JP3754256B2 - Refrigerant compressor - Google Patents

Refrigerant compressor Download PDF

Info

Publication number
JP3754256B2
JP3754256B2 JP36993199A JP36993199A JP3754256B2 JP 3754256 B2 JP3754256 B2 JP 3754256B2 JP 36993199 A JP36993199 A JP 36993199A JP 36993199 A JP36993199 A JP 36993199A JP 3754256 B2 JP3754256 B2 JP 3754256B2
Authority
JP
Japan
Prior art keywords
oil groove
journal
oil
bearing
refrigerant compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36993199A
Other languages
Japanese (ja)
Other versions
JP2001182656A (en
Inventor
道夫 太田
治助 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP36993199A priority Critical patent/JP3754256B2/en
Publication of JP2001182656A publication Critical patent/JP2001182656A/en
Application granted granted Critical
Publication of JP3754256B2 publication Critical patent/JP3754256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵庫やショーケース等の比較的小型の冷凍装置に使用される往復動式の圧縮機構部を有する冷媒圧縮機に関する。
【0002】
【従来の技術】
従来、比較的小型の冷凍装置に使用される往復動式の圧縮機構部を有する冷媒圧縮機は、図4の断面図に示すように、密閉容器5内に単相電源あるいはインバータ電源を使用する電動機7を下側に配置し、クランク軸15を介して上側に配置された圧縮機構部4を駆動するものが知られていた。
【0003】
これらの冷媒圧縮機は一般的に回転方向が一定で、片持の軸受8とこの軸受で支持されるクランク軸15のジャーナル部9とで軸受部10を構成している。また、密閉容器5内の底部には潤滑油6を貯留しており、クランク軸15の下端部16から遠心力により吸い上げた潤滑油6は、クランク軸15の内径部11を通り、ジャーナル部9の下端側に設けた内径部11から外径へ貫通する給油孔12を介して軸受部10の下端側に供給している。
【0004】
さらに、軸受部10の下端側に供給された潤滑油6は、ジャーナル部9の外周面に設けられた粘性ポンプとしての機能を有する螺旋状の第一の油溝17を通り、上端側に設けたジャーナル部9の外径と、偏芯部13へ通じる内径方向へ貫通する給油孔18を介して圧縮機構部4へ給油している。なお、ジャーナル部9の外周面の中央寄りには貯油の機能を有する非摺動面となる細径部19も設けられている。
【0005】
ジャーナル部9の外周面に設けられている第一の油溝17の位置は、圧縮機構部4の圧縮開始から圧縮終了までの期間ピストン14に加わる圧縮ガスの圧力が、図5に示すように駆動するクランク軸15の偏芯部13に作用して発生する負荷により、クランク軸15を支持する軸受8とジャーナル部9で構成される軸受部10に加わるの負荷位置を避けている。
【0006】
この負荷位置は、軸受部の要部断面及びジャーナル部の展開を示した図6に模して現している(ジャーナル部9の偏芯部13側の負荷20及び下端部16側の負荷21)位置であり、この反対側(軸の回転方向で約180度)となる位置に第一の油溝17を設けていた。
【0007】
ここで、給油孔12から螺旋状の第一の油溝17に供給された潤滑油6は、一部が細径部19を循環して再び油溝17に入り、その後給油孔18に流入する過程で、軸受部10の隙間に入り潤滑を行っている。
【0008】
ところで、従来の冷凍装置では作動冷媒としてCFC(クロロフルオロカーボン)系あるいはHCFC(ハイドロクロロフルオロカーボン)系の冷媒が使用されてきたが、これらの冷媒はオゾン層破壊物質として全廃されることになり、これに代わってオゾン層破壊係数ゼロのHFC(ハイドロフルオロカーボン)系の代替冷媒に移行してきている。
【0009】
ここで、従来の冷媒では含まれる塩素により、冷凍装置に使用している冷媒圧縮機の圧縮機構部の摺動面に塩化物皮膜を形成して潤滑性を良好にしていたが、代替冷媒は塩素を含まないためこのような効果が期待できない。さらに、代替冷媒は従来の冷媒より圧力が高いため圧縮機構部への負荷が増加するので、圧縮機構部を構成している軸受部であるクランク軸のジャーナル部と軸受は従来のものより一層耐磨耗性が求められている。
【0010】
【発明が解決しようとする課題】
このように、HFC系の代替冷媒を使用する比較的小型の冷凍装置では、これに使用される往復動式の圧縮機構部を有する冷媒圧縮機において、片持の軸受で支持されているクランク軸のジャーナル部と軸受で構成された軸受部は、従来の螺旋状の油溝からの給油では耐磨耗性を得るための油膜形成が不充分であるという課題がある。
【0011】
本発明は、この軸受部の油膜形成を改善した冷媒圧縮機を提供するものである。
【0012】
【課題を解決するための手段】
上記課題を解決するため、請求項1にかかる発明は、密閉容器内に片持の軸受を有する往復動式の圧縮機構部と電動機とを備え、遠心力により吸い上げた潤滑油をクランク軸のジャーナル部に給油し、軸受で支持されたジャーナル部の外周面には螺旋状の第一の油溝を有する往復動式の冷媒圧縮機において、前記第一の油溝に連通し、反回転方向に終端を有する第二の油溝を設けたことによって、軸受部の油膜形成を助長するものである。
【0013】
また、前記第二の油溝は、前記第一の油溝の偏芯部側端部に連通し、クランク軸の円周方向に設けたことによって、容易に軸受部の油膜形成を助長するものである。
【0014】
請求項2にかかる発明は、前記第二の油溝の終端は、ジャーナル部の外周面でクランク軸の偏芯方向から反回転方向に60度〜120度の範囲内に設けたことによって、軸受部で最大負荷が加わる位置の油膜形成を助長するものである。
【0015】
請求項3にかかる発明は、密閉容器内に片持の軸受を有する往復動式の圧縮機構部と電動機とを備え、遠心力により吸い上げた潤滑油をクランク軸のジャーナル部に給油し、軸受で支持されたジャーナル部の外周面には螺旋状の第一の油溝と、前記外周面の中央寄りに貯油の機能を有する細径部とを設けた往復動式の冷媒圧縮機において、前記細径部から偏芯部側のジャーナル端部に向って、前記第一の油溝と略平行した終端を有する第二の油溝を設けたことによって、容易に軸受部の油膜形成を助長するものである。
【0016】
請求項4にかかる発明は、前記第二の油溝の終端は、ジャーナル部の外周面でクランク軸の偏芯方向から反回転方向に60度〜120度の範囲内に設けたことによって、軸受部で最大負荷が加わる位置の油膜形成を助長するものである。
【0017】
【発明の実施の形態】
本発明の実施の形態を図面を参照して説明する。なお、従来と同一構成に関しては同一符号を用いる。
【0018】
図1は、本発明の軸受部の要部断面及びジャーナル部の展開を示した図である。図中17は従来と同様の螺旋形状の第一の油溝であり、この溝に連通して反回転方向に終端25,26を有する第二の油溝27,28を設けることによって、給油孔12から油溝17に供給された潤滑油は、一部が油溝28へ供給され、さらに一部は細径部19を循環して再び油溝17に入り、その後給油孔18に流入するものと、一部は油溝27に供給される。
【0019】
これらの供給過程で潤滑油は、ジャーナル部9の外周面と軸受8とで構成された軸受部10の隙間に入り潤滑を行っているが、本発明では軸受部10の負荷が大きくなる位置の近くまで油溝27,28により給油することで、摺動部の油膜形成が助長されて、HFC系の冷媒を使用しても耐磨耗性の高い冷媒圧縮機を供給できる。
【0020】
図2は、本発明の第2の実施形態であるジャーナル部の展開を示した図である。本発明の冷媒圧縮機ではクランク軸を片持の軸受で支持しており、圧縮機構部のピストンに作用する圧縮ガスの圧力が、駆動するクランク軸の偏芯部に作用して発生する軸受部の負荷は、クランク軸の偏芯部側が大きく(図示した軸受負荷20に相当)下端側はその1/2以下(図示した軸受負荷21に相当)と小さい。
【0021】
さらに、軸受部の負荷はその両端が最大となることから、ジャーナル部9の外周面に設けた螺旋状の第一の油溝17の偏芯部側端部に連通し、反回転方向の円周方向に終端25を有する第二の油溝27を軸受部のクランク軸の偏芯部側に設けることによって、軸受部の最大負荷位置の近くまで給油可能となり、最大負荷位置の油膜形成が助長されて、HFC系の冷媒を使用しても耐磨耗性の高い冷媒圧縮機を供給できる。
【0022】
図3は、本発明の第3の実施形態であるジャーナル部の展開を示した図である。本発明ではジャーナル部9の偏芯部側最大負荷位置の近くへの給油を、細径部19に連通させた第一の油溝17と略平行した終端25を有する第二の油溝27を設けることによって、ジャーナル部9の偏芯部側最大負荷位置の強度低下を少なくすることが可能で、しかも最大負荷位置の油膜形成を助長することが可能となる。
【0023】
なお、ジャーナル部の円周方向の最大負荷(図示した軸受負荷20に相当)位置は、クランク軸の偏芯方向から反回転方向で略120度〜180度であることから、油溝27の終端25の位置は同様に偏芯方向から反回転方向で60度〜120度であることが望ましく、これにより最大負荷を受ける軸受部の油膜形成が確保でき、磨耗防止と摺動抵抗低減が可能となり、延いては冷媒圧縮機の効率向上が可能となる。
【0024】
【発明の効果】
以上説明したように請求項1の発明によれば、密閉容器内に片持の軸受を有する往復動式の圧縮機構部と電動機とを備え、遠心力により吸い上げた潤滑油をクランク軸のジャーナル部に給油し、軸受で支持されたジャーナル部の外周面には螺旋状の第一の油溝を有する往復動式の冷媒圧縮機において、前記第一の油溝に連通し、反回転方向に終端を有する第二の油溝を設けたことによって軸受部の油膜形成が助長され、HFC系の冷媒を使用しても耐磨耗性の高い冷媒圧縮機を供給することが可能になる。
【0025】
また、前記第二の油溝は、前記第一の油溝の偏芯部側端部に連通し、クランク軸の円周方向に設けたことによって、最大負荷側の軸受部の油膜形成が助長され、HFC系の冷媒を使用しても耐磨耗性の高い冷媒圧縮機を供給することが可能になる。
【0026】
請求項2の発明によれば、前記第二の油溝の終端は、ジャーナル部の外周面でクランク軸の偏芯方向から反回転方向に60度〜120度の範囲内に設けたことによって、軸受最大負荷部の油膜形成が助長され磨耗防止と摺動抵抗低減が可能になる。
【0027】
請求項3の発明によれば、密閉容器内に片持の軸受を有する往復動式の圧縮機構部と電動機とを備え、遠心力により吸い上げた潤滑油をクランク軸のジャーナル部に給油し、軸受で支持されたジャーナル部の外周面には螺旋状の第一の油溝と、前記細径部から偏芯部側のジャーナル端部に向って、前記第一の油溝と略平行した終端を有する第二の油溝を設けたことによって、ジャーナル部の偏芯部側最大負荷位置の強度低下を少なくすることが可能で、しかも最大負荷側の軸受部の油膜形成が助長され、HFC系の冷媒を使用しても耐磨耗性の高い冷媒圧縮機を供給することが可能になる。
【0028】
請求項4の発明によれば、前記第二の油溝の終端は、ジャーナル部の外周面でクランク軸の偏芯方向から反回転方向に60度〜120度の範囲内に設けたことによって、軸受最大負荷部の油膜形成が助長され、磨耗防止と摺動抵抗低減が可能になる。
【図面の簡単な説明】
【図1】本発明の軸受部の要部断面及びジャーナル部の展開を示す図である。
【図2】同第2の実施形態であるジャーナル部の展開を示す図である。
【図3】同第3の実施形態であるジャーナル部の展開を示す図である。
【図4】従来の冷媒圧縮機の断面図である。
【図5】同軸受部の要部断面及び軸受部に加わる負荷を示す図である。
【図6】同軸受部の要部断面及びジャーナル部の展開を示す図である。
【符号の説明】
4 圧縮要素
12,18 給油孔
13 偏芯部
14 ピストン
15 クランク軸
17 第一の油溝
19 細径部
25,26 終端部
27,28 第二の油溝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerant compressor having a reciprocating compression mechanism used for a relatively small refrigeration apparatus such as a refrigerator or a showcase.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a refrigerant compressor having a reciprocating compression mechanism used for a relatively small refrigeration apparatus uses a single-phase power source or an inverter power source in a hermetic container 5 as shown in the cross-sectional view of FIG. It has been known that the electric motor 7 is disposed on the lower side and the compression mechanism unit 4 disposed on the upper side via the crankshaft 15 is driven.
[0003]
These refrigerant compressors generally have a constant rotational direction, and a cantilever bearing 8 and a journal portion 9 of a crankshaft 15 supported by the bearing constitute a bearing portion 10. Further, the lubricating oil 6 is stored at the bottom of the sealed container 5, and the lubricating oil 6 sucked up by the centrifugal force from the lower end portion 16 of the crankshaft 15 passes through the inner diameter portion 11 of the crankshaft 15 and passes through the journal portion 9. Is supplied to the lower end side of the bearing portion 10 through an oil supply hole 12 penetrating from the inner diameter portion 11 provided on the lower end side to the outer diameter.
[0004]
Furthermore, the lubricating oil 6 supplied to the lower end side of the bearing portion 10 passes through a spiral first oil groove 17 having a function as a viscous pump provided on the outer peripheral surface of the journal portion 9 and is provided on the upper end side. Further, oil is supplied to the compression mechanism portion 4 through the outer diameter of the journal portion 9 and the oil supply hole 18 penetrating in the inner diameter direction leading to the eccentric portion 13. In addition, a small-diameter portion 19 serving as a non-sliding surface having a function of storing oil is also provided near the center of the outer peripheral surface of the journal portion 9.
[0005]
The position of the first oil groove 17 provided on the outer peripheral surface of the journal portion 9 is such that the pressure of the compressed gas applied to the piston 14 during the period from the start of compression to the end of compression of the compression mechanism portion 4 is as shown in FIG. Due to the load generated by acting on the eccentric part 13 of the crankshaft 15 to be driven, a load position applied to the bearing part 10 constituted by the bearing 8 and the journal part 9 supporting the crankshaft 15 is avoided.
[0006]
This load position is shown in FIG. 6 showing the cross section of the main part of the bearing part and the development of the journal part (the load 20 on the eccentric part 13 side and the load 21 on the lower end part 16 side of the journal part 9). The first oil groove 17 is provided at a position on the opposite side (about 180 degrees in the rotation direction of the shaft).
[0007]
Here, a part of the lubricating oil 6 supplied from the oil supply hole 12 to the spiral first oil groove 17 circulates through the small diameter portion 19 and enters the oil groove 17, and then flows into the oil supply hole 18. In the process, lubrication is performed in the gap of the bearing portion 10.
[0008]
By the way, in conventional refrigeration equipment, CFC (chlorofluorocarbon) or HCFC (hydrochlorofluorocarbon) refrigerants have been used as working refrigerants. However, these refrigerants are completely abolished as ozone depleting substances. Instead, it has shifted to HFC (hydrofluorocarbon) -based alternative refrigerants with zero ozone depletion potential.
[0009]
Here, with the chlorine contained in the conventional refrigerant, a chloride film was formed on the sliding surface of the compression mechanism portion of the refrigerant compressor used in the refrigeration system to improve the lubricity, but the alternative refrigerant is Such an effect cannot be expected because it does not contain chlorine. Furthermore, since the pressure of the alternative refrigerant is higher than that of the conventional refrigerant, the load on the compression mechanism increases, so the journal part of the crankshaft and the bearing that constitute the compression mechanism are more resistant to conventional ones. Abrasion is required.
[0010]
[Problems to be solved by the invention]
As described above, in a relatively small refrigeration apparatus using an HFC-based alternative refrigerant, a crankshaft supported by a cantilever bearing in a refrigerant compressor having a reciprocating compression mechanism used for the refrigeration apparatus. However, there is a problem that the oil film formation for obtaining the wear resistance is insufficient when the oil is supplied from the conventional spiral oil groove.
[0011]
The present invention provides a refrigerant compressor with improved oil film formation in the bearing portion.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 includes a reciprocating compression mechanism having a cantilever bearing in an airtight container and an electric motor, and the lubricating oil sucked up by centrifugal force is journaled to the crankshaft. In a reciprocating refrigerant compressor having a spiral first oil groove on the outer peripheral surface of a journal portion supported by a bearing and supported by a bearing, the reciprocating refrigerant compressor communicates with the first oil groove in a counter-rotating direction. By providing the second oil groove having the end, oil film formation of the bearing portion is promoted.
[0013]
Further, the second oil groove communicates with the end of the first oil groove on the side of the eccentric portion and is provided in the circumferential direction of the crankshaft, thereby facilitating the formation of an oil film on the bearing portion. It is.
[0014]
According to a second aspect of the present invention , the end of the second oil groove is provided within a range of 60 degrees to 120 degrees in the counter-rotating direction from the eccentric direction of the crankshaft on the outer peripheral surface of the journal portion. This promotes the formation of an oil film at a position where the maximum load is applied at the portion.
[0015]
The invention according to claim 3 is provided with a reciprocating compression mechanism having a cantilever bearing in an airtight container and an electric motor, and lubricating oil sucked up by centrifugal force is supplied to a journal portion of a crankshaft. In the reciprocating refrigerant compressor in which a spiral first oil groove is provided on the outer peripheral surface of the supported journal portion and a small-diameter portion having a function of storing oil is provided near the center of the outer peripheral surface. By facilitating the formation of an oil film in the bearing portion by providing a second oil groove having a terminal end substantially parallel to the first oil groove from the diameter portion toward the journal end portion on the eccentric portion side. It is.
[0016]
According to a fourth aspect of the present invention , the end of the second oil groove is provided within a range of 60 degrees to 120 degrees in the counter-rotating direction from the eccentric direction of the crankshaft on the outer peripheral surface of the journal portion. This promotes the formation of an oil film at a position where the maximum load is applied at the portion.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is used regarding the same structure as the past.
[0018]
FIG. 1 is a view showing a cross-section of the main part of the bearing part of the present invention and the development of the journal part. In the figure, reference numeral 17 denotes a first oil groove having a spiral shape similar to the conventional one. By providing second oil grooves 27 and 28 having terminal ends 25 and 26 in the counter-rotating direction in communication with the groove, oil supply holes are provided. A part of the lubricating oil supplied from 12 to the oil groove 17 is supplied to the oil groove 28, and a part of the lubricating oil circulates through the narrow diameter portion 19 and enters the oil groove 17, and then flows into the oil supply hole 18. And a part is supplied to the oil groove 27.
[0019]
In these supply processes, the lubricating oil enters the gap between the bearing portion 10 formed by the outer peripheral surface of the journal portion 9 and the bearing 8 and performs lubrication. However, in the present invention, the lubricating oil is placed at a position where the load on the bearing portion 10 increases. By supplying oil through the oil grooves 27 and 28 close to each other, the formation of an oil film at the sliding portion is promoted, and a refrigerant compressor having high wear resistance can be supplied even if an HFC-based refrigerant is used.
[0020]
FIG. 2 is a diagram showing the development of the journal portion according to the second embodiment of the present invention. In the refrigerant compressor according to the present invention, the crankshaft is supported by a cantilever bearing, and the pressure of the compressed gas acting on the piston of the compression mechanism acts on the eccentric part of the crankshaft to be generated. Of the crankshaft is large on the eccentric part side of the crankshaft (corresponding to the bearing load 20 shown in the figure) and small on the lower end side of 1/2 or less (corresponding to the bearing load 21 in the figure).
[0021]
Furthermore, since the load of the bearing portion is maximized at both ends, the bearing portion communicates with the end portion on the eccentric portion side of the spiral first oil groove 17 provided on the outer peripheral surface of the journal portion 9, and is a circle in the counter-rotating direction. By providing the second oil groove 27 having the terminal end 25 in the circumferential direction on the eccentric part side of the crankshaft of the bearing part, it becomes possible to supply oil to the vicinity of the maximum load position of the bearing part, and the formation of an oil film at the maximum load position is promoted. Thus, a refrigerant compressor having high wear resistance can be supplied even if an HFC-based refrigerant is used.
[0022]
FIG. 3 is a diagram showing the development of the journal portion according to the third embodiment of the present invention. In the present invention, the second oil groove 27 having a terminal end 25 substantially parallel to the first oil groove 17 that communicates the oil supply near the maximum load position on the eccentric portion side of the journal portion 9 to the small diameter portion 19. By providing, it is possible to reduce the strength reduction of the maximum load position on the eccentric part side of the journal part 9, and it is possible to promote the formation of an oil film at the maximum load position.
[0023]
The position of the maximum load in the circumferential direction of the journal portion (corresponding to the bearing load 20 shown in the figure) is approximately 120 to 180 degrees in the counter-rotating direction from the eccentric direction of the crankshaft. Similarly, the position of 25 is preferably 60 to 120 degrees in the counter-rotating direction from the eccentric direction, so that it is possible to ensure the formation of an oil film on the bearing portion that receives the maximum load, and to prevent wear and reduce sliding resistance. As a result, the efficiency of the refrigerant compressor can be improved.
[0024]
【The invention's effect】
As described above, according to the first aspect of the present invention, the reciprocating compression mechanism having a cantilevered bearing and the electric motor are provided in the sealed container, and the lubricating oil sucked up by the centrifugal force is collected in the journal portion of the crankshaft. In the reciprocating refrigerant compressor having a spiral first oil groove on the outer peripheral surface of the journal portion supported by the bearing, the reciprocating refrigerant compressor communicates with the first oil groove and terminates in the counter-rotating direction. By providing the second oil groove, the formation of an oil film in the bearing portion is promoted, and it becomes possible to supply a refrigerant compressor having high wear resistance even when an HFC-based refrigerant is used.
[0025]
Further, the second oil groove communicates with the end portion on the eccentric portion side of the first oil groove and is provided in the circumferential direction of the crankshaft, thereby facilitating the formation of an oil film on the bearing portion on the maximum load side. In addition, even when an HFC-based refrigerant is used, it is possible to supply a refrigerant compressor having high wear resistance.
[0026]
According to the invention of claim 2, the end of the second oil groove is provided in the range of 60 degrees to 120 degrees in the counter-rotating direction from the eccentric direction of the crankshaft on the outer peripheral surface of the journal portion. Formation of an oil film at the bearing maximum load portion is promoted, and wear prevention and sliding resistance can be reduced.
[0027]
According to the invention of claim 3, a reciprocating compression mechanism having a cantilevered bearing in an airtight container and an electric motor are provided, and lubricating oil sucked up by centrifugal force is supplied to a journal part of a crankshaft, The outer circumferential surface of the journal part supported by the first spiral oil groove and the end substantially parallel to the first oil groove from the narrow diameter part toward the eccentric end side journal. By providing the second oil groove, it is possible to reduce the strength reduction of the maximum load position on the eccentric part side of the journal part, and further, the formation of the oil film on the bearing part on the maximum load side is promoted. Even if a refrigerant is used, it is possible to supply a refrigerant compressor having high wear resistance.
[0028]
According to the invention of claim 4, the end of the second oil groove is provided within a range of 60 degrees to 120 degrees in the counter-rotating direction from the eccentric direction of the crankshaft on the outer peripheral surface of the journal portion. The formation of an oil film at the bearing maximum load part is promoted, and wear prevention and sliding resistance can be reduced.
[Brief description of the drawings]
FIG. 1 is a view showing a cross section of a main part of a bearing part and a development of a journal part according to the present invention.
FIG. 2 is a view showing development of a journal portion according to the second embodiment.
FIG. 3 is a diagram showing development of a journal portion according to the third embodiment.
FIG. 4 is a cross-sectional view of a conventional refrigerant compressor.
FIG. 5 is a view showing a cross section of the main part of the bearing part and a load applied to the bearing part.
FIG. 6 is a view showing a cross section of the main part of the bearing part and the development of the journal part.
[Explanation of symbols]
4 Compression elements 12 and 18 Oil supply hole 13 Eccentric part 14 Piston 15 Crankshaft 17 First oil groove 19 Narrow diameter parts 25 and 26 Terminal parts 27 and 28 Second oil groove

Claims (4)

密閉容器内に片持の軸受を有する往復動式の圧縮機構部と電動機とを備え、遠心力により吸い上げた潤滑油をクランク軸のジャーナル部に給油し、軸受で支持されたジャーナル部の外周面には螺旋状の第一の油溝を有する往復動式の冷媒圧縮機において、前記第一の油溝に連通し、反回転方向に終端を有する第二の油溝をジャーナル部の外周面に設けた冷媒圧縮機において、
前記第二の油溝は、前記第一の油溝の偏芯部側端部に連通し、ジャーナル部の外周面の円周方向に設けられていることを特徴とする冷媒圧縮機。
A reciprocating compression mechanism with a cantilevered bearing in an airtight container and an electric motor. Lubricant sucked up by centrifugal force is supplied to the journal part of the crankshaft, and the outer peripheral surface of the journal part supported by the bearing. In the reciprocating refrigerant compressor having a spiral first oil groove, a second oil groove communicating with the first oil groove and having a terminal end in the counter-rotating direction is formed on the outer peripheral surface of the journal portion. In the provided refrigerant compressor,
The second oil groove communicates with an end of the first oil groove on the side of the eccentric portion, and is provided in the circumferential direction of the outer peripheral surface of the journal portion .
前記第二の油溝の終端は、ジャーナル部の外周面でクランク軸の偏芯方向から反回転方向に60度〜120度の範囲内に設けられていることを特徴とする請求項1に記載の冷媒圧縮機。The end of the second oil groove, according to claim 1, characterized in that provided in the range of eccentricity direction of the crank shaft at the outer circumferential surface of the journal portion of 60 to 120 degrees in a counter-rotational direction Refrigerant compressor. 密閉容器内に片持の軸受を有する往復動式の圧縮機構部と電動機とを備え、遠心力により吸い上げた潤滑油をクランク軸のジャーナル部に給油し、軸受で支持されたジャーナル部の外周面には螺旋状の第一の油溝と、前記外周面の中央寄りに貯油の機能を有する細径部とを設けた往復動式の冷媒圧縮機において、前記細径部から偏芯部側のジャーナル端部に向って、前記第一の油溝と略平行した終端を有する第二の油溝を設けたことを特徴とする冷媒圧縮機。  A reciprocating compression mechanism with a cantilevered bearing in an airtight container and an electric motor. Lubricating oil sucked up by centrifugal force is supplied to the journal part of the crankshaft, and the outer peripheral surface of the journal part supported by the bearing. In the reciprocating refrigerant compressor provided with a spiral first oil groove and a small diameter portion having a function of storing oil near the center of the outer peripheral surface, the eccentric portion side of the small diameter portion is provided. A refrigerant compressor characterized in that a second oil groove having a terminal end substantially parallel to the first oil groove is provided toward the end of the journal. 前記第二の油溝の終端は、ジャーナル部の外周面でクランク軸の偏芯方向から反回転方向に60度〜120度の範囲内に設けられていることを特徴とする請求項3に記載の冷媒圧縮機。The end of the second oil groove, according to claim 3, characterized in that provided in the range of eccentricity direction of the crank shaft at the outer circumferential surface of the journal portion of 60 to 120 degrees in a counter-rotational direction Refrigerant compressor.
JP36993199A 1999-12-27 1999-12-27 Refrigerant compressor Expired - Fee Related JP3754256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36993199A JP3754256B2 (en) 1999-12-27 1999-12-27 Refrigerant compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36993199A JP3754256B2 (en) 1999-12-27 1999-12-27 Refrigerant compressor

Publications (2)

Publication Number Publication Date
JP2001182656A JP2001182656A (en) 2001-07-06
JP3754256B2 true JP3754256B2 (en) 2006-03-08

Family

ID=18495665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36993199A Expired - Fee Related JP3754256B2 (en) 1999-12-27 1999-12-27 Refrigerant compressor

Country Status (1)

Country Link
JP (1) JP3754256B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002216447A1 (en) * 2001-12-17 2003-06-30 Lg Electronics Inc. Crank shaft in dual capacity compressor
KR20040020437A (en) * 2002-08-30 2004-03-09 엘지전자 주식회사 A oil furnishing structure of crank-shaft for hermetic compressor
JP5612628B2 (en) * 2012-04-20 2014-10-22 日立アプライアンス株式会社 Hermetic compressor
CN105041610B (en) * 2015-07-07 2017-11-07 安徽美芝制冷设备有限公司 Bent axle, crankshaft group and piston compressor with it

Also Published As

Publication number Publication date
JP2001182656A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
JP3473776B2 (en) Hermetic compressor
US9482231B2 (en) Rotary compressor having an oil groove in an inner peripheral surface of a bearing
US6024548A (en) Motor bearing lubrication in rotary compressors
JP2002195180A (en) Rotary compressor
JP2001065458A (en) Compressor
JPH0372840B2 (en)
JP3754256B2 (en) Refrigerant compressor
JP2003172264A (en) Compressor
EP1809901A1 (en) Compressor
JP3823325B2 (en) Compressor bearings for refrigerators and compressors for refrigerators
JP2001289169A (en) Compressor
JP4325611B2 (en) Compressor bearings for refrigerators and compressors for refrigerators
KR101121878B1 (en) Hermetic-Type Compressor
JP3448466B2 (en) Scroll compressor
JP2001355586A (en) Rotary compressor
TW200406546A (en) Refrigerant compressor
JP2000345965A (en) Hermetic compressor
JP2000110751A (en) Oil supply mechanism for scroll type compressor
JP5063638B2 (en) Scroll compressor
JP3658993B2 (en) Refrigerant compressor and refrigeration system
JP3806507B2 (en) Scroll compressor
JPH1082378A (en) Compressor for refrigerator
JPH08135574A (en) Hermetic motor-driven compressor
JP2020033951A (en) Scroll compressor
JP2015010490A (en) Sealed type compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051215

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20060509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees