JP3754552B2 - Compressor control circuit - Google Patents

Compressor control circuit Download PDF

Info

Publication number
JP3754552B2
JP3754552B2 JP06760098A JP6760098A JP3754552B2 JP 3754552 B2 JP3754552 B2 JP 3754552B2 JP 06760098 A JP06760098 A JP 06760098A JP 6760098 A JP6760098 A JP 6760098A JP 3754552 B2 JP3754552 B2 JP 3754552B2
Authority
JP
Japan
Prior art keywords
compressor
receiver tank
pressure
pressure receiving
receiving chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06760098A
Other languages
Japanese (ja)
Other versions
JPH11230053A (en
Inventor
潤一 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUETSU INDUSTRIES CO., LTD.
Original Assignee
HOKUETSU INDUSTRIES CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUETSU INDUSTRIES CO., LTD. filed Critical HOKUETSU INDUSTRIES CO., LTD.
Priority to JP06760098A priority Critical patent/JP3754552B2/en
Publication of JPH11230053A publication Critical patent/JPH11230053A/en
Application granted granted Critical
Publication of JP3754552B2 publication Critical patent/JP3754552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転形空気圧縮機の制御回路に関する。
【0002】
【従来技術】
従来技術の一例を、図3を用いて説明する。
図3において、圧縮機本体1で圧縮された圧縮空気は、一旦レシーバタンク2内に蓄えられ、その後吐出配管37を通り消費側へ供給される。
この時、消費側で圧縮空気の消費が無いか、若しくは圧縮機本体1から吐出される圧縮空気の量よりも消費側で消費される圧縮空気の量が少なければ、レシーバタンク2内の圧力が上昇する。レシーバタンク2内の圧力が上昇し、吐出配管37内の圧力が無負荷運転開始圧力に達すると、圧力スイッチPS1が作動して電磁弁3,5,6に信号を送り、制御配管22と23,21と28,30と27の間を開通する。
まず、電磁弁3のNC−COM間を開き、レシーバタンク2内の圧縮空気を容量調整弁51の受圧室51cへ導入し、バルブ51eで吸入口52を閉塞する。
しかしこの状態では、圧縮機本体1の吸入室1a内が負圧になって、圧縮機本体1からバキューム音が出たり、振動が起きたりする不具合が生じる。そのため、電磁弁5を開き、レシーバタンク2内の圧縮空気を吸入室1a内に導入することにより負圧を緩和してバキューム音や振動の発生を防止している。
さらに、電磁弁6を開き、レシーバタンク2内の圧縮空気を大気に開放する、所謂パージを開始する。そして、レシーバタンク2内の圧力がパージ停止圧力まで低下すると、圧力スイッチPS2が作動して電磁弁6に信号を送り、制御配管30を遮断してレシーバタンク2内の圧縮空気の大気開放を停止する。以上の動作により、無負荷運転時の動力を大幅に下げ、省エネ効果を得ている。
【0003】
また、消費側で圧縮空気の消費が始まり、吐出配管37内の圧力が負荷運転復帰圧力まで低下すると、圧力スイッチPS1が作動して、電磁弁3,5,6への信号を停止し、制御配管22と23,21と28,30と27間を閉鎖し、制御配管23と24間を開通する。
まず、電磁弁3のNO−COM間を開き、容量調整弁51の受圧室51cの圧縮空気を圧縮機本体1の吸入室1aに導入し、バルブ51eを下げ吸入口52を開口する。また、レシーバタンク2内の圧縮空気を圧縮機本体1に戻しているため、圧縮機の負荷運転時における吸入空気量が減り効率が低下する。そこで、電磁弁5を閉じ制御配管21と28を閉鎖して圧縮空気の吸入室1aへの流入を遮断する。
さらに、電磁弁6に信号を送り、制御配管30を遮断してレシーバタンク2内の圧縮空気の大気開放を停止する。
【0004】
また、圧縮機を停止させると、電磁弁4を開き、レシーバタンク2内の圧縮空気を大気に開放し、圧縮機本体1の再始動時におけるバックプレッシャによる始動渋滞を回避すると共に、圧縮機停止時にレシーバタンク2内に圧縮空気を残すこともない。
【0005】
【考案が解決しようとする課題】
以上のように構成された従来技術の制御回路では、次に示すような問題点がある。
図3の制御回路では、複数個の電磁弁や圧力スイッチが必要であり、制御回路の信頼性がそれらの信頼性ならびに電磁弁を動作するための電気回路の信頼性にも大きく影響されてしまう。何よりも、多くの電磁弁を使用するため圧縮機パッケージ内の電磁弁設置スペースが多く必要になることと、部品コストおよびパッケージの製作コストが高くなることおよび電磁弁動作中に多くの電力を消費することが問題となる。
【0006】
そこで本発明は、上記の課題を解決し、圧縮機の制御回路の信頼性を向上させること、および、部品点数を減らすことによる組立工数の低減、部品コストの低減を図り、無負荷運転時の消費動力を最小限に抑えた画期的な圧縮機の制御回路を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、まず第1に圧縮機本体1と、圧縮機本体1で圧縮された空気を貯留するレシーバタンク2と、無負荷運転時にレシーバタンク2の圧縮空気を大気に開放する手段と、無負荷運転時に圧縮機本体1の吸入室1aとレシーバタンク2とを連通する手段と、停止時にレシーバタンク2の圧縮空気を大気開放する手段とを備えた圧縮機において、
圧縮機の無負荷運転時に、レシーバタンク2内の圧縮空気を大気に開放すると共に、前記圧縮空気の一部を圧縮機本体1の吸入室1aに導入し、且つ、圧縮機停止時にもレシーバタンク2内の圧縮空気を大気に開放する切換弁8を設け、切換弁8は導入口8bと排出口8cと受圧室8aとを備え、該受圧室8a内の圧力によって導入口8bと排出口8cとを開通又は閉鎖し、前記受圧室8aを電磁弁3を介して前記レシーバタンク2と接続し、前記導入口8bをレシーバタンク2と接続し、前記排出口8cを吸入室1aと接続すると共に大気と連通し、圧縮機の無負荷運転時には、該受圧室8aを加圧することにより、切換弁8の導入口8bと排出口8cとを連通し、また、圧縮機の負荷運転時には、該受圧室8aを減圧することにより切換弁8の導入口8bと排出口8cとの連通を遮断し、また、圧縮機の停止時には、該受圧室8aを加圧することにより、切換弁8の導入口8bと排出口8cとを連通する制御回路とした。
【0008】
第2に、切換弁8は導入口8bと排出口8cと受圧室8aとを備え、該受圧室8a内の圧力によって導入口8bと排出口8cとを開通又は閉鎖するパイロット式の切換弁であって、前記受圧室8aを電磁弁3を介して前記レシーバタンク2と接続すると共に、前記圧縮機本体1の吸入室1aと接続し、前記導入口8bをレシーバタンク2と接続し、前記排出口8cを吸入室1aと接続すると共に大気と連通し、圧縮機の無負荷運転時には、該受圧室8aを加圧することにより、切換弁8の導入口8bと排出口8cとを連通し、また、圧縮機の負荷運転時には、該受圧室8aを減圧することにより切換弁8の導入口8bと排出口8cとの連通を遮断し、また、圧縮機の停止時には、該受圧室8aを加圧することにより、切換弁8の導入口8bと排出口8cとを連通する制御回路とした。
【0009】
第3に、切換弁8の排出口8cからサイレンサ8aへの回路途中に、オリフィス19aを設けた。
第4に、切換弁8の排出口8cからサイレンサ8aへの回路途中に、流量調整弁17およびオリフィス19aを設けた。
第5に、圧縮機の吸入通路1bと吸入室1aを繋ぐバイパス通路29を設け、前記通路の途中に吸入通路1b側から吸入室1a側へ流れる向きに逆止弁15を設けた。
【0010】
【発明の実施の形態】
以下、図面に沿って、本発明の好ましい実施形態の例について説明する。
【0011】
【実施例】
第1の実施例を図1に示す。
図1において、圧縮機本体1で圧縮された圧縮空気は、一旦レシーバタンク2に蓄えられ、その後吐出配管37を通り、消費側へ供給される。
この時、消費側で圧縮空気の消費が無いか、若しくは圧縮機本体1から吐出される圧縮空気の量よりも消費側で消費される圧縮空気の量が少なければ、レシーバタンク2内の圧力が上昇する。レシーバタンク2内の圧力が上昇し、吐出配管37内の圧力が無負荷運転開始圧力に達すると、圧力スイッチPS1が作動して電磁弁3に信号を送り、制御配管22と23,25間を開通する。
【0012】
動作を詳しく説明すると、まず、レシーバタンク2内の圧力が上昇し、吐出配管37内の圧力が無負荷運転開始圧力に達すると、圧力スイッチPS1が作動し、電磁弁3への通電を行い、前記電磁弁3のNC−COM間を開き、レシーバタンク2内の圧縮空気を容量調整弁51の受圧室51cへ導入し、容量調整弁51のバルブ51eで吸入口52を閉塞する。
しかしこの状態では、圧縮機本体1の吸入室1a内が負圧になって、圧縮機本体1からバキューム音が出たり、振動が起きたりする不具合が生じる。そのため、電磁弁3の作動と同時に、レシーバタンク2内の圧縮空気を切換弁8の受圧室8aに導入し、ピストン8dを押し上げることで、導入口8bと排出口8cを開通させレシーバタンク2内の圧縮空気を圧縮機本体1の吸入室1aに導入する。これにより、前記吸入室1aの負圧が緩和されるため、圧縮機本体1から出るバキューム音や振動の発生を防止できる。
【0013】
さらに、切換弁8の排出口8cと圧縮機本体1の吸入室1aをつなぐ配管28を分岐し、これに流量調整弁17とオリフィス19a、サイレンサ18aを設けパージ回路を構成することで、無負荷運転に切り換わった時レシーバタンク2内の圧縮空気を大気に開放する。
オリフィス19aは、無負荷運転中のレシーバタンク2内の最低圧力を保持するために設けるものであり、例えば、レシーバタンク2内の圧力を1.2kg/cm以下にならないように設定している。
また、流量調整弁17は、大気開放する圧縮空気の量を調整することで、吸入室1aに導入される圧縮空気の量を増減して、圧縮機の無負荷運転時に発生するバキューム音や振動を防止し、且つ、消費動力が低くなるように設定するため、およびレシーバタンク2内の圧力を調整するために設けている。
さらに、吸入通路51bと吸入室1aとを逆止弁15を介して繋ぐバイパス回路29は、パージ回路から大気開放される圧縮空気を補う量の空気を吸入して、レシーバタンク2内の圧力が最低圧力を保持できるように設けられている。
ここで、このまま無負荷運転を続けながらレシーバタンク2内の圧力が大気開放により低下していくと、受圧室51cの圧力も低下し、容量調整弁を閉塞の状態にしておくことが困難になる。それを防止するため、レシーバタンク2と電磁弁3を繋ぐ配管22の途中に逆止弁12を設け、レシーバタンク2内の圧力が低下しても、容量調整弁51の受圧室51c内および切換弁8の受圧室8a内の圧力を保持し、容量調整弁51の閉塞を維持し続けるようにする。
【0014】
また、消費側で圧縮空気の消費が始まり、吐出配管37内の圧力が負荷運転復帰圧力まで低下すると、圧力スイッチPS1が作動して、電磁弁3への信号を停止し、制御配管22と23,25間を閉鎖し、制御配管23,25と24の間を開通する。
まず、電磁弁3のNO−COM間を開き、容量調整弁51の受圧室51cの圧縮空気を圧縮機本体1の吸入室1aに導入し、バルブ51eを下げ吸入口52を開口する。次に制御配管25が吸入室1aと連通するため、受圧室8a内が減圧されピストン8dが下がるため、導入口8bと排出口8c間が遮断され、レシーバタンク2内の圧縮空気の吸入室1aへの導入および大気開放を停止する。
【0015】
また、圧縮機を停止すると、容量調整弁51内の逆流防止用スプリング51fにより、バルブ51eが吸入口52を閉塞すると共に、レシーバタンク2内の圧縮空気が圧縮機本体1に逆流し、吸入室1aを加圧する。その圧力を、制御配管26を介して切換弁8の受圧室8aに導入,加圧し、ピストン8dを押し上げることで、導入口8bと排出口8cを開通させ、レシーバタンク2内の圧縮空気を流量調整弁17、オリフィス19a、サイレンサ18aを通して大気に放出するので、レシーバタンク2内の圧力を大気圧まで低下することができる。
これにより、圧縮機本体1の再始動時におけるバックプレッシャによる始動渋滞を回避すると共に、圧縮機停止時にレシーバタンク2内に圧縮空気を残すこともなくなる。
【0016】
次に第2の実施例を図2に示す。
図2において、圧縮機本体1で圧縮された圧縮空気は、一旦レシーバタンク2に蓄えられ、その後吐出配管37を通り、消費側へ供給される。
この時、消費側で圧縮空気の消費が無いか、若しくは圧縮機本体1から吐出される圧縮空気の量よりも消費側で消費される圧縮空気の量が少なければ、レシーバタンク2内の圧力が上昇する。レシーバタンク2内の圧力が上昇し、吐出配管37内の圧力が無負荷運転開始圧力に達すると、圧力スイッチPS1が作動して電磁弁3に信号を送り、制御配管22と23,25間を開通する。
まず、レシーバタンク2内の圧力が上昇し、吐出配管37内の圧力が無負荷運転開始圧力に達すると、圧力スイッチPS1が作動し、前記電磁弁3を開き、レシーバタンク2内の圧縮空気を容量調整弁51の受圧室51cへ導入し、容量調整弁51のバルブ51eで吸入口52を閉塞する。
しかしこの状態では、圧縮機本体1の吸入室1a内が負圧になって、圧縮機本体1からバキューム音が出たり、振動が起きたりする不具合が生じる。そのため、電磁弁3の作動と同時に、レシーバタンク2内の圧縮空気を切換弁8の受圧室8aに導入,加圧し、ピストン8dを押し上げることで、導入口8bと排出口8cを開通させレシーバタンク2内の圧縮空気を圧縮機本体1の吸入室1aに導入する。これにより、前記吸入室1aの負圧が緩和されるため、圧縮機本体1から出るバキューム音や振動の発生を防止できる。
【0017】
さらに、切換弁8の排出口8cと圧縮機本体1の吸入室1aをつなぐ配管28を分岐し、これにオリフィス19aとサイレンサ18aを設けパージ回路を構成することで、無負荷運転に切り換わった時、レシーバタンク2内の圧縮空気を大気に開放することができる。
オリフィス19aは、無負荷運転中のレシーバタンク2内の最低圧力を保持し、大気開放する圧縮空気の量を調整するために設けるものであり、例えば、レシーバタンク2内の圧力を1.2kg/cm以下にならないようにしている。
【0018】
また、消費側で圧縮空気の消費が始まり、吐出配管37内の圧力が負荷運転復帰圧力まで低下すると、圧力スイッチPS1が作動して、電磁弁3への信号を停止し、制御配管22と23,25間を閉鎖する。
まず、電磁弁3を閉じ、容量調整弁51の受圧室51cの圧縮空気を制御配管29,オリフィス19bを通して容量調整弁51の吸入通路51bに導入し、バルブ51eを下げ吸入口52を開口する。次に制御配管25が吸入通路51bと連通するため、受圧室8a内の圧力が下がりピストン8dが下がるため、導入口8bと排出口8c間が遮断され、レシーバタンク2内の圧縮空気の吸入室1aへの導入および大気開放を停止する。
【0019】
また、圧縮機を停止すると、容量調整弁51内の逆流防止用スプリング51fにより、バルブ51eが吸入口52を閉塞すると共に、レシーバタンク2内の圧縮空気が圧縮機本体1に逆流し、吸入室1aを加圧する。その圧力を、切換弁8の受圧室8aに導入すると、受圧室8a内の圧力が上昇するため、ピストン8dを押し上げ、導入口8bと排出口8cを開通させる。すると、レシーバタンク2内の圧縮空気が流量調整弁17、オリフィス19a、サイレンサ18aを通り大気に放出され、レシーバタンク2内の圧力が大気圧まで低下する。
これにより、圧縮機本体1の再始動時におけるバックプレッシャによる始動渋滞を回避すると共に、圧縮機停止時にレシーバタンク2内に圧縮空気を残すこともなくなる。
【0020】
【発明の効果】
以上のように構成された本発明の圧縮機の制御回路によれば、従来の制御回路に比べ同等以上の機能、性能を持ちながら、少ない部品で構成されているため信頼性も向上し、また、部品コストも低く抑え、且つ、消費動力も低く抑えることができるという、従来にない画期的な圧縮機の制御回路を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例の圧縮機の制御回路系統図
【図2】本発明の第2実施例の圧縮機の制御回路系統図
【図3】従来技術の圧縮機の制御回路
【符号の説明】
1 圧縮機本体
1a 吸入室
2 レシーバタンク
3〜7 電磁弁
8 切換弁
8a 受圧室
8b 導入口
8c 排出口
8d ピストン
9 オートレリーフ弁
9a 受圧室
9b 導入口
9c 排出口
9d ピストン
10 レギュレータ
10b 導入口
10c 排出口
12 逆止弁
17 流量調整弁
18a,18b サイレンサ
19a,19b オリフィス
21〜36 制御配管
37 吐出配管
PS1,PS2 圧力スイッチ
51 容量調整弁
51b 吸入通路
51c 受圧室
51d ピストン
51e バルブ
51f スプリング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control circuit for a rotary air compressor.
[0002]
[Prior art]
An example of the prior art will be described with reference to FIG.
In FIG. 3, the compressed air compressed by the compressor main body 1 is temporarily stored in the receiver tank 2 and then supplied to the consumer side through the discharge pipe 37.
At this time, if there is no consumption of compressed air on the consuming side or the amount of compressed air consumed on the consuming side is less than the amount of compressed air discharged from the compressor body 1, the pressure in the receiver tank 2 is increased. To rise. When the pressure in the receiver tank 2 rises and the pressure in the discharge pipe 37 reaches the no-load operation start pressure, the pressure switch PS1 is activated to send a signal to the solenoid valves 3, 5 and 6, and the control pipes 22 and 23 , 21 and 28, and 30 and 27 are opened.
First, the NC-COM of the electromagnetic valve 3 is opened, the compressed air in the receiver tank 2 is introduced into the pressure receiving chamber 51c of the capacity adjustment valve 51, and the suction port 52 is closed with the valve 51e.
However, in this state, the suction chamber 1a of the compressor body 1 has a negative pressure, which causes a problem that a vacuum sound is generated from the compressor body 1 or vibrations occur. For this reason, the electromagnetic valve 5 is opened and the compressed air in the receiver tank 2 is introduced into the suction chamber 1a to relieve the negative pressure and prevent the generation of vacuum noise and vibration.
Further, the solenoid valve 6 is opened, and so-called purge is started to release the compressed air in the receiver tank 2 to the atmosphere. When the pressure in the receiver tank 2 drops to the purge stop pressure, the pressure switch PS2 is activated to send a signal to the solenoid valve 6, shut off the control pipe 30 and stop the release of compressed air in the receiver tank 2 to the atmosphere. To do. Through the above operation, the power during no-load operation is greatly reduced, and an energy saving effect is obtained.
[0003]
When consumption of compressed air starts on the consumption side and the pressure in the discharge pipe 37 decreases to the load operation return pressure, the pressure switch PS1 is activated to stop the signals to the solenoid valves 3, 5 and 6 and control The pipes 22 and 23, 21 and 28, 30 and 27 are closed, and the control pipes 23 and 24 are opened.
First, between NO and COM of the solenoid valve 3 is opened, compressed air in the pressure receiving chamber 51c of the capacity adjustment valve 51 is introduced into the suction chamber 1a of the compressor body 1, the valve 51e is lowered, and the suction port 52 is opened. Moreover, since the compressed air in the receiver tank 2 is returned to the compressor body 1, the amount of intake air during load operation of the compressor is reduced and efficiency is lowered. Therefore, the solenoid valve 5 is closed and the control pipes 21 and 28 are closed to block the flow of compressed air into the suction chamber 1a.
Further, a signal is sent to the electromagnetic valve 6 to shut off the control piping 30 and stop the compressed air in the receiver tank 2 from being released into the atmosphere.
[0004]
When the compressor is stopped, the electromagnetic valve 4 is opened, the compressed air in the receiver tank 2 is opened to the atmosphere, and the start-up congestion due to back pressure when the compressor body 1 is restarted is avoided and the compressor is stopped. Sometimes no compressed air is left in the receiver tank 2.
[0005]
[Problems to be solved by the invention]
The conventional control circuit configured as described above has the following problems.
The control circuit shown in FIG. 3 requires a plurality of solenoid valves and pressure switches, and the reliability of the control circuit is greatly influenced by the reliability of these and the reliability of the electric circuit for operating the solenoid valve. . Above all, the use of a large number of solenoid valves requires a large amount of installation space for the solenoid valve in the compressor package, increases the cost of parts and packages, and consumes a lot of power during solenoid valve operation. It becomes a problem to do.
[0006]
Therefore, the present invention solves the above-mentioned problems, improves the reliability of the control circuit of the compressor, reduces the number of assembly steps by reducing the number of parts, and reduces the parts cost, and at the time of no-load operation. It is an object of the present invention to provide a revolutionary compressor control circuit that minimizes power consumption.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, first, the compressor body 1, the receiver tank 2 for storing the air compressed by the compressor body 1, and means for opening the compressed air in the receiver tank 2 to the atmosphere during no-load operation And a compressor having a means for communicating the suction chamber 1a of the compressor body 1 and the receiver tank 2 during no-load operation, and a means for releasing the compressed air of the receiver tank 2 to the atmosphere when stopped.
During the no-load operation of the compressor, the compressed air in the receiver tank 2 is released to the atmosphere, a part of the compressed air is introduced into the suction chamber 1a of the compressor body 1, and the receiver tank is also in a stopped state. 2 is provided . The switching valve 8 is provided with an inlet 8b, a discharge port 8c, and a pressure receiving chamber 8a, and the introduction port 8b and the discharge port 8c are controlled by the pressure in the pressure receiving chamber 8a. Are opened or closed, the pressure receiving chamber 8a is connected to the receiver tank 2 through the electromagnetic valve 3, the inlet 8b is connected to the receiver tank 2, and the outlet 8c is connected to the suction chamber 1a. The pressure receiving chamber 8a is pressurized to communicate with the atmosphere and pressurize the pressure receiving chamber 8a so that the inlet 8b and the discharge port 8c of the switching valve 8 communicate with each other. Switching by depressurizing chamber 8a 8, the communication between the inlet 8b and the outlet 8c of the switching valve 8 is controlled by blocking the communication between the inlet 8b and the outlet 8c, and pressurizing the pressure receiving chamber 8a when the compressor is stopped. A circuit was used.
[0008]
Secondly, the switching valve 8 is a pilot-type switching valve that includes an introduction port 8b, a discharge port 8c, and a pressure receiving chamber 8a, and opens or closes the introduction port 8b and the discharge port 8c by the pressure in the pressure receiving chamber 8a. The pressure receiving chamber 8a is connected to the receiver tank 2 through the electromagnetic valve 3, and is connected to the suction chamber 1a of the compressor body 1, the inlet 8b is connected to the receiver tank 2, and the exhaust The outlet 8c is connected to the suction chamber 1a and communicates with the atmosphere. When the compressor is not loaded, the pressure receiving chamber 8a is pressurized so that the inlet 8b and the outlet 8c of the switching valve 8 communicate with each other. During the load operation of the compressor, the pressure receiving chamber 8a is depressurized to block communication between the inlet 8b and the outlet 8c of the switching valve 8, and when the compressor is stopped, the pressure receiving chamber 8a is pressurized. Thus, the inlet 8b of the switching valve 8 and And a control circuit for communicating the outlet 8c.
[0009]
Third, an orifice 19a is provided in the circuit from the discharge port 8c of the switching valve 8 to the silencer 8a.
Fourth, a flow rate adjusting valve 17 and an orifice 19a are provided in the circuit from the discharge port 8c of the switching valve 8 to the silencer 8a.
Fifth, a bypass passage 29 connecting the suction passage 1b of the compressor and the suction chamber 1a is provided, and a check valve 15 is provided in the middle of the passage so as to flow from the suction passage 1b side to the suction chamber 1a side.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, examples of preferred embodiments of the present invention will be described with reference to the drawings.
[0011]
【Example】
A first embodiment is shown in FIG.
In FIG. 1, the compressed air compressed by the compressor body 1 is temporarily stored in the receiver tank 2 and then supplied to the consumer side through the discharge pipe 37.
At this time, if there is no consumption of compressed air on the consuming side or the amount of compressed air consumed on the consuming side is less than the amount of compressed air discharged from the compressor body 1, the pressure in the receiver tank 2 is increased. To rise. When the pressure in the receiver tank 2 rises and the pressure in the discharge pipe 37 reaches the no-load operation start pressure, the pressure switch PS1 is actuated to send a signal to the solenoid valve 3, and between the control pipes 22, 23, and 25 Open.
[0012]
The operation will be described in detail. First, when the pressure in the receiver tank 2 rises and the pressure in the discharge pipe 37 reaches the no-load operation start pressure, the pressure switch PS1 is activated to energize the solenoid valve 3, The NC-COM of the electromagnetic valve 3 is opened, the compressed air in the receiver tank 2 is introduced into the pressure receiving chamber 51c of the capacity adjustment valve 51, and the suction port 52 is closed by the valve 51e of the capacity adjustment valve 51.
However, in this state, the suction chamber 1a of the compressor body 1 has a negative pressure, which causes a problem that a vacuum sound is generated from the compressor body 1 or vibrations occur. Therefore, simultaneously with the operation of the electromagnetic valve 3, the compressed air in the receiver tank 2 is introduced into the pressure receiving chamber 8a of the switching valve 8, and the piston 8d is pushed up to open the inlet port 8b and the outlet port 8c. The compressed air is introduced into the suction chamber 1 a of the compressor body 1. Thereby, since the negative pressure in the suction chamber 1a is relieved, it is possible to prevent the generation of vacuum noise and vibrations from the compressor body 1.
[0013]
Furthermore, a pipe 28 connecting the discharge port 8c of the switching valve 8 and the suction chamber 1a of the compressor body 1 is branched, and a flow rate adjusting valve 17, an orifice 19a, and a silencer 18a are provided to form a purge circuit so that no load is applied. When switching to operation, the compressed air in the receiver tank 2 is released to the atmosphere.
The orifice 19a is provided to maintain the minimum pressure in the receiver tank 2 during no-load operation, and is set so that the pressure in the receiver tank 2 does not become 1.2 kg / cm 2 or less, for example. .
Further, the flow rate adjusting valve 17 increases or decreases the amount of compressed air introduced into the suction chamber 1a by adjusting the amount of compressed air that is released to the atmosphere, so that the vacuum noise and vibration generated during no-load operation of the compressor. Is provided to prevent power consumption and to reduce the power consumption, and to adjust the pressure in the receiver tank 2.
Further, the bypass circuit 29 that connects the suction passage 51b and the suction chamber 1a via the check valve 15 sucks in an amount of compressed air that is released from the purge circuit to the atmosphere, and the pressure in the receiver tank 2 is increased. It is provided so that the minimum pressure can be maintained.
Here, if the pressure in the receiver tank 2 decreases due to release to the atmosphere while continuing the no-load operation as it is, the pressure in the pressure receiving chamber 51c also decreases, making it difficult to keep the capacity adjustment valve closed. . In order to prevent this, a check valve 12 is provided in the middle of the pipe 22 connecting the receiver tank 2 and the electromagnetic valve 3, so that even if the pressure in the receiver tank 2 drops, the capacity adjusting valve 51 can be switched between the pressure receiving chamber 51 c and the switching. The pressure in the pressure receiving chamber 8a of the valve 8 is maintained, and the capacity adjustment valve 51 is kept closed.
[0014]
When consumption of compressed air starts on the consumption side and the pressure in the discharge pipe 37 decreases to the load operation return pressure, the pressure switch PS1 is activated to stop the signal to the solenoid valve 3, and the control pipes 22 and 23 , 25 is closed, and the control pipes 23, 25 and 24 are opened.
First, between NO and COM of the solenoid valve 3 is opened, compressed air in the pressure receiving chamber 51c of the capacity adjustment valve 51 is introduced into the suction chamber 1a of the compressor body 1, the valve 51e is lowered, and the suction port 52 is opened. Next, since the control pipe 25 communicates with the suction chamber 1a, the inside of the pressure receiving chamber 8a is depressurized and the piston 8d is lowered, so that the space between the inlet 8b and the outlet 8c is shut off, and the compressed air suction chamber 1a in the receiver tank 2 is closed. Stop the introduction and release to the atmosphere.
[0015]
When the compressor is stopped, the valve 51e closes the suction port 52 by the backflow prevention spring 51f in the capacity adjustment valve 51, and the compressed air in the receiver tank 2 flows back to the compressor main body 1, and the suction chamber Pressurize 1a. The pressure is introduced and pressurized into the pressure receiving chamber 8a of the switching valve 8 via the control pipe 26, and the piston 8d is pushed up to open the inlet 8b and the outlet 8c, and the compressed air in the receiver tank 2 is flowed. Since it discharge | releases to air | atmosphere through the regulating valve 17, the orifice 19a, and the silencer 18a, the pressure in the receiver tank 2 can be reduced to atmospheric pressure.
This avoids start-up congestion due to back pressure when the compressor body 1 is restarted, and does not leave compressed air in the receiver tank 2 when the compressor is stopped.
[0016]
Next, a second embodiment is shown in FIG.
In FIG. 2, the compressed air compressed by the compressor body 1 is temporarily stored in the receiver tank 2 and then supplied to the consumer side through the discharge pipe 37.
At this time, if there is no consumption of compressed air on the consuming side or the amount of compressed air consumed on the consuming side is less than the amount of compressed air discharged from the compressor body 1, the pressure in the receiver tank 2 is increased. To rise. When the pressure in the receiver tank 2 rises and the pressure in the discharge pipe 37 reaches the no-load operation start pressure, the pressure switch PS1 is actuated to send a signal to the solenoid valve 3, and between the control pipes 22, 23, and 25 Open.
First, when the pressure in the receiver tank 2 rises and the pressure in the discharge pipe 37 reaches the no-load operation start pressure, the pressure switch PS1 is activated, the electromagnetic valve 3 is opened, and the compressed air in the receiver tank 2 is discharged. The pressure adjusting chamber 51 is introduced into the pressure receiving chamber 51 c, and the inlet 52 is closed by the valve 51 e of the capacity adjusting valve 51.
However, in this state, the suction chamber 1a of the compressor body 1 has a negative pressure, which causes a problem that a vacuum sound is generated from the compressor body 1 or vibrations occur. Therefore, simultaneously with the operation of the electromagnetic valve 3, the compressed air in the receiver tank 2 is introduced and pressurized into the pressure receiving chamber 8a of the switching valve 8, and the piston 8d is pushed up to open the inlet port 8b and the outlet port 8c. The compressed air in 2 is introduced into the suction chamber 1 a of the compressor body 1. Thereby, since the negative pressure in the suction chamber 1a is relieved, it is possible to prevent the generation of vacuum noise and vibrations from the compressor body 1.
[0017]
Furthermore, the piping 28 connecting the discharge port 8c of the switching valve 8 and the suction chamber 1a of the compressor body 1 is branched, and an orifice 19a and a silencer 18a are provided to form a purge circuit, thereby switching to no-load operation. At times, the compressed air in the receiver tank 2 can be opened to the atmosphere.
The orifice 19a is provided to maintain the minimum pressure in the receiver tank 2 during no-load operation and adjust the amount of compressed air released to the atmosphere. For example, the pressure in the receiver tank 2 is 1.2 kg / so that not to cm 2 or less.
[0018]
When consumption of compressed air starts on the consumption side and the pressure in the discharge pipe 37 decreases to the load operation return pressure, the pressure switch PS1 is activated to stop the signal to the solenoid valve 3, and the control pipes 22 and 23 , 25 is closed.
First, the electromagnetic valve 3 is closed, the compressed air in the pressure receiving chamber 51c of the capacity adjustment valve 51 is introduced into the suction passage 51b of the capacity adjustment valve 51 through the control pipe 29 and the orifice 19b, the valve 51e is lowered, and the suction port 52 is opened. Next, since the control pipe 25 communicates with the suction passage 51b, the pressure in the pressure receiving chamber 8a is lowered and the piston 8d is lowered, so that the space between the inlet 8b and the outlet 8c is cut off, and the compressed air suction chamber in the receiver tank 2 is closed. Stop introduction to 1a and release to atmosphere.
[0019]
When the compressor is stopped, the valve 51e closes the suction port 52 by the backflow prevention spring 51f in the capacity adjustment valve 51, and the compressed air in the receiver tank 2 flows back to the compressor main body 1, and the suction chamber Pressurize 1a. When this pressure is introduced into the pressure receiving chamber 8a of the switching valve 8, the pressure in the pressure receiving chamber 8a rises, so that the piston 8d is pushed up, and the introduction port 8b and the discharge port 8c are opened. Then, the compressed air in the receiver tank 2 is released to the atmosphere through the flow rate adjustment valve 17, the orifice 19a, and the silencer 18a, and the pressure in the receiver tank 2 is reduced to atmospheric pressure.
This avoids start-up congestion due to back pressure when the compressor body 1 is restarted, and does not leave compressed air in the receiver tank 2 when the compressor is stopped.
[0020]
【The invention's effect】
According to the compressor control circuit of the present invention configured as described above, reliability is improved because it is configured with fewer parts while having the same or higher function and performance than the conventional control circuit. Further, it is possible to provide an unprecedented innovative control circuit for a compressor that can reduce the component cost and power consumption.
[Brief description of the drawings]
FIG. 1 is a control circuit diagram of a compressor according to a first embodiment of the present invention. FIG. 2 is a control circuit diagram of a compressor according to a second embodiment of the present invention. [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor main body 1a Suction chamber 2 Receiver tank 3-7 Solenoid valve 8 Switching valve 8a Pressure receiving chamber 8b Inlet 8c Outlet 8d Piston 9 Auto relief valve 9a Pressure receiving chamber 9b Inlet 9c Outlet 9d Piston 10 Regulator 10b Inlet 10c Discharge port 12 Check valve 17 Flow rate adjusting valve 18a, 18b Silencer 19a, 19b Orifice 21-36 Control piping 37 Discharge piping PS1, PS2 Pressure switch 51 Capacity adjustment valve 51b Suction passage 51c Pressure receiving chamber 51d Piston 51e Valve 51f Spring

Claims (5)

圧縮機本体と、前記圧縮機本体で圧縮された空気を貯留するレシーバタンクと、無負荷運転時に前記レシーバタンクの圧縮空気を大気に開放する手段と、無負荷運転時に前記圧縮機本体の吸入室とレシーバタンクとを連通する手段と、停止時に前記レシーバタンクの圧縮空気を大気開放する手段とを備えた圧縮機において、
圧縮機の無負荷運転時に、前記レシーバタンク内の圧縮空気を大気に開放すると共に、前記圧縮空気の一部を前記圧縮機本体の吸入室に導入し、且つ、圧縮機の停止時にも前記レシーバタンク内の圧縮空気を大気に開放する切換弁を設け
前記切換弁は導入口と排出口と受圧室とを備え、該受圧室内の圧力によって導入口と排出口とを連通又は遮断し、前記受圧室を電磁弁を介して前記レシーバタンクと接続し、前記導入口をレシーバタンクと接続し、前記排出口を吸入室と接続すると共に大気と連通し、圧縮機の無負荷運転時には、該受圧室を加圧することにより、切換弁の導入口と排出口とを連通し、また、圧縮機の負荷運転時には、該受圧室を減圧することにより、切換弁の導入口と排出口との連通を遮断し、また、圧縮機の停止時には、該受圧室を加圧することにより、切換弁の導入口と排出口とを連通することを特徴とする圧縮機の制御回路。
A compressor main body, a receiver tank for storing air compressed by the compressor main body, means for releasing compressed air in the receiver tank to the atmosphere during no-load operation, and a suction chamber of the compressor main body during no-load operation In the compressor comprising: means for communicating with the receiver tank; and means for releasing the compressed air of the receiver tank to the atmosphere when stopped.
During no-load operation of the compressor, the compressed air in the receiver tank is released to the atmosphere, a part of the compressed air is introduced into the suction chamber of the compressor body, and the receiver is also stopped when the compressor is stopped. A switching valve is provided to release the compressed air in the tank to the atmosphere .
The switching valve includes an introduction port, a discharge port, and a pressure receiving chamber, communicates or blocks the introduction port and the discharge port by pressure in the pressure receiving chamber, and connects the pressure receiving chamber to the receiver tank via a solenoid valve; The inlet is connected to the receiver tank, the outlet is connected to the suction chamber and communicates with the atmosphere, and the pressure receiving chamber is pressurized during no-load operation of the compressor, thereby introducing the inlet and outlet of the switching valve. When the compressor is in a load operation, the pressure receiving chamber is depressurized to cut off the communication between the introduction port and the discharge port of the switching valve, and when the compressor is stopped, the pressure receiving chamber is A control circuit for a compressor , wherein pressurizing causes the inlet and outlet of the switching valve to communicate with each other .
前記切換弁は導入口と排出口と受圧室とを備え、該受圧室内の圧力によって導入口と排出口とを連通又は遮断するパイロット式の切換弁であって、前記受圧室を電磁弁を介して前記レシーバタンクと接続すると共に、前記圧縮機本体の吸入室と接続し、前記導入口をレシーバタンクと接続し、前記排出口を吸入室と接続すると共に大気と連通し、圧縮機の無負荷運転時には、該受圧室を加圧することにより、切換弁の導入口と排出口とを連通し、また、圧縮機の負荷運転時には、該受圧室を減圧することにより、切換弁の導入口と排出口との連通を遮断し、また、圧縮機の停止時には、該受圧室を加圧することにより、切換弁の導入口と排出口とを連通することを特徴とする請求項1記載の圧縮機の制御回路。  The switching valve is a pilot-type switching valve that includes an introduction port, a discharge port, and a pressure receiving chamber, and that communicates or blocks the introduction port and the discharge port by the pressure in the pressure receiving chamber. Connected to the receiver tank and connected to the suction chamber of the compressor body, the inlet is connected to the receiver tank, the discharge port is connected to the suction chamber and communicates with the atmosphere, and the compressor is unloaded. During operation, the pressure receiving chamber is pressurized to connect the inlet and outlet of the switching valve, and during load operation of the compressor, the pressure receiving chamber is reduced to reduce the pressure from the inlet and outlet of the switching valve. 2. The compressor according to claim 1, wherein communication with the outlet is cut off, and when the compressor is stopped, the pressure receiving chamber is pressurized to connect the inlet and the outlet of the switching valve. Control circuit. 前記切換弁排出口から大気開放口への回路途中にオリフィスを設けたことを特徴とする請求項1,2記載の圧縮機の制御回路。  3. The compressor control circuit according to claim 1, wherein an orifice is provided in the middle of the circuit from the switching valve discharge port to the atmosphere opening port. 前記切換弁排出口から大気開放口への回路途中に流量調整弁およびオリフィスを設けたことを特徴とする請求項1,2記載の圧縮機の制御回路。  3. The compressor control circuit according to claim 1, wherein a flow rate adjusting valve and an orifice are provided in the middle of the circuit from the switching valve discharge port to the atmosphere opening port. 前記圧縮機の吸入通路と吸入室を繋ぐバイパス通路を設け、前記通路の途中に吸入通路側から吸入室側へ流れる向きに逆止弁を設けたことを特徴とする請求項1から4記載の圧縮機の制御回路。  5. The bypass passage connecting the suction passage and the suction chamber of the compressor is provided, and a check valve is provided in the direction of flow from the suction passage side to the suction chamber side in the middle of the passage. Compressor control circuit.
JP06760098A 1998-02-10 1998-02-10 Compressor control circuit Expired - Fee Related JP3754552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06760098A JP3754552B2 (en) 1998-02-10 1998-02-10 Compressor control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06760098A JP3754552B2 (en) 1998-02-10 1998-02-10 Compressor control circuit

Publications (2)

Publication Number Publication Date
JPH11230053A JPH11230053A (en) 1999-08-24
JP3754552B2 true JP3754552B2 (en) 2006-03-15

Family

ID=13349586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06760098A Expired - Fee Related JP3754552B2 (en) 1998-02-10 1998-02-10 Compressor control circuit

Country Status (1)

Country Link
JP (1) JP3754552B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10316842B2 (en) 2014-03-20 2019-06-11 Hitachi Industrial Equipment Systems Co., Ltd. Air compressor
JP6886772B2 (en) * 2015-12-16 2021-06-16 株式会社神戸製鋼所 Liquid-cooled compressor and its operation method
JP7107730B2 (en) * 2018-04-24 2022-07-27 北越工業株式会社 Operation control method for oil-flooded screw compressor and oil-flooded screw compressor

Also Published As

Publication number Publication date
JPH11230053A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
US20090016904A1 (en) Compressor
JPS62298424A (en) Compressed air device
KR100896941B1 (en) Air supply system with reduced oil passing in compressor
US5127386A (en) Apparatus for controlling a supercharger
JP2891024B2 (en) Air compression device
JP4532327B2 (en) Compressor and operation control method thereof
JP3754552B2 (en) Compressor control circuit
JPH0739828B2 (en) Capacity control device for multi-stage compressor
JPH0148399B2 (en)
CN217632868U (en) Double-valve control system for opening and closing, loading and unloading of high-pressure reciprocating compressor
JP2004330839A (en) Compressed air supply device
CN212406978U (en) Centralized unloading device of air compressor unit multi-pump-head
CN111946599A (en) Air compressor unloading device with noise elimination function structure
JP2003247470A (en) Motor type fuel pump for vehicle
CN212406979U (en) Air compressor unloading device with noise elimination function structure
JPS5952282B2 (en) Impact prevention method in hydraulic circuit
KR20080037126A (en) Level control pneumatic circuit of air suspension in vehicle
JP2016160753A (en) Air compressor with engine
JP3009255B2 (en) Suction throttle valve for oiled screw compressor
JP4015219B2 (en) Air compressor load reducing device
JP3405211B2 (en) Fluid pressure pump
JPH0210321Y2 (en)
JP4327379B2 (en) Vehicle air suspension
CN213761204U (en) Multifunctional air processing unit
JP4399655B2 (en) Compressed air production facility

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees