JP3754512B2 - Rotating anode X-ray tube - Google Patents

Rotating anode X-ray tube Download PDF

Info

Publication number
JP3754512B2
JP3754512B2 JP33055996A JP33055996A JP3754512B2 JP 3754512 B2 JP3754512 B2 JP 3754512B2 JP 33055996 A JP33055996 A JP 33055996A JP 33055996 A JP33055996 A JP 33055996A JP 3754512 B2 JP3754512 B2 JP 3754512B2
Authority
JP
Japan
Prior art keywords
bearing
fixed body
dynamic pressure
diameter portion
pressure type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33055996A
Other languages
Japanese (ja)
Other versions
JPH10172483A (en
Inventor
勝弘 小野
秀郎 阿武
秀樹 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33055996A priority Critical patent/JP3754512B2/en
Publication of JPH10172483A publication Critical patent/JPH10172483A/en
Application granted granted Critical
Publication of JP3754512B2 publication Critical patent/JP3754512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、回転陽極型X線管に関する。
【0002】
【従来の技術】
回転陽極型X線管は、周知のように、軸受部を有する回転体および固定体で円盤状の陽極ターゲットを支え、真空容器外に配置したステータの電磁コイルを付勢し高速回転させながら、陰極から放出した電子ビームを陽極ターゲット面上に当ててX線を放射させる。軸受部は、ボールベアリングのようなころがり軸受や、軸受面にらせん溝を形成するとともにガリウム(Ga)、又はガリウム−インジウム−錫(Ga−In−Sn)合金のような液体金属潤滑剤を軸受間隙に満たした動圧式すべり軸受で構成される。
【0003】
後者の動圧式すべり軸受を用いた回転陽極型X線管として、ラジアル方向動圧式すべり軸受を径小部に構成し、スラスト方向動圧式すべり軸受を径大部に構成した回転陽極型X線管は、例えば特公平3−77617号や特開平2−244545号、特開平2−227947号、特開平2−227948号、特開平4−363845号、特開平5−290770号の各公報、或いはUSP5504797の明細書等に開示されている。
【0004】
上記各公報に開示されている回転陽極型X線管では、ヘリンボンパターンのらせん溝からなるラジアル方向及びスラスト方向のすべての動圧すべり軸受部の軸受面が、例えば20μmの軸受間隙を保つように構成され、らせん溝および軸受間隙に液体金属潤滑剤が充填される。なお、各軸受のらせん溝は、およそ20μmの深さである。
【0005】
ところで、この種の動圧すべり軸受を備える回転陽極型X線管は、軸受の回転抵抗が玉軸受に比べて相当大きいので、陽極ターゲットをおよそ3000rpm程度の、比較的低い回転速度で回転させながらX線曝射を行うように動作させる。
【0006】
しかしながら、陽極ターゲットの回転速度が低いと、当然のことながら、陽極ターゲットへの入力負荷を高めることはできず、その解決策としては大きい熱容量すなわち大きく重い陽極ターゲットを使用することになる。また、回転陽極型X線管を搭載する例えばX線撮影装置では、被撮影体をさまざまな方向から且つスピーディに位置を転換して撮影する場合が少なくない。それによって、陽極ターゲットには大きい加速度が加わり、したがって動圧軸受にさまざまな方向の且つ大きい負荷が不規則に加わる。
【0007】
このように各方向への大きい荷重を安定に軸受で支える必要がある。上記の例えば特開平4−363845号公報に記載されているような、単純な円柱状の固定体とそれに嵌合する回転体との間にラジアル方向及びスラスト方向の動圧軸受を構成したX線管は、固定体の直径を大きくすればするほど各方向の荷重に十分耐え得る軸受性能を持たせることが可能である。また、上記USP5504797明細書に記載されているように、固定体に径大部を設けてここにスラスト方向の動圧軸受を構成したものは、スラスト方向軸受の直径を任意に大きくできる利点があり、実用になっている。
【0008】
【発明が解決しようとする課題】
ところで、従来のこの種の動圧軸受を使用した回転陽極型X線管は、各方向の大きい荷重に十分耐え得る軸受性能を有する。しかしこれは、回転体と嵌合する固定体の直径を大きくすればするほど、またその軸方向長さを長くすればするほど、それに伴って軸受の回転抵抗が大きくなり、高速回転させるためには非常に大きな回転駆動電力が必要になる。
【0009】
一方、回転体と嵌合する固定体の軸方向長さを短くすれば、回転抵抗をその分小さくできるが、回転体の回転中心軸のずれが発生しやすい。すなわち、図6に示すように、固定体15の中心軸Cに対して陽極ターゲット11及び回転体12の回転中心軸Rがずれや傾きを起こし易く、且つ歳差運動を起こし易くなる。このような状態では、固定体と回転体とが各所で接触を起こしたり、軸受間隙が各所で不均一になり、軸受に正常にバランスのとれた動圧力が発生されなくなってしまう。なお、同図には軸受間隙や回転体の傾きを誇張して描いてあるが、従来実用になっている回転陽極型X線管でのスラスト方向軸受が構成されている固定体径大部15bの直径Dに対するラジアル方向軸受が構成されている固定体径小部の軸方向長さLは、1.2倍未満の寸法比になっている。
【0010】
なお、同図の符号18,19は2組のラジアル方向動圧軸受及び固定体に形成されたそのためのヘリンボンパターンらせん溝、15bは固定体径大部、15cは陽極支持部、23,24は固定体径大部の上下両面を一方の軸受面とする2組のスラスト方向動圧軸受及び固定体径大部に形成されたそのためのサークル状ヘリンボンパターンらせん溝、12bは回転体の銅円筒をあらわしている。各軸受のらせん溝や軸受間隙には、図示しない液体金属潤滑剤が満たされている。
【0011】
従来構造によると、上述のように、固定体と回転体とが各所で接触を起こしたり、軸受間隙の不均一、変動で軸受の正常な動作が得られない場合がある。とくに、回転速度が高くなればなるほどこのような不都合が顕著になる。また、スラスト方向軸受を構成している固定体径大部15bの直径Dが大きいと、この径大部と回転体との間の回転抵抗がとくに大きくなり、高速回転が困難になる。
【0012】
この発明は、以上のような不都合を解消し、回転中心軸のずれや傾きが発生にくく、且つ回転抵抗を低く抑えて例えば6000rpmを超えるような高速回転が可能な回転陽極型X線管を提供することを目的とする。
【0013】
【課題を解決するための手段】
この発明の回転陽極型X線管は、ラジアル方向動圧式すべり軸受が形成されている固定体径小部の軸方向長さは、スラスト方向動圧式すべり軸受が形成されている固定体径大部の外直径の1.5倍以上5倍以下の寸法比であり、かつスラスト方向動圧式すべり軸受の平均軸受間隙は、ラジアル方向動圧式すべり軸受の平均軸受間隙よりも大きい寸法に設定されていることを特徴とする。
【0014】
【発明の実施の形態】
以下その実施例を図1乃至図3を参照して説明する。なお同一部分は同一符号であらわす。重金属からなる円盤状陽極ターゲット11が、概略有底円筒状の回転体12の一端に突設された回転軸13にナット14により一体的に固定されている。回転体12は、鉄合金からなる内側円筒12a、及び銅からなる外側円筒12bが二重に嵌合固着されている。この回転体12の内側には、鉄合金からなる概略円柱状の固定体15が挿入されている。
【0015】
固定体15は、図示上方が直径Drが小さい径小部15a、下方の途中が直径Dsが大きい径大部15b、そして下端が陽極支持部15cになっている。そして、回転体12と固定体15との嵌合部分には、前述の各公報に示されるようなラジアル方向及びスラスト方向の動圧式らせん溝すべり軸受が構成されている。すなわち、径小部15aの外周軸受面には2対のヘリンボンパターンらせん溝16,17が形成されていて、回転体の内側円筒12aの内周軸受面とともにラジアル方向の動圧式すべり軸受18,19を構成している。
【0016】
また、固定体の径大部15bの図示上側軸受面には、サークル状にヘリンボンパターンらせん溝20が形成されている。そして、回転体の内側円筒12aの下端開口部を実質的に閉じるようにスラストリング21がねじ止めされている。固定体径大部15bの図示下側軸受面に接するこのスラストリング21の上側軸受面に、同じくサークル状にヘリンホンパターンらせん溝22が形成されている。これら2組のらせん溝20,22、及びそれに近接対向する固定体又は回転体の軸受面により、スラスト方向の動圧式すべり軸受23,24が構成されている。
【0017】
そこで、例えば循環器撮影用で陽極ターゲットの入力熱容量が約2.5MHU程度の回転陽極型X線管の場合、ラジアル方向動圧式すべり軸受18,19が形成されている固定体径小部15aは、その軸方向長さLrが100mm、その直径Drが20mmに定められている。それに対して、スラスト方向動圧式すべり軸受23,24が形成されている固定体径大部15bは、その直径Dsが40mmに定められている。
【0018】
とくにこの固定体径小部の軸方向長さLrは、固定体径大部の直径Dsの1.2倍以上、より好ましくは1.5倍から5倍までの範囲の寸法比に設定する。これら両者の寸法比(Lr/Ds)が1.2倍未満であると、前述の回転体の回転軸のずれや傾きが発生し易く、あまり大きすぎると径小部での回転抵抗が不所望に大きくなってしまう。
【0019】
また、固定体径大部の直径Drは、固定体径小部の直径Dsの1.5倍から5倍までの範囲の寸法比に設定することが望ましい。これらの寸法比が1.5倍未満であるとラジアル方向軸受の動圧に比べてスラスト方向軸受の動圧が必要十分得られず、また5倍を超えるとと径大部による回転抵抗が相対的に大きくなりすぎ、高速回転させることが困難になる。
【0020】
さらに、これら回転体及び固定体の各軸受面で構成される動圧式すべり軸受部分の軸受間隙は、スラスト方向動圧式すべり軸受23,24の平均軸受間隙Gsの方が、ラジアル方向動圧式すべり軸受18,19の平均軸受間隙Grよりも大きい寸法に設定されている。なお、平均軸受間隙とは、ラジアル方向動圧式すべり軸受18,19においては軸受部の軸方向及び円周方向の全体的な平均値であり、スラスト方向動圧式すべり軸受23,24においては径大部の上下両方の軸受間隙の平均値である。すなわち、特定の方向に片寄った場合等の一部分の軸受間隙を表すものではない。
【0021】
上記のような回転陽極型X線管の場合、ラジアルすべり軸受18,19の平均軸受間隙Grは、10μm乃至20μmの範囲、例えば15μmに設定される。それに対してスラストすべり軸受23,24の平均軸受間隙Gsは、30μm乃至60μmの範囲、例えば45μmに設定される。なお、各らせん溝16,17,20,21の深さは、いずれもおよそ20μmである。
【0022】
なお、固定体15にはその中心軸部が軸方向に沿ってくり抜かれた直径が3mmの穴からなる潤滑剤収容室31が設けられている。この潤滑剤収容室31の図示上端開口31aは、図示上部の空間Saを介してラジアル方向動圧式すべり軸受18に連通している。また、この潤滑剤収容室31から円周状空間Sbに通じる4つの放射方向通路32が90度間隔で対称的に形成されている。それによって、潤滑剤収容室31は放射方向通路32を経て円周状空間Sbに通じ、さらにそれを経て図示上下にある2組のラジアル方向動圧式すべり軸受18,19に連通している。
【0023】
各軸受部のらせん溝内や軸受間隙、潤滑剤収容室、放射方向通路及び各空間には、Ga合金のような液体金属潤滑剤Lが供給されている。なお、潤滑剤の充填量は、好ましくは、上記の各軸受部分や軸受間隙、潤滑剤収容室、放射方向通路、及び各内部空間を含む空間容積の20%乃至80%の範囲、例えばおよそ50%に相当する体積の量である。
【0024】
このような構成の回転陽極型X線管は、比較的小さい回転抵抗が得られるので、 回転体及び陽極ターゲットを6000rpmを超える回転速度で連続的に又はX線曝射時に高速回転をさせることができる。すなわち例えば、撮影待機時に3000〜6000rpmの間の任意の回転数で常時連続回転させておき、X線曝射によりX線撮影をする場合は9000〜10000rpmに回転数を上げてX線撮影をすることができる。このように、必要な時に瞬時にX線曝射可能な高速回転数に上げてX線撮影をすることができる。そしてこのような高速回転でも、回転体の回転軸のずれや傾きの発生が抑制され、安定な動作が得られる。
【0025】
図4に示す実施例は、スラスト方向動圧式すべり軸受23,24が構成されている固定体径大部15bの外周壁面15dを、液体金属潤滑剤で全く又はほとんど濡れない面にしたものである。そのため、この径大部の外周壁面15dに、例えば酸化チタンからなるセラミックス薄膜のような、液体金属潤滑剤で全く又はほとんど濡れずにこの潤滑剤を弾く材料からなる潤滑剤濡れ防止層35を付着形成してある。もちろん、この潤滑剤濡れ防止層35は、らせん溝20,22を含む動圧式すべり軸受の軸受面には形成しない。なお、潤滑剤濡れ防止層は、上記以外の材料でもよいし、固定体径大部の母材自体の表面がこのように潤滑剤で濡れない性質のものであればよい。但し、らせん溝が形成された軸受面は潤滑剤で濡れる面でなければならない。
【0026】
この実施例によれば、固定体径大部と回転体との間の回転抵抗を潤滑剤濡れ防止層35によって低減させることができる。すなわち、濡れ防止層35がない場合は、回転中心軸から最も大きい直径の遠い位置にある固定体径大部の外周壁面15dと、それに近接対向している回転体内周壁面の間のスペースQに介在する液体金属潤滑剤との濡れ性による接触抵抗が、回転抵抗として比較的大きく作用する。しかしこの実施例によれば、ここに潤滑剤濡れ防止層35が形成されていることにより、この面とスペースQに存在する液体金属潤滑剤との接触抵抗は小さくなる。その結果として、回転抵抗が低減され、高速回転に有利になる。
【0027】
図5に示す実施例は、スラスト方向動圧式すべり軸受23,24が構成さている固定体径大部15bの外周縁部を包囲する回転体12の内周壁面に、潤滑剤濡れ防止層35を付着形成したものである。なおこの潤滑剤濡れ防止層35を、図4に示したように固定体径大部の外周壁面15dにも形成してもよい。なおまた、この潤滑剤濡れ防止層35は、動圧式すべり軸受23,24の軸受性能を阻害しないように、動圧式すべり軸受として機能する領域内には形成しないことが望ましい。この実施例によれば、上述と同様に回転抵抗を低減させることができ、高速回転に有利である。
【0028】
【発明の効果】
以上説明したようにこの発明によれば、回転体をその回転軸のずれや傾きの発生を伴わずに高速回転をさせることができる。
【図面の簡単な説明】
【図1】この発明の実施例を示す要部縦断面図。
【図2】図1の固定体の一部を示す側面図。
【図3】図1のスラストリングを示す上面図。
【図4】この発明の他の実施例を示す要部縦断面図。
【図5】この発明のさらに他の実施例を示す要部縦断面図。
【図6】従来の構造及び作用を示す縦断面図。
【符号の説明】
11…陽極ターゲット
12…回転体
15…固定体
15a…固定体径小部
15b…固定体径大部
16,17,20,22…らせん溝
18,19…ラジアル方向動圧式すべり軸受
23,24…スラスト方向動圧式すべり軸受
35…潤滑剤濡れ防止層
M…液体金属潤滑剤
Lr…固定体径小部の軸方向長さ
Dr…固定体径小部の外直径
Ds…固定体径大部の外直径
Gr…ラジアル方向動圧式すべり軸受の平均軸受間隙
Gs…スラスト方向動圧式すべり軸受の平均軸受間隙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotary anode X-ray tube.
[0002]
[Prior art]
As is well known, a rotating anode type X-ray tube supports a disk-shaped anode target with a rotating body and a stationary body having a bearing portion, and while energizing an electromagnetic coil of a stator disposed outside a vacuum vessel, An electron beam emitted from the cathode is applied to the anode target surface to emit X-rays. The bearing portion is a rolling bearing such as a ball bearing, a spiral groove formed on the bearing surface, and a liquid metal lubricant such as gallium (Ga) or gallium-indium-tin (Ga-In-Sn) alloy. It consists of a hydrodynamic slide bearing filled with a gap.
[0003]
As a rotary anode X-ray tube using the latter dynamic pressure type slide bearing, a radial direction dynamic pressure type slide bearing has a small diameter portion, and a thrust direction dynamic pressure type slide bearing has a large diameter portion. For example, JP-B-3-77617, JP-A-2-244545, JP-A-2-227947, JP-A-2-227948, JP-A-4-363845, JP-A-5-290770, or USP5504797. It is disclosed in the specification etc.
[0004]
In the rotary anode X-ray tube disclosed in each of the above-mentioned publications, the bearing surfaces of all the hydrodynamic sliding bearing portions in the radial direction and the thrust direction, which are spiral grooves of a herringbone pattern, maintain a bearing gap of, for example, 20 μm. The helical groove and the bearing gap are filled with a liquid metal lubricant. The spiral groove of each bearing has a depth of about 20 μm.
[0005]
By the way, in the rotary anode type X-ray tube provided with this kind of dynamic pressure slide bearing, since the rotational resistance of the bearing is considerably larger than that of the ball bearing, the anode target is rotated at a relatively low rotational speed of about 3000 rpm. Operate to perform X-ray exposure.
[0006]
However, if the rotation speed of the anode target is low, it is natural that the input load to the anode target cannot be increased, and the solution is to use a large heat capacity, that is, a large and heavy anode target. In addition, for example, in an X-ray imaging apparatus equipped with a rotating anode type X-ray tube, there are not a few cases in which an object is imaged by changing the position from various directions and speedily. Thereby, a large acceleration is applied to the anode target, and thus a large load in various directions and a large load is applied to the hydrodynamic bearing irregularly.
[0007]
Thus, it is necessary to stably support a large load in each direction with the bearing. X-rays in which radial and thrust hydrodynamic bearings are configured between a simple columnar fixed body and a rotating body fitted therein as described in, for example, JP-A-4-363845 As the diameter of the fixed body is increased, the tube can have a bearing performance that can sufficiently withstand the load in each direction. Further, as described in the above USP5504797 specification, a structure in which a fixed portion is provided with a large-diameter portion and a dynamic bearing in the thrust direction is formed here has an advantage that the diameter of the thrust-direction bearing can be arbitrarily increased. Has become practical.
[0008]
[Problems to be solved by the invention]
By the way, the conventional rotary anode X-ray tube using this type of hydrodynamic bearing has bearing performance that can sufficiently withstand a large load in each direction. However, the larger the diameter of the fixed body that fits the rotating body, and the longer the axial length, the greater the rotational resistance of the bearing. Requires a very large rotational drive power.
[0009]
On the other hand, if the axial length of the fixed body fitted to the rotating body is shortened, the rotational resistance can be reduced accordingly, but the rotational center axis of the rotating body is likely to be displaced. That is, as shown in FIG. 6, the rotation center axis R of the anode target 11 and the rotator 12 is likely to be shifted or inclined with respect to the center axis C of the fixed body 15, and precession is likely to occur. In such a state, the fixed body and the rotating body come into contact at various places, or the bearing gap becomes uneven at each place, so that a normally balanced dynamic pressure is not generated in the bearing. In this figure, the bearing gap and the inclination of the rotating body are exaggerated, but the fixed body large diameter portion 15b in which the thrust direction bearing in the conventional rotary anode type X-ray tube is constructed. The axial length L of the small fixed-body diameter portion in which the radial bearing with respect to the diameter D is configured has a dimensional ratio of less than 1.2 times.
[0010]
In the figure, reference numerals 18 and 19 denote two sets of radial dynamic pressure bearings and a herringbone pattern helical groove formed in the fixed body, 15b denotes a fixed body large diameter portion, 15c denotes an anode support portion, and 23 and 24 denote Two sets of thrust direction dynamic pressure bearings with the upper and lower surfaces of the large fixed body diameter as one bearing surface, and a circle-shaped herringbone pattern helical groove formed in the large fixed body large diameter portion, 12b is a copper cylinder of the rotating body Appears. The spiral groove and the bearing gap of each bearing are filled with a liquid metal lubricant (not shown).
[0011]
According to the conventional structure, as described above, the fixed body and the rotating body may be brought into contact with each other, or the bearing may not operate normally due to unevenness or fluctuation of the bearing gap. In particular, such inconvenience becomes more pronounced as the rotational speed increases. Further, if the diameter D of the fixed body large-diameter portion 15b constituting the thrust direction bearing is large, the rotational resistance between the large-diameter portion and the rotating body becomes particularly large, and high-speed rotation becomes difficult.
[0012]
The present invention provides a rotating anode type X-ray tube that eliminates the above-mentioned disadvantages, is less likely to cause a shift or inclination of the rotation center axis, and that can be rotated at a high speed, for example, exceeding 6000 rpm with a low rotation resistance. The purpose is to do.
[0013]
[Means for Solving the Problems]
In the rotary anode type X-ray tube of the present invention, the axial length of the fixed body small diameter portion where the radial direction dynamic pressure type slide bearing is formed is the fixed body large diameter portion where the thrust direction dynamic pressure type slide bearing is formed. The average bearing gap of the thrust direction dynamic pressure type sliding bearing is set to be larger than the average bearing gap of the radial direction dynamic pressure type sliding bearing. It is characterized by that.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment will be described below with reference to FIGS. The same parts are denoted by the same reference numerals. A disk-shaped anode target 11 made of heavy metal is integrally fixed to a rotating shaft 13 projecting from one end of a substantially bottomed cylindrical rotating body 12 by a nut 14. The rotating body 12 has an inner cylinder 12a made of an iron alloy and an outer cylinder 12b made of copper double fitted and fixed. Inside the rotating body 12, a substantially columnar fixed body 15 made of an iron alloy is inserted.
[0015]
The fixed body 15 has a small diameter portion 15a having a small diameter Dr in the upper part of the figure, a large diameter part 15b having a large diameter Ds in the lower part thereof, and an anode support part 15c at the lower end. In addition, the fitting portion between the rotating body 12 and the fixed body 15 is configured with a dynamic pressure type spiral groove sliding bearing in the radial direction and the thrust direction as shown in the above-mentioned publications. That is, two pairs of herringbone pattern spiral grooves 16 and 17 are formed on the outer peripheral bearing surface of the small-diameter portion 15a, and the hydrodynamic slide bearings 18 and 19 in the radial direction together with the inner peripheral bearing surface of the inner cylinder 12a of the rotating body. Is configured.
[0016]
Further, a herringbone pattern spiral groove 20 is formed in a circle on the illustrated upper bearing surface of the large-diameter portion 15b of the fixed body. The thrust ring 21 is screwed so as to substantially close the lower end opening of the inner cylinder 12a of the rotating body. On the upper bearing surface of the thrust ring 21 that is in contact with the lower bearing surface of the fixed body large diameter portion 15b, a herring phone pattern spiral groove 22 is also formed in a circle shape. The two sets of spiral grooves 20 and 22 and the bearing surfaces of the fixed body or the rotating body that are close to each other constitute dynamic pressure type plain bearings 23 and 24 in the thrust direction.
[0017]
Thus, for example, in the case of a rotating anode X-ray tube for circulatory imaging where the input heat capacity of the anode target is about 2.5 MHU, the fixed body small diameter portion 15a in which the radial direction dynamic pressure type slide bearings 18, 19 are formed is The axial length Lr is set to 100 mm, and the diameter Dr is set to 20 mm. On the other hand, the diameter Ds of the fixed body large diameter portion 15b in which the thrust direction dynamic pressure type slide bearings 23 and 24 are formed is set to 40 mm.
[0018]
In particular, the axial length Lr of this small fixed body diameter portion is set to a dimensional ratio in the range of 1.2 times or more, more preferably 1.5 to 5 times the diameter Ds of the large fixed body diameter portion. If the dimensional ratio (Lr / Ds) of these two is less than 1.2 times, the above-mentioned rotation axis of the rotating body is likely to be displaced or inclined, and if it is too large, the rotational resistance at the small diameter portion is undesirable. Will become bigger.
[0019]
Moreover, it is desirable to set the diameter Dr of the large fixed body diameter to a dimensional ratio in the range of 1.5 to 5 times the diameter Ds of the small fixed body diameter. If these dimensional ratios are less than 1.5 times, the dynamic pressure of the thrust direction bearings cannot be obtained sufficiently compared to the dynamic pressure of the radial direction bearings. It becomes too large and it becomes difficult to rotate at high speed.
[0020]
Further, the bearing gap of the hydrodynamic slide bearing portion constituted by the respective bearing surfaces of the rotating body and the fixed body is such that the average bearing gap Gs of the thrust direction hydrodynamic slide bearings 23 and 24 is the radial direction hydrodynamic slide bearing. The dimension is set to be larger than the average bearing gap Gr of 18,19. The average bearing clearance is an overall average value in the axial direction and the circumferential direction of the bearing portion in the radial direction dynamic pressure type slide bearings 18 and 19, and the diameter is large in the thrust direction dynamic pressure type slide bearings 23 and 24. This is the average value of the bearing gaps at both the upper and lower parts. In other words, it does not represent a part of the bearing gap when it is offset in a specific direction.
[0021]
In the case of the rotary anode X-ray tube as described above, the average bearing gap Gr of the radial slide bearings 18 and 19 is set in the range of 10 μm to 20 μm, for example, 15 μm. On the other hand, the average bearing gap Gs of the thrust slide bearings 23 and 24 is set in a range of 30 μm to 60 μm, for example, 45 μm. Each of the spiral grooves 16, 17, 20, and 21 has a depth of about 20 μm.
[0022]
The fixed body 15 is provided with a lubricant accommodating chamber 31 formed of a hole having a diameter of 3 mm, the central axis portion of which is cut out in the axial direction. The upper end opening 31a shown in the figure of the lubricant accommodating chamber 31 communicates with the radial dynamic pressure type slide bearing 18 via a space Sa in the upper part of the drawing. Further, four radial passages 32 extending from the lubricant accommodating chamber 31 to the circumferential space Sb are formed symmetrically at intervals of 90 degrees. As a result, the lubricant containing chamber 31 communicates with the circumferential space Sb through the radial passage 32, and further communicates with the two sets of radial hydrodynamic slide bearings 18 and 19 on the upper and lower sides in the drawing.
[0023]
A liquid metal lubricant L such as a Ga alloy is supplied into the spiral groove of each bearing portion, the bearing gap, the lubricant accommodating chamber, the radial passage, and each space. The filling amount of the lubricant is preferably in the range of 20% to 80% of the space volume including the bearing portions and the bearing gaps, the lubricant accommodating chamber, the radial passage, and the internal spaces, for example, approximately 50. It is an amount of volume corresponding to%.
[0024]
Since the rotating anode X-ray tube having such a configuration can obtain a relatively small rotational resistance, the rotating body and the anode target can be rotated at a rotational speed exceeding 6000 rpm continuously or at the time of X-ray exposure. it can. That is, for example, when imaging is waited for, it is always continuously rotated at an arbitrary rotational speed between 3000 and 6000 rpm, and when performing X-ray imaging by X-ray exposure, the rotational speed is increased to 9000 to 10000 rpm and X-ray imaging is performed. be able to. As described above, X-ray imaging can be performed by increasing the rotation speed to a high-speed rotation speed that allows instantaneous X-ray exposure when necessary. Even in such a high-speed rotation, the occurrence of displacement and inclination of the rotating shaft of the rotating body is suppressed, and a stable operation can be obtained.
[0025]
In the embodiment shown in FIG. 4, the outer peripheral wall surface 15d of the fixed body large diameter portion 15b in which the thrust direction dynamic pressure type slide bearings 23 and 24 are formed is made a surface which is not wetted at all or with a liquid metal lubricant. . Therefore, a lubricant wetting prevention layer 35 made of a material that repels this lubricant with little or no liquid metal lubricant, such as a ceramic thin film made of titanium oxide, is attached to the outer peripheral wall surface 15d of the large diameter portion. It is formed. Of course, the lubricant wetting prevention layer 35 is not formed on the bearing surface of the hydrodynamic slide bearing including the spiral grooves 20 and 22. It should be noted that the lubricant wetting prevention layer may be made of a material other than those described above, or any material that does not wet the surface of the base material itself having a large fixed body diameter with the lubricant. However, the bearing surface on which the spiral groove is formed must be a surface that gets wet with the lubricant.
[0026]
According to this embodiment, the rotational resistance between the fixed body large diameter portion and the rotating body can be reduced by the lubricant wetting prevention layer 35. That is, in the absence of the wetting prevention layer 35, the space Q between the outer peripheral wall surface 15d of the large fixed body diameter located farthest from the center axis of rotation and the peripheral wall surface of the rotating body that is in close proximity to the outer peripheral wall surface. Contact resistance due to wettability with the intervening liquid metal lubricant acts relatively large as rotational resistance. However, according to this embodiment, since the lubricant wetting prevention layer 35 is formed here, the contact resistance between this surface and the liquid metal lubricant present in the space Q is reduced. As a result, the rotational resistance is reduced, which is advantageous for high-speed rotation.
[0027]
In the embodiment shown in FIG. 5, the lubricant wetting prevention layer 35 is provided on the inner peripheral wall surface of the rotating body 12 surrounding the outer peripheral edge portion of the fixed body large diameter portion 15 b formed by the thrust direction dynamic pressure type slide bearings 23, 24. It is formed by adhesion. The lubricant wetting prevention layer 35 may also be formed on the outer peripheral wall surface 15d of the large fixed body diameter as shown in FIG. The lubricant wetting prevention layer 35 is preferably not formed in a region functioning as a dynamic pressure type sliding bearing so as not to impair the bearing performance of the dynamic pressure type sliding bearings 23, 24. According to this embodiment, the rotational resistance can be reduced as described above, which is advantageous for high-speed rotation.
[0028]
【The invention's effect】
As described above, according to the present invention, the rotating body can be rotated at a high speed without causing a shift or inclination of the rotating shaft.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an essential part showing an embodiment of the present invention.
FIG. 2 is a side view showing a part of the fixed body in FIG. 1;
3 is a top view showing the thrust ring of FIG. 1. FIG.
FIG. 4 is a longitudinal sectional view of an essential part showing another embodiment of the present invention.
FIG. 5 is a longitudinal sectional view of an essential part showing still another embodiment of the present invention.
FIG. 6 is a longitudinal sectional view showing a conventional structure and operation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Anode target 12 ... Rotating body 15 ... Fixed body 15a ... Fixed body diameter small part 15b ... Fixed body diameter large part 16, 17, 20, 22 ... Spiral groove 18, 19 ... Radial direction dynamic pressure type slide bearings 23, 24 ... Thrust direction dynamic pressure type slide bearing 35 ... Lubricant wetting prevention layer M ... Liquid metal lubricant Lr ... Axial length Dr of small fixed body diameter ... Outside diameter Ds of small fixed body diameter ... Outside of large fixed body diameter Diameter Gr: Average bearing clearance Gs of radial direction dynamic pressure type sliding bearing Gs: Average bearing gap of thrust direction dynamic pressure type sliding bearing

Claims (3)

径小部及び径大部を有し一端が陽極支持部でなる固定体と、この固定体の外周に軸受間隙を保って嵌合され且つ一部に陽極ターゲットが固定された回転体と、上記固定体の径小部と上記回転体との間に構成されたラジアル方向動圧式すべり軸受と、上記固定体の径大部と上記回転体との間に構成されたスラスト方向動圧式すべり軸受と、上記各すべり軸受及び軸受間隙に供給された液体金属潤滑剤とを具備する回転陽極型X線管において、
前記固定体径大部が前記陽極支持部側に設けられ、上記ラジアル方向動圧式すべり軸受が形成されている固定体径小部の軸方向は、前記固定体径大部の前記径小部側のスラスト方向動圧式すべり軸受からの長さ、上記スラスト方向動圧式すべり軸受が形成されている固定体径大部の外直径の1.5倍以上5倍以下の寸法比であり、且つ上記スラスト方向動圧式すべり軸受の平均軸受間隙は、上記ラジアル方向動圧式すべり軸受の平均軸受間隙よりも大きい寸法に設定されていることを特徴とする回転陽極型X線管。
A small diameter portion and the large-diameter portion fixing member closed by end becomes the anode supporting portion, a rotating body anode target is fixed to a portion fitted and keeping the bearing gap on the outer periphery of the fixed body, the A radial dynamic pressure type slide bearing configured between the small diameter portion of the fixed body and the rotating body, and a thrust direction dynamic pressure type slide bearing configured between the large diameter portion of the fixed body and the rotating body; In the rotary anode type X-ray tube comprising the above-described sliding bearings and the liquid metal lubricant supplied to the bearing gap,
The fixed body diameter large portion is provided on the anode support portion side, and the axial direction of the fixed body small diameter portion on which the radial dynamic pressure type slide bearing is formed is the small diameter portion side of the fixed body large diameter portion thrust hydrodynamic length from the slide bearing is a 5 times or less of the dimensional ratio 1.5 times the outer diameter of the fixed body large-diameter portion of the thrust direction dynamic pressure type sliding bearing is formed, and the above A rotary anode type X-ray tube characterized in that an average bearing gap of a thrust direction dynamic pressure type slide bearing is set to a size larger than an average bearing gap of the radial direction dynamic pressure type slide bearing.
上記スラスト方向動圧式すべり軸受の平均軸受間隙は30μm乃至60μmの範囲であり、上記ラジアル方向動圧式すべり軸受の平均軸受間隙は10μm乃至20μmの範囲であることを特徴とする請求項1記載の回転陽極型X線管。2. The rotation according to claim 1, wherein an average bearing gap of the thrust direction dynamic pressure type slide bearing is in a range of 30 μm to 60 μm, and an average bearing gap of the radial direction dynamic pressure type slide bearing is in a range of 10 μm to 20 μm. Anode X-ray tube. 上記固定体径大部の外周壁面、及び該固定体径大部外周壁面に近接対向する回転体内周壁面の少なくとも一方の壁面は、上記液体金属潤滑剤で全く又はほとんど濡れない面になっていること特徴とする請求項1記載の回転陽極型X線管。The outer peripheral wall surface of the fixed body large diameter portion and at least one wall surface of the rotating body peripheral wall adjacent to and opposed to the fixed body large diameter outer peripheral wall surface are surfaces that are not or hardly wetted by the liquid metal lubricant. The rotary anode type X-ray tube according to claim 1.
JP33055996A 1996-12-11 1996-12-11 Rotating anode X-ray tube Expired - Lifetime JP3754512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33055996A JP3754512B2 (en) 1996-12-11 1996-12-11 Rotating anode X-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33055996A JP3754512B2 (en) 1996-12-11 1996-12-11 Rotating anode X-ray tube

Publications (2)

Publication Number Publication Date
JPH10172483A JPH10172483A (en) 1998-06-26
JP3754512B2 true JP3754512B2 (en) 2006-03-15

Family

ID=18234013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33055996A Expired - Lifetime JP3754512B2 (en) 1996-12-11 1996-12-11 Rotating anode X-ray tube

Country Status (1)

Country Link
JP (1) JP3754512B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4015766B2 (en) * 1998-12-08 2007-11-28 株式会社東芝 Rotating anode X-ray tube
JP4047494B2 (en) * 1999-07-05 2008-02-13 株式会社ジェイテクト Hydrodynamic bearing
JP2001325908A (en) * 2000-03-09 2001-11-22 Toshiba Corp Rotating anode type x-ray tube
US8761342B2 (en) * 2008-12-08 2014-06-24 Koninklijke Philips N.V. Compensation of anode wobble for X-ray tubes of the rotary-anode type
JP5370966B2 (en) * 2009-12-11 2013-12-18 株式会社東芝 Rotating anode type X-ray tube and X-ray tube device

Also Published As

Publication number Publication date
JPH10172483A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
KR940009195B1 (en) Rotary-anode type x-ray tube
KR940009193B1 (en) Rotary-anode type x-ray tube
JP3892674B2 (en) Rotating anode X-ray tube
KR960010431B1 (en) X-ray tube of the rotary anode type
JP3754512B2 (en) Rotating anode X-ray tube
JPH08241686A (en) Rotation anode x-ray tube with slide bearing
JP3720955B2 (en) Rotating anode X-ray tube
JP3724926B2 (en) Rotating anode X-ray tube
EP1215708B1 (en) Rotary-anode-type x-ray tube
JP4421126B2 (en) Rotating anode X-ray tube
JP4467740B2 (en) Rotating anode X-ray tube
JP2937573B2 (en) Rotating anode X-ray tube
JP3974011B2 (en) Rotating anode X-ray tube
JP2930267B2 (en) Rotating anode X-ray tube
JP4098193B2 (en) Slide bearing and rotating anode type X-ray tube
JP2002245958A (en) Rotating anode type x-ray tube and manufacturing method thereof
JP3811078B2 (en) Rotating anode X-ray tube
JP2989086B2 (en) Rotating anode X-ray tube
JP3260626B2 (en) Rotating anode X-ray tube
JP3824921B2 (en) Rotating anode type X-ray tube apparatus and control method thereof
JP2989085B2 (en) Rotating anode X-ray tube
JPH10294072A (en) Rotary anode-type x-ray tube
JPH04144046A (en) Rotating anode type x-ray tube
JPH0414742A (en) Bearing device and x-ray tube therewith
JPH04196036A (en) Rotary anode type x-ray tube

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term