JP3754133B2 - Magnetic flux detector for magnetic flux density meter - Google Patents

Magnetic flux detector for magnetic flux density meter Download PDF

Info

Publication number
JP3754133B2
JP3754133B2 JP18271196A JP18271196A JP3754133B2 JP 3754133 B2 JP3754133 B2 JP 3754133B2 JP 18271196 A JP18271196 A JP 18271196A JP 18271196 A JP18271196 A JP 18271196A JP 3754133 B2 JP3754133 B2 JP 3754133B2
Authority
JP
Japan
Prior art keywords
magnetic flux
variable resistor
resistor
adjustment
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18271196A
Other languages
Japanese (ja)
Other versions
JPH1010216A (en
Inventor
勝仁 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanetec KK
Original Assignee
Kanetec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanetec KK filed Critical Kanetec KK
Priority to JP18271196A priority Critical patent/JP3754133B2/en
Publication of JPH1010216A publication Critical patent/JPH1010216A/en
Application granted granted Critical
Publication of JP3754133B2 publication Critical patent/JP3754133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁束密度計の磁束検出ヘッドとして用いられる磁束検出器に関する。
【0002】
【従来の技術】
磁束密度計の1つとして、測定器本体と、該測定器本体に切り離し可能に接続される磁束検出ヘッドすなわち磁束検出器とを含むものがある(実公平6−48444号公報)。磁束検出器は、磁束検出用のホール素子が配置されたプローブと、該プローブの一端部に取り付けられた基部と、該基部から伸びて測定器本体に切り離し可能に接続されるコードとを含む。
【0003】
しかし、ホール素子は、その特性にばらつきがあるので、磁束検出器の破損、故障等の理由で磁束検出器またはホール素子を交換する際、測定器本体の側で前記ばらつきに対応した調整が必要である。このため、磁束検出器またはホール素子の交換の際には、測定器本体をメーカーに送り、前記ばらつきに対応した調整をしなければならないから、交換が面倒であるし、交換に時間がかかり、さらにコスト高になる。
【0004】
また、ホール素子は、その特性上、温度変化の影響を受けるので、ホール効果により生じる電圧が周囲温度の変化により変化する、という問題がある。
【0005】
【解決しようとする課題】
本発明は、磁束検出器または磁束検出素子の交換を短時間で容易にかつ廉価に行うことができるようにすることにある。
【0006】
【解決手段、作用、効果】
本発明の磁束密度計用磁束検出器は、ホール素子のような磁束検出素子が配置されたプローブと、該プローブの一端部に取り付けられた基部と、該基部から伸びるコードと、磁束検出素子の出力側に接続された零調整用可変抵抗器およびスパン調整用可変抵抗器とを含み、前記零調整用可変抵抗器および前記スパン調整用可変抵抗器は前記基部内に配置されている
【0007】
磁束検出器は、そのコードにより測定器本体に接続されて、測定器本体とともに磁束密度計として用いられる。磁束密度計の磁束検出器自体または磁束検出素子を交換したとき、磁界が存在しないもとで磁束密度計の零点が零調整用可変抵抗器により調整され、標準磁界のもとで磁束密度計ひいては磁束密度計の検出精度がスパン調整用可変抵抗器により調整される。
【0008】
本発明によれば、零調整用可変抵抗器およびスパン調整用可変抵抗器を磁束検出器自体の基部内に設けたから、磁束検出器または磁束検出素子を交換しても、測定器本体側の調整が不要になり、したがって交換時に測定器本体をメーカーに送る必要がなく、その結果交換を短時間で容易にかつ廉価に行うことができる。
【0009】
本発明に係る磁束密度計用磁束検出器は、さらに、前記磁束検出素子の近傍にあってプローブに配置されかつ磁束検出素子の出力側に接続されたサーミスタのような温度補償用抵抗を含む。このように、温度補償用抵抗と磁束検出素子とをプローブの互いに接近した箇所に配置すれば、周囲温度の変化に起因する検出信号の変化が温度補償用抵抗の変化により補正されるから、磁束密度を高精度で検出することができる。
【0010】
好ましい実施例では、磁束検出素子が配置されたプローブと、該プローブの一端部に取り付けられた基部と、該基部から伸びるコードと、磁束検出素子の出力側に接続された零調整用可変抵抗器およびスパン調整用可変抵抗器と、磁束検出素子の近傍にあってプローブに配置されかつ磁束検出素子の出力側に接続された温度補償用抵抗とを含む。
【0011】
好ましい実施例では、前記基部は零調整用可変抵抗器およびスパン調整用可変抵抗器を調整する器具の一部を差し込む穴を有する。
【0012】
温度補償用抵抗は磁束検出素子の温度係数と逆の温度係数を有する。たとえば、磁束検出素子が負の温度係数を有する場合、温度補償用抵抗は正の温度係数を持つサーミスタとすることができる。
【0013】
さらに、磁束検出素子の出力信号と基準値とを比較する演算増幅器であって磁束検出素子の出力信号の入力側への帰還回路を有する演算増幅器を含み、スパン調整用可変抵抗器と温度補償用抵抗とは帰還回路に互いに直列に配置されており、零調整用可変抵抗器は基準信号の入力側に接続されている。
【0014】
【発明の実施の形態】
図1を参照するに、磁束検出器10は、磁束が通過可能の材料で作られた細長いプローブ12と、該プローブの一端部に取り付けられた把持部すなわち基部14と、該基部から伸びるコード16とを含む。
【0015】
プローブ12は、図示の例では、板状であるが、円柱状または筒状であってもよい。プローブ12には、磁束検出素子としてのホール素子18と、該ホール素子の温度特性を補償する温度補償用抵抗としてのサーミスタ20とが配置されている。
【0016】
ホール素子18とサーミスタ20とは、図示の例のようにプローブ12の他端部に互いに近接して配置することが好ましいが、他の部位に配置してもよい。また、測定しないときにプローブ12を筒状のカバーに着脱可能に装着しておくことにより、プローブ12を保護することが好ましい。
【0017】
サーミスタ20は、ホール素子18の温度特性すなわち温度係数と逆の温度係数を有する。たとえば、ホール素子20が負の温度係数を有する場合、サーミスタ20は正の温度係数を有する。磁束検出素子が正の温度係数を有する場合、温度補償用抵抗は負の温度係数を有する。ホール素子18の温度係数に合せてサーミスタ20の温度係数を選択することが好ましい。
【0018】
基部14は、円形または楕円形の断面形状を有する筒状のケースにより形成されており、図2に示す検出回路30を内部に備えている。基部14の両端は図示しないキャップにより閉鎖されている。一方のキャップはプローブ12の一端部を支持しており、他方のキャップはコード16の一端部を受け入れている。ケースすなわち基部14は、後述する零調整用可変抵抗器48およびスパン調整用可変抵抗器68を操作するドライバーのような器具の先端部を差し込む穴22,24を有する。
【0019】
コード16は、複数の心線を有するケーブルである。コード16の他端は、プラグ26により、図示しない測定器本体に接続される。
【0020】
図2を参照するに、検出回路30は、測定器本体から供給される検出用定電流Iを端子部32,34に受け、検出信号を端子部36から測定器本体に出力する。検出回路30は、また、アナログの直流電圧+Vを端子部38に受け、アナログの直流電圧−Vを端子部40に受ける。検出回路30は、さらに、アースに接続される1以上の端子部42を有する。
【0021】
直流電圧+Vは端子部38,42に接続されたコンデンサ44に供給され、直流電圧+Vは端子部40,42に接続されたコンデンサ46に供給される。このため、コンデンサ44,46は、中点がアナログのアースに接続された直流補助電源として機能するように直列に接続されてる。直流補助電源の電圧+V,−Vは、零調整用可変抵抗器48と2つの演算増幅器50,52とに印加される。
【0022】
検出用定電流は、ホール素子18の端子部1,3に与えられる。ホール素子18には、コンデンサ54が並列に接続されている。ホール素子18の端子部2は保護用抵抗器56を介して加算部58に接続されており、ホール素子18の端子部4は保護用抵抗器60を介して演算増幅器50の負側入力端子に接続されている。
【0023】
演算増幅器50は、抵抗器62とコンデンサ64とを並列に接続した帰還回路を備えた1対1の反転増幅器として作用する。演算増幅器50の正側入力端子は、アースに接続されている。演算増幅器50の出力信号は、抵抗器66を介して加算部58に供給され、加算部58において抵抗器56の出力側に得られる信号とアナログ的に加算される。
【0024】
加算部58において加算された信号は、演算増幅器52の負側入力端子に供給される。演算増幅器52も、スパン調整用可変抵抗器68とサーミスタ20とを直列に接続した抵抗回路と、該抵抗回路に並列に接続されたコンデンサ70とにより形成された帰還回路を備えた増幅器として作用する。
【0025】
演算増幅器52の正側入力端子は、零調整用可変抵抗器48に接続されているとともに、抵抗器72を介してアースに接続されている。演算増幅器52の出力信号は、検出信号として抵抗器74を介して端子部36に供給される。
【0026】
測定器本体は、電源回路と、電源投入用のスイッチ、プラグ26を受け入れるジャック、磁束検出器10からの出力信号を処理する処理回路、該処理回路おける処理を入力する複数のスイッチ、および、測定した磁束密度を目視可能に表示する表示部等をケースに配置している。コード16は、端子部32〜42を計測器本体に接続する。
【0027】
磁束を検出するとき、磁束検出器10が測定器本体に接続されて定電流Iがホール素子18の端子部1,3に供給された状態で、磁界がホール素子18に作用するように、少なくともプローブ12の一端部が測定すべき磁界中におかれる。これにより、ホール効果による電圧Eがホール素子18の端子部2,4間に発生する。この電圧Eは、ホール素子18の平面と直角方向の磁束密度をBとし、ホール定数をRとすると、以下の式で表すことができように、磁界の強さ(磁束密度)に比例する。
【0028】
E=R・I・B
【0029】
ホール素子18に作用する磁界の方向および強さにより、端子部2に得られる電圧の極性が正の場合と負の場合とがあり、同様に端子部4に得られる電圧の極性が正の場合と負の場合とがあり、さらに両端子部2,4に得られる電圧の極性がともに正の場合と負の場合とがある。
【0030】
端子部4に得られた電圧は演算増幅器50で反転された後、加算部58において端子部2に得られた電圧と加算される。加算された電圧は、演算増幅器52で増幅された後、端子部36およびコード16を介して測定器本体に供給されて、測定器本体において磁束密度を表す数値に変換される。
【0031】
ホール効果により得られる電圧Eは、ホール素子18に作用する磁界の強さにより異なるのみならず、周囲温度によっても異なる。たとえば、ホール素子18が負の温度係数を有する場合、周囲温度が高くなるほど、ホール効果により生じる電圧Eは低くなる。
【0032】
しかし、磁束検出器10では、ホール素子18の温度係数と逆の温度係数を有しかつホール素子18の近傍に設けられたサーミスタ20が演算増幅器52の帰還回路に挿入されているから、周囲温度が変化すると、サーミスタ20の抵抗値が変化し、演算増幅器52の増幅度が変化する。たとえば、サーミスタ20が正の温度係数を有する場合、周囲温度が高くなるほど、サーミスタ20の抵抗値は増加し、演算増幅器52の増幅度は大きくなる。
【0033】
このため、ホール効果により得られる電圧Eと演算増幅器52の出力信号とは、周囲温度の変化により互いに逆に変化する。これにより、周囲温度の変化に起因する検出電圧Eの変化が同じ周囲温度の変化に起因する演算増幅器52の増幅度の変化により相殺され、周囲温度の変化の影響を受けることなく、磁束密度を高精度で検出することができる。
【0034】
ホール素子18または磁束検出器10を交換したとき、先ず、少なくともホール素子18の配置部位を磁界が存在しない空間においた状態で、零調整用可変抵抗器48を調整することにより、磁束検出器10の零レベルを調整する零点調整作業が行われる。この零点調整作業は、ホール素子18が磁界の影響を受けない状態で、端子部36に得られる電圧が零レベルになるように、可変抵抗器48の可動子を移動させ、それにより演算増幅器52の正側入力端子の電圧を調整することにより、行われる。
【0035】
次いで、少なくともホール素子18の配置部位を一定の標準磁界の空間においた状態で、スパン調整用可変抵抗器68を調整することにより、磁束検出器10ひいては磁束密度計の検出精度を調整するスパン調整作業が行われる。このスパン調整作業は、ホール素子18が標準磁界の影響を受けた状態で、端子部36に得られる電圧が標準磁界に対応した所定のレベルになるように、可変抵抗器68の可動子を移動させ、それにより演算増幅器52の負側入力端子への電力帰還量を調整することにより、行われる。
【0036】
上記のような零点調整およびスパン調整は、調整すべき磁束検出器10をメーカー側に予め備えられている測定器本体に接続した状態で行われる。このため、ホール素子18または磁束検出器10を交換したとき、その磁束検出器10に関して上記のような零点調整とスパン調整とをそれぞれその磁束検出器10の側の可変抵抗器48および68で行うことにより、ユーザー側の測定器本体の調整が不要になる。
【0037】
本発明は、上記実施例に限定されない。たとえば、ホール素子以外の磁束検出素子を用いてもよいし、サーミスタ以外の温度補償用抵抗を用いてもよい。また、演算増幅器の代わりに他の回路を用いてもよい。
【図面の簡単な説明】
【図1】本発明の磁束検出器の一実施例を示す図である。
【図2】本発明の磁束検出器の電気回路の一実施例を示す図である。
【符号の説明】
10 磁束検出器
12 プローブ
14 基部
16 コード
18 ホール素子(磁束検出素子)
20 サーミスタ(温度補償用抵抗)
22,24 調整用器具を差し込むの穴
26 プラグ
48 零調整用可変抵抗器
50,52 演算増幅器
68 スパン調整用可変抵抗器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic flux detector used as a magnetic flux detection head of a magnetic flux density meter.
[0002]
[Prior art]
One magnetic flux density meter includes a measuring instrument main body and a magnetic flux detection head, that is, a magnetic flux detector, detachably connected to the measuring instrument main body (Japanese Utility Model Publication No. 6-48444). The magnetic flux detector includes a probe on which a Hall element for detecting magnetic flux is arranged, a base attached to one end of the probe, and a cord extending from the base and detachably connected to the measuring device main body.
[0003]
However, the Hall elements have variations in their characteristics, so when replacing the magnetic flux detector or the Hall element for reasons such as breakage or failure of the magnetic flux detector, it is necessary to make adjustments corresponding to the variation on the measuring instrument body side. It is. For this reason, when exchanging the magnetic flux detector or the Hall element, the measuring instrument main body must be sent to the manufacturer, and adjustments corresponding to the above-mentioned variations must be made. Further, the cost is increased.
[0004]
In addition, since the Hall element is affected by temperature changes due to its characteristics, there is a problem that the voltage generated by the Hall effect changes due to changes in ambient temperature.
[0005]
[Problems to be solved]
An object of the present invention is to enable easy and inexpensive replacement of a magnetic flux detector or a magnetic flux detection element in a short time.
[0006]
[Solution, action, effect]
A magnetic flux detector for a magnetic flux density meter according to the present invention includes a probe on which a magnetic flux detection element such as a Hall element is disposed, a base attached to one end of the probe, a cord extending from the base, and a magnetic flux detection element. look including an output connected to the zero adjusting variable resistor side and span adjustment variable resistor, the zero-adjusting variable resistor and the span adjustment variable resistor is disposed in the base.
[0007]
The magnetic flux detector is connected to the measuring device main body by the cord, and is used as a magnetic flux density meter together with the measuring device main body. When the magnetic flux detector of the magnetic flux density meter itself or the magnetic flux sensing element is replaced, the zero point of the magnetic flux density meter is adjusted by the variable resistor for zero adjustment in the absence of a magnetic field, The detection accuracy of the magnetic flux density meter is adjusted by a variable resistor for span adjustment.
[0008]
According to the present invention, since the variable resistor for zero adjustment and the variable resistor for span adjustment are provided in the base of the magnetic flux detector itself, even if the magnetic flux detector or the magnetic flux detection element is replaced, adjustment on the measuring instrument main body side is possible. Therefore, it is not necessary to send the measuring instrument main body to the manufacturer at the time of replacement, and as a result, replacement can be performed easily and inexpensively in a short time.
[0009]
The magnetic flux detector for a magnetic flux density meter according to the present invention further includes a temperature compensating resistor such as a thermistor disposed in the probe near the magnetic flux detecting element and connected to the output side of the magnetic flux detecting element. As described above, if the temperature compensation resistor and the magnetic flux detection element are arranged at locations close to each other on the probe, the change in the detection signal due to the change in the ambient temperature is corrected by the change in the temperature compensation resistor. The density can be detected with high accuracy.
[0010]
In a preferred embodiment, a probe in which a magnetic flux detecting element is arranged, a base attached to one end of the probe, a cord extending from the base, and a variable resistor for zero adjustment connected to the output side of the magnetic flux detecting element And a variable resistor for span adjustment, and a temperature compensating resistor disposed in the probe near the magnetic flux detecting element and connected to the output side of the magnetic flux detecting element.
[0011]
In a preferred embodiment , the base has a hole into which a portion of the instrument for adjusting the zero adjustment variable resistor and the span adjustment variable resistor is inserted.
[0012]
The temperature compensating resistor has a temperature coefficient opposite to that of the magnetic flux detecting element. For example, when the magnetic flux detection element has a negative temperature coefficient, the temperature compensation resistor can be a thermistor having a positive temperature coefficient.
[0013]
Further, the operational amplifier for comparing the output signal of the magnetic flux detection element with a reference value, and including an operational amplifier having a feedback circuit to the input side of the output signal of the magnetic flux detection element, the variable resistor for span adjustment and the temperature compensation The resistors are arranged in series with each other in the feedback circuit, and the zero adjustment variable resistor is connected to the input side of the reference signal.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIG. 1, the magnetic flux detector 10 includes an elongate probe 12 made of a material through which magnetic flux can pass, a gripping portion or base 14 attached to one end of the probe, and a cord 16 extending from the base. Including.
[0015]
In the illustrated example, the probe 12 has a plate shape, but may have a columnar shape or a cylindrical shape. The probe 12 is provided with a Hall element 18 as a magnetic flux detection element and a thermistor 20 as a temperature compensation resistor that compensates for temperature characteristics of the Hall element.
[0016]
Although the Hall element 18 and the thermistor 20 are preferably arranged close to each other at the other end of the probe 12 as in the illustrated example, they may be arranged at other sites. Further, it is preferable to protect the probe 12 by detachably attaching the probe 12 to the cylindrical cover when not measuring.
[0017]
The thermistor 20 has a temperature coefficient opposite to the temperature characteristic of the Hall element 18, that is, the temperature coefficient. For example, when the Hall element 20 has a negative temperature coefficient, the thermistor 20 has a positive temperature coefficient. When the magnetic flux detection element has a positive temperature coefficient, the temperature compensation resistor has a negative temperature coefficient. It is preferable to select the temperature coefficient of the thermistor 20 in accordance with the temperature coefficient of the Hall element 18.
[0018]
The base 14 is formed of a cylindrical case having a circular or elliptical cross-sectional shape, and includes a detection circuit 30 shown in FIG. Both ends of the base portion 14 are closed by caps (not shown). One cap supports one end of the probe 12 and the other cap receives one end of the cord 16. The case, that is, the base portion 14 has holes 22 and 24 into which tips of instruments such as a driver for operating a zero adjusting variable resistor 48 and a span adjusting variable resistor 68 described later are inserted.
[0019]
The cord 16 is a cable having a plurality of core wires. The other end of the cord 16 is connected to a measuring instrument body (not shown) by a plug 26.
[0020]
Referring to FIG. 2, the detection circuit 30 receives a constant current for detection I supplied from the measuring instrument main body at the terminal portions 32 and 34, and outputs a detection signal from the terminal portion 36 to the measuring instrument main body. The detection circuit 30 also receives an analog DC voltage + V at the terminal unit 38 and an analog DC voltage −V at the terminal unit 40. The detection circuit 30 further includes one or more terminal portions 42 connected to the ground.
[0021]
The DC voltage + V is supplied to the capacitor 44 connected to the terminal portions 38 and 42, and the DC voltage + V is supplied to the capacitor 46 connected to the terminal portions 40 and 42. For this reason, the capacitors 44 and 46 are connected in series so as to function as a DC auxiliary power source whose midpoint is connected to an analog ground. The DC auxiliary power supply voltages + V and −V are applied to the zero adjustment variable resistor 48 and the two operational amplifiers 50 and 52.
[0022]
The constant current for detection is given to the terminal portions 1 and 3 of the Hall element 18. A capacitor 54 is connected to the Hall element 18 in parallel. The terminal portion 2 of the Hall element 18 is connected to the adding portion 58 via the protective resistor 56, and the terminal portion 4 of the Hall element 18 is connected to the negative input terminal of the operational amplifier 50 via the protective resistor 60. It is connected.
[0023]
The operational amplifier 50 functions as a one-to-one inverting amplifier including a feedback circuit in which a resistor 62 and a capacitor 64 are connected in parallel. The positive input terminal of the operational amplifier 50 is connected to the ground. The output signal of the operational amplifier 50 is supplied to the adder 58 via the resistor 66, and is added in analog form with the signal obtained on the output side of the resistor 56 in the adder 58.
[0024]
The signal added in the adder 58 is supplied to the negative input terminal of the operational amplifier 52. The operational amplifier 52 also functions as an amplifier having a feedback circuit formed by a resistance circuit in which the span adjusting variable resistor 68 and the thermistor 20 are connected in series, and a capacitor 70 connected in parallel to the resistance circuit. .
[0025]
The positive input terminal of the operational amplifier 52 is connected to the zero adjustment variable resistor 48 and to the ground via the resistor 72. The output signal of the operational amplifier 52 is supplied to the terminal unit 36 via the resistor 74 as a detection signal.
[0026]
The measuring instrument main body includes a power supply circuit, a switch for turning on the power, a jack for receiving the plug 26, a processing circuit for processing an output signal from the magnetic flux detector 10, a plurality of switches for inputting processing in the processing circuit, and measurement. A display unit or the like that displays the magnetic flux density in a visible manner is disposed in the case. The cord 16 connects the terminal portions 32 to 42 to the measuring instrument main body.
[0027]
When detecting the magnetic flux, at least so that the magnetic field acts on the Hall element 18 in a state where the magnetic flux detector 10 is connected to the measuring device body and the constant current I is supplied to the terminal portions 1 and 3 of the Hall element 18. One end of the probe 12 is placed in the magnetic field to be measured. As a result, a voltage E due to the Hall effect is generated between the terminal portions 2 and 4 of the Hall element 18. This voltage E is proportional to the strength of the magnetic field (magnetic flux density), as can be expressed by the following equation, where B is the magnetic flux density perpendicular to the plane of the Hall element 18 and R is the Hall constant.
[0028]
E = R ・ I ・ B
[0029]
Depending on the direction and strength of the magnetic field acting on the Hall element 18, the polarity of the voltage obtained at the terminal portion 2 may be positive or negative. Similarly, the polarity of the voltage obtained at the terminal portion 4 is positive. In some cases, the polarity of the voltage obtained at both terminal portions 2 and 4 is both positive and negative.
[0030]
The voltage obtained at the terminal unit 4 is inverted by the operational amplifier 50 and then added to the voltage obtained at the terminal unit 2 by the adding unit 58. The added voltage is amplified by the operational amplifier 52 and then supplied to the measuring device main body via the terminal portion 36 and the cord 16 and converted into a numerical value representing the magnetic flux density in the measuring device main body.
[0031]
The voltage E obtained by the Hall effect varies not only depending on the strength of the magnetic field acting on the Hall element 18 but also depending on the ambient temperature. For example, when the Hall element 18 has a negative temperature coefficient, the voltage E generated by the Hall effect decreases as the ambient temperature increases.
[0032]
However, in the magnetic flux detector 10, the thermistor 20 having a temperature coefficient opposite to that of the Hall element 18 and provided in the vicinity of the Hall element 18 is inserted in the feedback circuit of the operational amplifier 52. Changes, the resistance value of the thermistor 20 changes, and the amplification factor of the operational amplifier 52 changes. For example, when the thermistor 20 has a positive temperature coefficient, as the ambient temperature increases, the resistance value of the thermistor 20 increases and the amplification degree of the operational amplifier 52 increases.
[0033]
For this reason, the voltage E obtained by the Hall effect and the output signal of the operational amplifier 52 change inversely with each other as the ambient temperature changes. Thereby, the change in the detection voltage E caused by the change in the ambient temperature is canceled out by the change in the amplification factor of the operational amplifier 52 caused by the same change in the ambient temperature, and the magnetic flux density is reduced without being affected by the change in the ambient temperature. It can be detected with high accuracy.
[0034]
When the Hall element 18 or the magnetic flux detector 10 is replaced, the magnetic flux detector 10 is first adjusted by adjusting the zero-adjustment variable resistor 48 in a state where at least the arrangement portion of the Hall element 18 is placed in a space where no magnetic field exists. Zero point adjustment work is performed to adjust the zero level. In this zero point adjustment operation, the movable element of the variable resistor 48 is moved so that the voltage obtained at the terminal portion 36 is at a zero level in a state where the Hall element 18 is not affected by the magnetic field, thereby the operational amplifier 52. This is done by adjusting the voltage at the positive input terminal.
[0035]
Next, the span adjustment for adjusting the detection accuracy of the magnetic flux detector 10 and thus the magnetic flux density meter is performed by adjusting the variable resistor 68 for span adjustment in a state where at least the hall element 18 is disposed in a constant standard magnetic field space. Work is done. In this span adjustment operation, the movable element of the variable resistor 68 is moved so that the voltage obtained at the terminal portion 36 becomes a predetermined level corresponding to the standard magnetic field in a state where the Hall element 18 is affected by the standard magnetic field. And thereby adjusting the amount of power feedback to the negative input terminal of the operational amplifier 52.
[0036]
The zero point adjustment and the span adjustment as described above are performed in a state where the magnetic flux detector 10 to be adjusted is connected to a measuring instrument body provided in advance on the manufacturer side. Therefore, when the Hall element 18 or the magnetic flux detector 10 is replaced, the zero point adjustment and the span adjustment as described above are performed by the variable resistors 48 and 68 on the magnetic flux detector 10 side. This eliminates the need for adjustment of the measuring instrument body on the user side.
[0037]
The present invention is not limited to the above embodiments. For example, a magnetic flux detection element other than the Hall element may be used, or a temperature compensation resistor other than the thermistor may be used. Other circuits may be used instead of the operational amplifier.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a magnetic flux detector according to the present invention.
FIG. 2 is a diagram showing an embodiment of an electric circuit of a magnetic flux detector according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Magnetic flux detector 12 Probe 14 Base 16 Code 18 Hall element (magnetic flux detection element)
20 Thermistor (temperature compensation resistor)
22, 24 Hole for inserting adjustment tool 26 Plug 48 Variable resistor for zero adjustment 50, 52 Operational amplifier 68 Variable resistor for span adjustment

Claims (5)

磁束検出素子が配置されたプローブと、該プローブの一端部に取り付けられた基部と、該基部から伸びるコードと、前記磁束検出素子の出力側に接続された零調整用可変抵抗器およびスパン調整用可変抵抗器とを含み、前記零調整用可変抵抗器および前記スパン調整用可変抵抗器は前記基部内に配置されている、磁束密度計用磁束検出器。  A probe in which a magnetic flux detection element is arranged, a base attached to one end of the probe, a cord extending from the base, a variable resistor for zero adjustment and a span adjustment connected to the output side of the magnetic flux detection element A magnetic flux detector for a magnetic flux density meter, comprising: a variable resistor, wherein the zero-adjusting variable resistor and the span-adjusting variable resistor are arranged in the base. さらに、前記磁束検出素子の近傍にあって前記プローブに配置されかつ前記磁束検出素子の出力側に接続された温度補償用抵抗を含む、請求項1に記載の磁束密度計用磁束検出器。  The magnetic flux detector for a magnetic flux density meter according to claim 1, further comprising a temperature compensating resistor disposed in the vicinity of the magnetic flux detecting element and connected to the output side of the magnetic flux detecting element. 前記基部には、前記零調整用可変抵抗器および前記スパン調整用可変抵抗器の調整のための操作用器具の一部の差し込みを許す穴が形成されている、請求項1または2に記載の磁束密度計用磁束検出器。  3. The hole according to claim 1, wherein a hole that allows insertion of a part of an operation instrument for adjusting the variable resistor for zero adjustment and the variable resistor for span adjustment is formed in the base portion. Magnetic flux detector for magnetic flux density meter. 前記温度補償用抵抗は正の温度係数を持つサーミスタである、請求項2に記載の磁束検出器。  The magnetic flux detector according to claim 2, wherein the temperature compensating resistor is a thermistor having a positive temperature coefficient. さらに、前記磁束検出素子の出力信号と基準値とを比較する演算増幅器であって前記磁束検出素子の出力信号の入力側への帰還回路を有する演算増幅器を含み、前記スパン調整用可変抵抗器と前記温度補償用抵抗とは前記帰還回路に互いに直列に配置されており、前記零調整用可変抵抗器は前記基準信号の入力側に接続されている、請求項2,3または4のいずれか一項に記載の磁束検出器。  And an operational amplifier for comparing the output signal of the magnetic flux detection element with a reference value, the operational amplifier having a feedback circuit to the input side of the output signal of the magnetic flux detection element, and the variable resistor for span adjustment; 5. The temperature compensation resistor is arranged in series with the feedback circuit, and the zero adjustment variable resistor is connected to the input side of the reference signal. The magnetic flux detector according to item.
JP18271196A 1996-06-25 1996-06-25 Magnetic flux detector for magnetic flux density meter Expired - Lifetime JP3754133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18271196A JP3754133B2 (en) 1996-06-25 1996-06-25 Magnetic flux detector for magnetic flux density meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18271196A JP3754133B2 (en) 1996-06-25 1996-06-25 Magnetic flux detector for magnetic flux density meter

Publications (2)

Publication Number Publication Date
JPH1010216A JPH1010216A (en) 1998-01-16
JP3754133B2 true JP3754133B2 (en) 2006-03-08

Family

ID=16123107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18271196A Expired - Lifetime JP3754133B2 (en) 1996-06-25 1996-06-25 Magnetic flux detector for magnetic flux density meter

Country Status (1)

Country Link
JP (1) JP3754133B2 (en)

Also Published As

Publication number Publication date
JPH1010216A (en) 1998-01-16

Similar Documents

Publication Publication Date Title
US4982612A (en) Torque wrench with measurements independent of hand-hold position
JPH10504099A (en) Strain gauge measuring device, its use and modulation amplifier for the measuring device
CN101738588B (en) Sensor circuit
JP4405242B2 (en) Sensor abnormality detection device and sensor abnormality detection method
WO2002065143A1 (en) Current sensor and overload current protective device comprising the same
JPH11257909A (en) Electronic circuit for measuring dimensions and method and apparatus for measuring dimensions
EP0299806A2 (en) Weighing device employing strain gauges
US20040237660A1 (en) Pressure gage and switch
US3580081A (en) Vacuum gauge
JP3754133B2 (en) Magnetic flux detector for magnetic flux density meter
JPH07244083A (en) Apparatus for measuring quantity of electricity
JP3204091B2 (en) Charge / discharge current measuring device
US4771233A (en) Printed curcuit board lead ammeter
JPH0766480B2 (en) Measuring head
KR100904225B1 (en) Apparatus for measuring water level
JPH10332312A (en) Non-contact sensor and electrostatic capacity sensor
JP2001183106A (en) Gap detecting device with temperature compensation
JP3019783B2 (en) Printed circuit board temperature detector
JPH0236124Y2 (en)
SU771582A1 (en) Magnetic field intensity measuring device
JPS6347999Y2 (en)
JPH0634309A (en) Graphite structure distortion factor measuring sensor
RU2071065C1 (en) Converter for mechanical quantities into electric signal
KR200277292Y1 (en) Current Sensor
JPH0851328A (en) Small signal amplifier circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term