検出突起の横断面を三角柱状に形成したので、ヘミング部の、特に凹状角部の測定を的確に行うことができる。
【図面の簡単な説明】
【図1】 本発明の第1実施例に係るヘミング部測定用プローブを備えた3三次元座標測定装置の側面図。
【図2】 上記プローブの拡大側面図。
【図3】 図2の3−3矢視図。
【図4】 図2の4−4矢視図。
【図5】 上記プローブの被測定物へのセット過程を示す、図1に対応する側面図。
【図6】 本発明の第2実施例に係るヘミング部測定用プローブを備えた三次元座標測定装置の斜視図。
【図7】 図6の7−7線拡大断面図。
【図8】 図7の8−8矢視図。
【図9】 本発明の第3実施例を示す、図8に対応した断面図。
【符号の説明】
B・・・・・被測定部(自動車ボディ)
D・・・・・被測定部(ドア)
T・・・・・被測定部(テールゲート)
L・・・・・屈曲部稜線
10,110・・・・ヘミング部測定装置
13,113,213・・・・プローブ
16・・・・挟み腕(固定挟み腕)
17・・・・挟み腕(可動挟み腕)
18・・・・検出部
20・・・・支持軸(支持ボルト)
22・・・・バランスばね
23・・・・バランスばね
26・・・・ヘミング部
26a・・・屈曲部
27・・・・転がり部材(ローラ)
28・・・・転がり部材(ローラ)
30・・・・シャンク
33・・・・円柱状検出突起
34・・・・3角柱状検出突起
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a probe for measuring a hemming portion, which is moved in the longitudinal direction while contacting the ridgeline in order to measure the shape of the bent portion ridgeline of the hemming portion of an object to be measured using a three-dimensional coordinate measuring apparatus. .
[0002]
[Prior art]
A three-dimensional coordinate measuring apparatus is known as disclosed in, for example, Japanese Patent Application Laid-Open No. 8-261745.
[0003]
[Problems to be solved by the invention]
Conventionally, when measuring the shape of the bent portion ridge line of the hemming portion of the object to be measured using a three-dimensional coordinate measuring apparatus, the bent portion ridge line is traced with a needle-like probe. However, capturing the ridgeline of the bent portion with a needle-like probe generally relies on intuition and requires a high degree of skill.
[0004]
The present invention has been made in view of such circumstances, and the shape of the bent portion ridge line of the hemming portion of the object to be measured can be easily measured with high accuracy without requiring special skill. It is an object of the present invention to provide a probe for measuring the hemming part.
[0005]
[Apparatus for solving the problems]
In order to achieve the above object, the present invention is a hemming portion measuring probe provided at the tip of an articulated arm of a three-dimensional coordinate measuring apparatus, which is intended to measure the shape of a bent portion ridge line of a hemming portion of an object to be measured. , one is contacted with該稜lineゝin that so as to move in its longitudinal direction, across the bent portion of the hemming portion, a pair of scissors arms facing the side surfaces, the corresponding provided on each scissors arm A rolling member that can roll on the side surface of the hemming portion, and the hemming supported by the sandwiched arms to accurately detect each position of the ridge line of the bent portion of the hemming portion by the three-dimensional coordinate measuring device. The first feature is that it is configured with a roller-type detection unit that can roll on the ridge line of the bent portion.
[0006]
According to the first feature, the probe can be held in a correct posture in which the detection unit comes into contact with the bent portion ridge line of the hemming portion by sandwiching both the sandwiching arms with respect to the hemming portion. Therefore, if the probe is moved along the bending part ridge line of the hemming part, the detection part rolls on the bending part ridge line, and each position of the bending part ridge line corresponding to the detection part is three-dimensionally coordinated. The shape can be measured by accurately detecting with a measuring device . Moreover, the probe can be smoothly moved in a correct posture by rolling on the side surface of the hemming portion of the roller of the rolling member of both the sandwiching arms and rolling on the ridge line of the bent portion of the detection unit.
[0007]
In addition to the above-described features, the present invention makes it possible to adjust the distance between the pair of sandwiching arms, and to support the detection unit rotatably and slidably on a support shaft disposed between the sandwiching arms. A second feature is that a pair of balance springs for biasing the detecting portion to the center position between the two sandwiching arms is interposed between the sandwiching arms.
[0008]
According to the second feature, it is possible to cope with the measurement of various hemming portions having different thicknesses by adjusting the distance between both the sandwiching arms. In addition, the detecting portion can always be automatically held at the center position between the both sandwiching arms by the balance action of the balance spring, and the measurement accuracy of the bent portion ridge line can be improved.
[0009]
Furthermore, the present invention is a probe for measuring a hemming portion provided at the tip of an articulated arm of a three-dimensional coordinate measuring apparatus, and is in contact with the ridgeline in order to measure the shape of a ridgeline of a bent portion of a hemming portion of an object to be measured.ゝin that so as to move in its longitudinal direction, a shank, branches from the tip of the shank bifurcated, across the bent portion of the hemming portion, a pair of scissors arms can slide on both sides thereof The shank protrudes between the sandwiched arms so as to accurately detect each position of the bent portion ridge line of the hemming portion by the three-dimensional coordinate measuring device and on the bent portion ridge line of the hemming portion. A third feature is that a detection protrusion capable of sliding is formed.
[0010]
According to the third feature, the hemming portion is sandwiched by both the sandwiching arms, the detection projection is brought into contact with the bent portion ridge line of the hemming portion, and the probe is slid along the bent portion ridge line. The respective positions of the bent portion ridge lines corresponding to the detection protrusions can be accurately detected by the three-dimensional coordinate measuring device , and the shape thereof can be measured. In addition, the structure of the probe is extremely simple and can be provided at a low cost.
[0011]
Furthermore, in addition to the third feature, the present invention has a fourth feature in which a cross section of the detection protrusion is formed in a semi-cylindrical shape.
[0012]
According to the fourth feature, it is possible to accurately measure the hemming portion, particularly the convex corner portion.
[0013]
Furthermore, in addition to the third feature of the present invention, a fifth feature is that a cross section of the detection projection is formed in a triangular prism shape.
[0014]
According to the fifth feature, it is possible to accurately measure the hemming portion, particularly the concave corner portion.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.
[0016]
1 to 5 show a first embodiment of the present invention. FIG. 1 is a side view of a three-dimensional coordinate measuring apparatus equipped with a probe for measuring a hemming portion of the present invention, and FIG. 2 is an enlarged side view of the probe. 3 is a sectional view taken along the line 3-3 in FIG. 2, FIG. 4 is a sectional view taken along line 4-4 in FIG. 2, and FIG. 5 is a side view corresponding to FIG. It is.
[0017]
First, in FIG. 1, a three-dimensional coordinate measuring apparatus 10 includes a base 9 installed on a floor, a support 11 standing on the base 9, and a multi-joint (illustrated example) supported by the support 11. 3 joints) arm 12, hemming portion measuring probe 13 connected to the tip of this multi-joint arm 12 so as to be able to swing, and the position of detector 18 described later in this probe 13 are calculated and the result is calculated. The computer 14 displays on a display or prints out.
[0018]
As shown in FIGS. 2 to 4, the hemming portion measuring probe 13 includes a base portion 15 that is swingably connected to the tip of the articulated arm 12, and a pair of sandwiching arms 16 provided on the base portion 15. 17 and a roller-type detection unit 18 supported between the sandwiching arms 16 and 17. One pinching arm 16 is a fixed pinching arm fixed to one end of the base portion 15, and the other pinching arm 17 is slidably engaged with and fixed to a rail 19 formed on the base portion 15. It is a movable pinch arm that can move forward and backward with respect to the pinch arm 16. A base end of a support bolt 20 (corresponding to the support shaft of the present invention) extending in parallel with the rail 19 and penetrating the movable clamp arm 17 is fixed to the fixed clip arm 16, and a wing nut 21 is attached to the tip of the support bolt 20. Are screwed together.
[0019]
A roller-type detector 18 is supported on the support bolt 20 so as to be rotatable and slidable between the sandwiching arms 16 and 17, and the detector 18 is attached to a central position between the sandwiching arms 16 and 17. A pair of balancing springs 22 and 23 are mounted.
[0020]
Both the sandwiching arms 16 and 17 can be opened at a sufficient interval between which the object to be measured, for example, the hemming portion 26 of the automobile body D can be inserted. It can be adjusted according to the condition.
[0021]
Each of the sandwiching arms 16, 17 has a plurality of rollers 27, 27; 28, 28 (corresponding to the rolling members of the present invention) in contact with the hemming portion 26 inserted between them (two addresses in the illustrated example). It is attached. At this time, the rollers 27 and 28 are arranged so that the axis thereof is orthogonal to a plane passing through the axis of the support bolt 20.
[0022]
Next, the operation of this embodiment will be described.
[0023]
In using the hemming section measuring probe 13, first, the detection section 18 reads any three points on the automobile body B, which is the object to be measured, as reference points. Next, as shown in FIG. 5, the wing nut 21 is loosened to sufficiently widen the space between the two sandwiching arms 16 and 17, and the hemming portion 26 of the automobile body D is inserted between them. Next, the wing nut 21 is tightened, and the distance between both the sandwiching arms 16 and 17 is adjusted so that the rollers 27 and 28 come into contact with the opposing surfaces of the hemming portion 26, and at the same time, the outer peripheral surface of the detection portion 18 is adjusted to the hemming portion 26. Are brought into contact with the bent portion 26a. Then, the sandwiching arms 16, 17 hold the hemming portion 26 correctly via the rollers 27, 28, thereby holding the detection unit 18 in a correct posture in which the outer peripheral surface is in contact with the bent portion ridge line L of the hemming portion 26. Will do.
[0024]
Therefore, if the operator grasps the base portion of the probe 13 and moves the probe 13 along the bending portion ridge line L of the hemming portion 26, the detection unit 18 rolls on the bending portion ridge line L, Each position of the bent portion ridge line L can be accurately detected based on the three reference points, and its shape (that is, a straight line shape, a wave shape, etc.) can be measured. Moreover, the movement of the probe 13 is smooth due to the rolling of the rollers 27 and 28 of the sandwiching arms 16 and 17 on the side surface of the hemming portion 26 and the rolling of the detection portion 18 on the ridge line L of the bent portion. The correct posture of the detection unit 18 can be easily maintained.
[0025]
In this way, the shape of the bent portion ridge line L can be increased by a simple operation of moving the probe 13 along the bent portion ridge line L of the hemming portion 26 in a state in which both the sandwiching arms 16 and 17 are held by the hemming portion 26. Since it can be measured with accuracy, any person can operate it without any special skill.
[0026]
Further, since the movable holding arm 17 can be advanced and retracted with respect to the fixed holding arm 16 by adjusting the screwing of the wing nut 21, the distance between the holding arms 16 and 17 can be freely adjusted. It can be used for measurement and has a wide range of uses. In addition, at that time, the detecting unit 18 is always automatically set at the center position between the both sandwiching arms 16 and 17 by the balance action of the coil springs 22 and 23 contracted between the detecting unit 18 and the both sandwiching arms 16 and 17. And can contribute to the improvement of the measurement accuracy of the bent portion ridge line L.
[0027]
Next, a second embodiment of the present invention shown in FIGS. 6 to 8 will be described. 6 is a perspective view of a three-dimensional coordinate measuring apparatus equipped with a hemming portion measuring probe according to a second embodiment of the present invention, FIG. 7 is an enlarged sectional view taken along line 7-7 of FIG. 6, and FIG. FIG.
[0028]
In FIG. 6, the three-dimensional coordinate measuring apparatus 110 includes a base 109 installed on the floor, and an articulated arm 112 having eight joints J1 to J8 attached to the base 109. As the most advanced arm of the articulated arm 112, a hemming portion measuring probe 113 is provided.
[0029]
As shown in FIGS. 7 and 8, the probe 113 includes a shank 30 and a pair of sandwiching arms 31 and 31 ′ that are bifurcated from the tip of the shank 30 and face each other. Conical or hemispherical guide projections 32 and 32 'are formed on the opposing surfaces of the sandwiching arms 31 and 31', and an object to be measured, for example, an automobile door D, is interposed between the guide projections 32 and 32 '. The hemming portion 26 is set to an interval at which the hemming portion 26 can be slidably inserted. The shank 30 is integrally formed with a semi-cylindrical detection projection 33 projecting between the sandwiching arms 31 and 31 ′. The detection projection 33 can slide on the ridge line L of the hemming portion 26. It is like that.
[0030]
Thus, when the probe 13 is used, in this case as well, any three points of the door D are read by the detection projection 33 of the shank 30 of the probe 113 as a reference point, and then the door D is sandwiched between the sandwiching arms 31 and 31 '. The columnar detection projection 33 is brought into contact with the bent portion of the hemming portion 26. When the operator grips the shank 30 of the probe 113 and moves the probe 113 along the bent portion ridge line L of the hemming portion 26, the detection projection 33 slides on the bent portion ridge line L. Based on the three reference points, each position of the bent portion ridge line L can be accurately detected and its shape can be measured. In particular, the cylindrical detection protrusion 33 is effective in measuring the convex corner of the hemming portion 26 as shown in FIG. In addition, since the three points of the guide projections 32, 32 ′ and the detection projection 33 of the both sandwiching arms 31, 31 ′ are in contact with the hemming portion 26, the correct posture of the probe 113 can be secured, which can contribute to the improvement of measurement accuracy.
[0031]
Next, a probe according to a third embodiment of the present invention shown in FIG. 9 will be described.
[0032]
The probe 213 of the third embodiment corresponds to the probe 113 of the second embodiment in which the semi-cylindrical detection protrusion 33 is replaced with a triangular prism-shaped detection protrusion 34, and the other configuration is the second embodiment. Therefore, the same reference numerals are assigned to portions corresponding to those in the second embodiment, and detailed description thereof is omitted.
[0033]
The probe 213 having such a triangular prism-shaped detection projection 133 is effective for measuring the concave corner of the hemming portion 26 of the automobile tailgate T, for example.
[0034]
The present invention is not limited to the above embodiments, and various design changes can be made without departing from the scope of the invention. For example, in the first embodiment, a plurality of balls can be attached to each of the sandwiching arms 16 and 17 in place of the plurality of rollers 27 and 28.
[0035]
【The invention's effect】
As described above, according to the first feature of the present invention, there is provided a probe for measuring the hemming portion provided at the tip of the articulated arm of the three-dimensional coordinate measuring apparatus, and the shape of the bent portion ridge line of the hemming portion of the measurement object to measure, in that so as to move to the contacted oneゝits longitudinal direction該稜line, across the bent portion of the hemming portion, a pair of scissors arms facing the side surfaces, provided on each scissors arm And a rolling member that can roll on the side surface of the corresponding hemming portion, and the three-dimensional coordinate measuring device is supported between the sandwiching arms in order to accurately detect each position of the bent portion ridge line of the hemming portion. The roller-type detection unit that can roll on the bending portion ridge line of the hemming portion, the probe is brought into contact with the bending portion ridge line of the hemming portion by sandwiching both the clamping arms with respect to the hemming portion. correct Can be held in the energized, thus the simple operation of moving along the probe to the bent portion ridgeline of the hemming unit, precisely by the position three-dimensional coordinate measuring device of the bent portion ridgeline corresponding to the detection unit It can be detected and its shape measured, and its operation does not require special skill. In addition, the probe probe can be smoothly moved in the correct posture by rolling on the side surface of the hemming portion of the roller of the rolling member of both the sandwiching arms and rolling on the ridge line of the bent portion of the rotor type detection unit.
[0036]
According to the second feature of the present invention, the distance between the pair of sandwiching arms can be adjusted, and the probe can be rotatably and slidably supported on a support shaft disposed between the sandwiching arms. Since a pair of balance springs that urge the probe to the center position between the two sandwiching arms are interposed between the sandwiching arms, it is possible to measure various hemming portions having different thicknesses by adjusting the distance between the sandwiching arms. It can be used and its usage range is wide. In addition, the balance action of the balance spring can automatically hold the probe at the center position between the both sandwiching arms, and the measurement accuracy of the bent portion ridge line can be improved.
[0037]
Furthermore, according to the third feature of the present invention, there is provided a probe for measuring a hemming portion provided at the tip of an articulated arm of a three-dimensional coordinate measuring apparatus, wherein the shape of the ridge line of the bent portion of the hemming portion of the object to be measured is measured. , sliding in that so as to move to the contacted oneゝits longitudinal direction該稜line, a shank, branches from the tip of the shank bifurcated, across the bent portion of the hemming unit, on both side surfaces A pair of pinching arms that can project, and the shank protrudes between the pinching arms to accurately detect each position of the bent ridge line of the hemming portion by the three-dimensional coordinate measuring device. since the section of the bent portion on the ridge line to form a detection projection can slide, with sandwiching the hemming unit by both pinching arms, contacting the detection projection on the bent portion ridgeline of the hemming unit, the probe to the bent portion ridgeline along The simple operation of sliding Te, and accurately detected by the position three-dimensional coordinate measuring device of the bent portion ridgeline corresponding to the detection projection, it is possible to measure its shape. In addition, the structure of the probe is extremely simple and can be provided at a low cost.
[0038]
Furthermore, according to the fourth feature of the present invention, since the cross section of the detection projection is formed in a semi-cylindrical shape, it is possible to accurately measure the hemming portion, particularly the convex corner portion.
[0039]
Furthermore, according to the fifth feature of the present invention, since the cross section of the detection projection is formed in a triangular prism shape, the hemming portion, particularly the concave corner portion can be measured accurately.
[Brief description of the drawings]
FIG. 1 is a side view of a three-dimensional coordinate measuring apparatus provided with a hemming section measuring probe according to a first embodiment of the present invention.
FIG. 2 is an enlarged side view of the probe.
FIG. 3 is a view taken along arrow 3-3 in FIG. 2;
4 is a view taken along arrow 4-4 in FIG. 2;
FIG. 5 is a side view corresponding to FIG. 1, showing a process of setting the probe to the object to be measured.
FIG. 6 is a perspective view of a three-dimensional coordinate measuring apparatus including a hemming portion measuring probe according to a second embodiment of the present invention.
7 is an enlarged cross-sectional view taken along line 7-7 in FIG.
8 is a view on arrow 8-8 in FIG.
9 is a sectional view corresponding to FIG. 8, showing a third embodiment of the present invention.
[Explanation of symbols]
B ... Measured part (car body)
D ... Measured part (door)
T ... Measured part (tailgate)
L ... Bent part ridge line 10, 110 ... Hemming part measuring device 13, 113, 213 ... Probe 16 ... Pinching arm (fixed pinching arm)
17 .. Clipping arm (movable pinching arm)
18 ··· Detection unit 20 ··· Support shaft (support bolt)
22. Balance spring 23 ... Balance spring 26 ... Hemming portion 26a ... Bending portion 27 ... Rolling member (roller)
28 ... Rolling member (roller)
30 ... Shank 33 ... Cylindrical detection projection 34 ... Triangular column detection projection

Claims (5)

三次元座標測定装置(10)の多関節アーム(12)先端に設けられるヘミング部測定用プローブであって、
被測定物(B)のヘミング部(26)の屈曲部稜線(L)の形状を測定すべく、該稜線(L)に接触させつゝその長手方向へ移動させるようにしたものにおいて、
前記ヘミング部(26)の屈曲部(26a)を跨いで、その両側面に対向する一対の挟み腕(16,17)と、各挟み腕(16,17)に設けられて対応するヘミング部(26)の側面上を転動し得る転がり部材(27,28)と、前記三次元座標測定装置(10)により前記ヘミング部(26)の屈曲部稜線(L)の各位置を正確に検出するために前記両挟み腕(16,17)間に支持されて屈曲部稜線(L)上を転動し得るローラ型検出部(18)とで構成したことを特徴とする、ヘミング部測定用プローブ
A probe for measuring a hemming portion provided at the tip of the articulated arm (12) of the three-dimensional coordinate measuring device (10),
To measure the shape of the bent portion ridgeline of hemming portion of the object (B) (26) (L ), One is contacted with該稜line (L)ゝin that so as to move in its longitudinal direction,
A pair of pinching arms (16, 17) straddling the bent portion (26a) of the hemming portion (26) and facing both side surfaces thereof, and corresponding hemming portions provided on the respective pinching arms (16, 17) ( 26) Each position of the bent portion ridge line (L) of the hemming portion (26) is accurately detected by the rolling members (27, 28) that can roll on the side surface of the 26) and the three-dimensional coordinate measuring device (10). the supported between two pinching arms (16, 17), characterized by being configured out with roller-type detector capable of rolling the bent portion ridgeline (L) above (18) for, for hemming unit measurement probe
請求項1記載のヘミング部測定用プローブにおいて、
前記一対の挟み腕(16,17)の間隔を調節可能にし、両挟み腕(16,17)間に配設した支持軸(20)に前記検出部(18)を回転及び摺動可能に支承させると共に、前記両挟み腕(16,17)間に、前記検出部(18)を両挟み腕(16,17)間の中央位置に付勢する一対のバランスばね(22,23)を介裝したことを特徴とする、ヘミング部測定用プローブ。
The probe for measuring a hemming part according to claim 1,
The distance between the pair of sandwiching arms (16, 17) can be adjusted, and the detection unit (18) can be rotatably and slidably supported on a support shaft (20) disposed between the sandwiching arms (16, 17). In addition, a pair of balance springs (22, 23) for biasing the detecting portion (18) to the center position between the both sandwiching arms (16, 17) are interposed between the both sandwiching arms (16, 17). A probe for measuring a hemming part.
三次元座標測定装置(110)の多関節アーム(112)先端に設けられるヘミング部測定用プローブであって、
被測定物(D,T)のヘミング部(26)の屈曲部稜線(L)の形状を測定すべく、該稜線(L)に接触させつゝその長手方向へ移動させるようにしたものにおいて、
シャンク(30)と、このシャンク(30)の先端から二股に分岐し、前記ヘミング部(26)の屈曲部(26a)を跨いで、その両側面上を摺動し得る一対の挟み腕(31,31′)とから構成し、
前記シャンク(30)には、前記三次元座標測定装置(10)により前記ヘミング部(26)の屈曲部稜線(L)の各位置を正確に検出するために両挟み腕(31,31′)間側に突出して前記ヘミング部(26)の屈曲部稜線(L)上を摺動し得る検出突起(33,34)を形成したことを特徴とする、ヘミング部測定用プローブ。
A probe for measuring a hemming portion provided at the tip of an articulated arm (112) of a three-dimensional coordinate measuring device (110),
DUT (D, T) to measure the shape of the bent portion ridgeline (L) of the hemming unit (26), in that so as to move to the contacted Oneゝits longitudinal direction該稜line (L),
A shank (30) and a pair of sandwiching arms (31) that can be bifurcated from the tip of the shank (30) and slid on both sides of the hemming portion (26) across the bent portion (26a). , 31 ′),
The shank (30) includes both sandwiched arms (31, 31 ') for accurately detecting each position of the bent portion ridge line (L) of the hemming portion (26) by the three-dimensional coordinate measuring device (10 ). A probe for measuring a hemming part, characterized in that detection protrusions (33, 34) that protrude inwardly and slide on the ridge line (L) of the hemming part (26) are formed.
請求項3記載のヘミング部測定用プローブにおいて、
前記検出突起(33)の横断面を略半円柱状に形成したことを特徴とする、ヘミング部測定用プローブ。
The hemming part measuring probe according to claim 3,
A probe for measuring a hemming part, wherein a cross section of the detection protrusion (33) is formed in a substantially semi-cylindrical shape.
請求項3記載のヘミング部測定用プローブおいて、
前記検出突起(34)の横断面を三角柱状に形成したことを特徴とする、ヘミング部測定用プローブ。
Oite the hemming unit measuring probe according to claim 3,
A probe for measuring a hemming part, wherein a cross section of the detection protrusion (34) is formed in a triangular prism shape.
JP2000247964A 1999-08-24 2000-08-10 Hemming probe Expired - Fee Related JP3754609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000247964A JP3754609B2 (en) 1999-08-24 2000-08-10 Hemming probe

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-236336 1999-08-24
JP23633699 1999-08-24
JP2000247964A JP3754609B2 (en) 1999-08-24 2000-08-10 Hemming probe

Publications (2)

Publication Number Publication Date
JP2001133204A JP2001133204A (en) 2001-05-18
JP3754609B2 true JP3754609B2 (en) 2006-03-15

Family

ID=26532628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000247964A Expired - Fee Related JP3754609B2 (en) 1999-08-24 2000-08-10 Hemming probe

Country Status (1)

Country Link
JP (1) JP3754609B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112540273B (en) * 2020-11-28 2022-05-17 国网河南省电力公司平顶山供电公司 Probe fixing device

Also Published As

Publication number Publication date
JP2001133204A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
US4606129A (en) Gap and flushness measuring tool
JP4434452B2 (en) Measuring device
JP3754609B2 (en) Hemming probe
US5836082A (en) Three-axis probe
US6073360A (en) Instrument mount with spring-loaded clamp
JP2002206902A (en) Effective diameter measuring device of ball screw
JPS5948601A (en) Length gauge
CN211576140U (en) Pantograph wearing and tearing trend analysis appearance
CN111141245A (en) Pantograph wearing and tearing trend analysis appearance
CN217637294U (en) Roller-passing measurement tool
CN220708357U (en) Parallelism measuring device
JPH0240488Y2 (en)
JP2500078Y2 (en) Angle detector
JP3102199B2 (en) Method and apparatus for measuring shape of continuous conductor
JP3011996B2 (en) Trolley wire wear meter
JPH08334301A (en) Probe for measuring instrument
JP3065717B2 (en) Trolley wire wear meter
JP3254736B2 (en) Calendar roll profile measurement device
CN114986564A (en) Clamp holder testing device
JPH0355887Y2 (en)
JP2983691B2 (en) Trolley wire wear meter
JPH045541A (en) Bending fatigue testing device
JP2004347485A (en) Apparatus for measuring force for inserting component
JPS598161Y2 (en) Micrometer head feed error measuring device
TWI536005B (en) Precision detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees