JP3752898B2 - Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet - Google Patents

Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet Download PDF

Info

Publication number
JP3752898B2
JP3752898B2 JP20188199A JP20188199A JP3752898B2 JP 3752898 B2 JP3752898 B2 JP 3752898B2 JP 20188199 A JP20188199 A JP 20188199A JP 20188199 A JP20188199 A JP 20188199A JP 3752898 B2 JP3752898 B2 JP 3752898B2
Authority
JP
Japan
Prior art keywords
steel sheet
steel
hot
plating
pickling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20188199A
Other languages
Japanese (ja)
Other versions
JP2001026853A (en
Inventor
善継 鈴木
洋一 飛山
千昭 加藤
一典 大澤
章翁 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP20188199A priority Critical patent/JP3752898B2/en
Publication of JP2001026853A publication Critical patent/JP2001026853A/en
Application granted granted Critical
Publication of JP3752898B2 publication Critical patent/JP3752898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車車体用などに用いられる高強度鋼板を素材とした溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法に関する。
【0002】
【従来の技術】
近年、自動車の安全性、軽量化および低燃費化ひいては地球環境改善の観点から、自動車用に耐食性に優れた高強度鋼板および高強度溶融亜鉛めっき鋼板の適用が増加しつつある。
その中で、高強度溶融亜鉛めっき鋼板を製造するためには、めっき性がよく、かつ、溶融亜鉛めっき浴を通過し、またさらに合金化処理が施された後に所望の強度と加工性が得られる原板を予め製造することが必要である。
【0003】
また、めっき鋼板をプレス加工する際のめっき剥離を防止し金型の手入れをしなくて済むように、めっき鋼板のめっき密着性が優れることが必要である。
一般に、鋼板の強度を増加させるためにはMnなどの易酸化性元素を添加することが一般に行われているが、めっき前の還元焼鈍時にこれらの元素が酸化物となり、鋼板表面に濃化し、溶融亜鉛との濡れ性を低下させ、結果として鋼板表面にめっきが殆ど付着しない、いわゆる不めっき欠陥が鋼板表面に発生する。
【0004】
これは、再結晶焼鈍雰囲気はFeにとっては還元性雰囲気でありFe酸化物は生成しないが、Mnなどの易酸化性元素にとっては酸化性雰囲気となり、これらの元素が鋼板表面に濃化し酸化膜を形成し、溶融亜鉛と鋼板との接触面積を低下させるためである。
高強度溶融亜鉛めっき鋼板の製造方法として、特開昭55−50455 号公報において、めっき時の焼鈍後の冷却速度を規定する方法が開示されているが、この方法はめっき性改善の方法には全く言及しておらず、特にMn含有量が1%を超える場合には不めっきを防止することは困難であり、まためっき密着性を改善する方法について全く言及していない。
【0005】
このため、自動車用高強度材料として魅力のある加工性に優れた高強度鋼板も、これを溶融亜鉛めっきし、加工性に優れていながらかつめっき密着性にも優れる表面処理鋼板として使用するための実際的な手段を欠いているのが実状である。
また、特公平7−9055号公報に、P添加鋼の合金化速度の向上方法として焼鈍後に酸洗処理した後に亜鉛めっきを施す方法が開示されているが、この方法は合金化速度の向上を目的とするものであり、不めっきを防止するための方法ではない。
【0006】
また、上記した方法は、めっき直前の焼鈍時の雰囲気ガスの露点、水素濃度、温度について言及しておらず、鋼種と焼鈍雰囲気の組み合せ条件によって、不めっきが多発するものと考えられる。
また、特開平7−268584号公報において、鋼中P含有量によって決定される温度で二次焼鈍する方法が開示されているが、これは、鋼板脆化防止のための温度域が鋼中P含有量によって左右されるという技術思想に基づくものであって、めっき性を良好にするための温度についての開示ではない。
【0007】
後記の本発明に述べるとおり、一度焼鈍した鋼板を再度還元焼鈍する方法において、めっき性を確保するために重要な事項は、還元焼鈍時の雰囲気である。
なぜならば、一度焼鈍した鋼板を酸洗する際に鋼板表面に生成するP系酸洗残渣が充分に還元される雰囲気でないと、溶融亜鉛との濡れ性に劣る酸化皮膜が焼鈍直後の鋼板のめっき性を阻害するからである。
【0008】
したがって、後記の本発明と特開平7−268584号公報に示された技術とでは、鋼中P含有量に応じて二次焼鈍温度を規定する根拠は全く異なり、結果としてそれぞれの目的に応じた最適な二次焼鈍温度範囲は同じものにはならない。
また、上記しためっき性以外に、合金化溶融亜鉛めっき鋼板には優れたプレス成形性が要求される。
【0009】
すなわち、合金化溶融亜鉛めっき鋼板は、元来、プレス加工時の摺動性が劣り、摺動性の改善のためにFe系上層めっきを施すことが多い。
これに対して、経済性の面から、上層めっきが不要なプレス成形性に優れた合金化溶融亜鉛めっき鋼板が求められ、合金化溶融亜鉛めっき鋼板の摺動性の改善が必要であった。
【0010】
【発明が解決しようとする課題】
本発明は、前記した従来技術の問題点を解決し、不めっき欠陥の発生を防止することが可能な加工性およびめっき密着性に優れた高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。
【0011】
また、本発明は、さらに、プレス成形性に優れた合金化溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
第1の発明は、P:0.10wt%以下含有する鋼のスラブを熱間圧延し、得られた熱間圧延鋼板を、酸洗後、そのまま、もしくは冷間圧延を施した後、加熱温度:T1が 750℃以上、950 ℃以下で加熱し、冷却した後、鋼板表面の鋼中成分の濃化層を酸洗により除去し、得られた鋼板を、還元性雰囲気下、加熱温度:T2が 650℃以上、900 ℃以下でかつ下記式(1) 、(2) の両者を満足する条件下で加熱還元した後、溶融亜鉛めっきを施すことを特徴とする加工性およびめっき密着性に優れた高強度溶融亜鉛めっき鋼板の製造方法である。
【0013】
T2≦T1+K…………(1)
T2≧−T1+L………(2)
但し、上記式(1) 、(2) 中、
K=50log(H2O/H2) +220 ………(3)
L=1000P+1440…………………(4)
を示し、
上記式(1) 〜(4) 中、
T1:前記した冷却前の加熱温度(℃)
T2:前記した鋼中成分の濃化層の酸洗除去後の加熱還元時の加熱温度(℃)
H2O :前記した鋼中成分の濃化層の酸洗除去後の加熱還元時の雰囲気ガス中H2O 濃度(vol %)
H2 :前記した鋼中成分の濃化層の酸洗除去後の加熱還元時の雰囲気ガス中H2濃度(vol %)
P:鋼中P含有量(wt%)
を示す。
【0014】
前記した第1の発明においては、前記した鋼中成分の濃化層の酸洗除去後の加熱還元時の雰囲気ガスの露点が−50℃〜0℃、該雰囲気ガス中水素濃度が1〜100vol%であることが好ましい(第1の発明の第1の好適態様)。
また、前記した第1の発明、第1の発明の第1の好適態様においては、前記した鋼中成分の濃化層の酸洗法が、pH≦1、液温:40〜90℃の酸洗液中で1〜20秒間酸洗する酸洗法であることが好ましい(第1の発明の第2の好適態様、第3の好適態様)。
【0015】
また、前記した第1の発明、第1の発明の第1の好適態様〜第3の好適態様においては、前記した高強度溶融亜鉛めっき鋼板のめっき付着量が、鋼板片面当たり20〜120g/m2 であることが好ましい(第1の発明の第4の好適態様〜第7の好適態様)。
なお、前記した第1の発明の第1の好適態様、第3の好適態様においては、前記した雰囲気ガス中水素濃度が1vol %以上、100vol%未満の場合、残余のガスは不活性ガスであることが好ましく、該不活性ガスとしては窒素ガスが好ましい。
【0016】
第2の発明は、前記した第1の発明、第1の発明の第1の好適態様〜第7の好適態様の高強度溶融亜鉛めっき鋼板の製造方法で得られた溶融亜鉛めっき鋼板に、さらに、加熱合金化処理を施すことを特徴とする加工性およびめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法である。
前記した第2の発明においては、前記した加熱合金化処理時の溶融亜鉛めっき鋼板の最高到達板温が465 〜510 ℃であることが好ましく、さらには、該最高到達板温が470 〜505 ℃であることがより好ましい(第2の発明の第1の好適態様)。
【0017】
また、前記した第2の発明、第2の発明の第1の好適態様においては、合金化溶融亜鉛めっき層中のFe含有量が7wt%以上、13wt%以下であることが好ましい(第2の発明の第2の好適態様、第3の好適態様)。
また、前記した第2の発明、第2の発明の第1の好適態様〜第3の好適態様においては、合金化溶融亜鉛めっき層の表面に、表面領域:100 μm ×100 μm 中に4〜100 個の凹部を有することが好ましい(第2の発明の第4の好適態様〜第7の好適態様)。
【0018】
また、前記した第2の発明、第2の発明の第1の好適態様〜第7の好適態様においては、前記した高強度合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっきのめっき付着量が、鋼板片面当たり20〜120g/m2 であることが好ましい(第2の発明の第8の好適態様〜第15の好適態様)。
第3の発明は、合金化溶融亜鉛めっき層中の亜鉛−鉄合金相のX線回折における、Γ相の回折強度またはζ相の回折強度と、δ相の回析強度との比が、それぞれ、下記式(5) 、(6) を満足することを特徴とするめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板である。ただし、この第3の発明は、本発明の範囲外とする。
【0019】
Γ(2.59Å)/δ(2.13Å)≦0.008 ×〔{鋼中P含有量(wt%)}-0.8〕……………(5)
ζ(1.26Å)/δ(2.13Å)≦0.03………(6)
上記式(5) 、(6) 中、
Γ(2.59Å):結晶格子面間隔d=2.59ÅのΓ相の回折強度
ζ(1.26Å):結晶格子面間隔d=1.26Åのζ相の回折強度
δ(2.13Å):結晶格子面間隔d=2.13Åのδ相の回析強度
を示す。
【0020】
前記した第3の発明においては、合金化溶融亜鉛めっき層中のFe含有量が7wt%以上、13wt%以下であることが好ましい(第3の発明の第1の好適態様)。
また、前記した第3の発明、第3の発明の第1の好適態様においては、合金化溶融亜鉛めっき層中のP含有量が、0.0011wt%以上、0.03wt%以下であることが好ましい(第3の発明の第2の好適態様、第3の好適態様)。
【0021】
また、前記した第3の発明、第3の発明の第1の好適態様〜第3の好適態様においては、合金化溶融亜鉛めっき層の表面に、表面領域:100 μm ×100 μm 中に4〜100 個の凹部を有することが好ましい(第3の発明の第4の好適態様〜第7の好適態様)。
また、前記した第3の発明、第3の発明の第1の好適態様〜第7の好適態様においては、前記した高強度合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっきのめっき付着量が、鋼板片面当たり20〜120g/m2 であることが好ましい(第3の発明の第8の好適態様〜第15の好適態様)。
【0022】
さらに、前記した第1の発明、第2の発明、第3の発明、および第1の発明の第1の好適態様〜第7の好適態様、第2の発明の第1の好適態様〜第15の好適態様、第3の発明の第1の好適態様〜第15の好適態様においては、鋼中C含有量が0.01〜0.2wt %であることがより好ましく、鋼中にMoを1.00wt%以下含有することがさらに好ましい。
【0023】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
前記した第1の発明は、Pを0.10wt%以下含有する熱間圧延鋼板を酸洗し、必要に応じて冷間圧延し、加熱炉(焼鈍炉)で加熱し、冷却した後、鋼板表面の鋼中成分の濃化層を酸洗により除去し、得られた鋼板を、好ましくは溶融亜鉛めっきラインにおいて所定の温度、雰囲気で再度加熱した後、溶融亜鉛めっきを施すことによって、加工性およびめっき密着性のいずれにも優れた高強度溶融亜鉛めっき鋼板を製造するものである。
【0024】
また、第2の発明は、上記した第1の発明の高強度溶融亜鉛めっき鋼板の製造方法で得られた溶融亜鉛めっき鋼板を加熱合金化することによって加工性およびめっき密着性のいずれにも優れた高強度合金化溶融亜鉛めっき鋼板を製造するものである。
また、第3の発明は、前記した第2の発明の高強度合金化溶融亜鉛めっき鋼板の製造方法によって得られる高強度合金化溶融亜鉛めっき鋼板で、合金化溶融亜鉛めっき層中の亜鉛−鉄合金相のX線回折における、Γ相の回折強度またはζ相の回折強度とδ相の回折強度との比を適正範囲に制限し、さらに好ましくは、合金化溶融亜鉛めっき層中のFe拡散量、さらにはP拡散量を適正範囲に制限するめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板である。
【0025】
次に、本発明の基礎となった実験について説明する。
0.09%C−0.01%Si− 2.0%Mn−0.005 〜0.1 %P− 0.003%S− 0.041%Al−0.0026%N−0.02%Crの化学組成〔:前記各%はwt%を示す〕で、厚さ30mmのシートバーを1200℃に加熱し、5パスで厚さ2.5mm の熱間圧延鋼板を得た。
次に、得られた熱間圧延鋼板について、下記(1) →(10)の順序で処理を施した。
【0026】
(1) ; 540℃で30分間熱処理し、巻き取り相当処理を行う。
(2) ;液温:80℃の5wt%HCl 溶液中で40秒間酸洗。
(3) ;焼鈍炉において、水素を含む還元性雰囲気下、 700〜1000℃(鋼板板温)に1分間保持。
(4) ;10℃/secの冷却速度で室温まで冷却。
【0027】
(5) ;液温:60℃の5wt%HCl 溶液中で10秒間酸洗。
(6) ;水素を含む還元性雰囲気にて 600〜 950℃(鋼板板温)に20秒間保持。
(7) ;10℃/secの冷却速度で 480℃まで冷却。
(8) ;Alを0.15wt%含有する浴温: 480℃の溶融亜鉛めっき浴中へ1秒間浸漬して溶融亜鉛めっきを施す。
【0028】
(9) ;溶融亜鉛めっき浴から引き揚げためっき鋼板のめっき付着量を、ガスワイピングにて40g/m2に調整。
(10);上記した(6) においてH2=1〜100vol、露点(:dp):−50℃〜0℃の条件下で加熱還元した直後に溶融亜鉛めっきを施して得られた溶融亜鉛めっき鋼板について、 400〜 600℃で加熱合金化処理を施す。
【0029】
なお、上記した加熱合金化処理を施さない溶融亜鉛めっき鋼板についても鋼板サンプルを採取した。
次に、得られためっき鋼板の性能を、下記の評価方法および評価基準で評価した。
〔めっき性:〕
溶融亜鉛めっき後のめっき鋼板(未合金化処理の溶融亜鉛めっき鋼板)の外観を、目視で評価
○:不めっき欠陥が全く無い(めっき性良好)
×:不めっき欠陥が発生
〔めっき密着性:〕
めっき鋼板を、90度曲げ戻しの後、圧縮側のめっき層をセロハンテープ剥離し、セロハンテープに付着しためっき皮膜の量で評価した。
【0030】
(未合金化処理のめっき鋼板)
○:めっき層の剥離無し(めっき密着性良好)
×:めっき層の剥離有り(めっき密着性不良)
(合金化処理しためっき鋼板)
○:めっき剥離量が少ない(めっき密着性良好)
×:めっき剥離量が多い(めっき密着性不良)
〔合金化後の外観:〕
目視で評価した。
【0031】
○:合金化ムラがなく均一な外観が得られた
×:合金化ムラが発生した
〔加工性:〕
El≧30%でかつTS≧590MPaを満足するものを良好とし、どちらか一方もしくは両方が上記基準を満足しないものを不良とした。
【0032】
図1に、鋼中P含有量が0.01wt%の場合のめっき性と加工性の評価結果を示す。
図1において、T1(℃)は、焼鈍炉における加熱時〔:前記した(3) の工程〕の鋼板板温を示し、T2(℃)は溶融亜鉛めっき前の加熱還元時〔:前記した(6) の工程〕の鋼板板温を示す。
【0033】
また、○は、めっき性および加工性の両者共に良好な条件を示し、×は、めっき性、加工性のいずれかもしくは両者が不良となる条件を示す。
すなわち、良好なめっき性および良好な加工性の両者を確保するためには、上記したT1、T2が下記式(1) 、(2) 、(7) 、(8) のいずれをも満足する必要がある。
【0034】
T2≦T1+K………………(1)
T2≧−T1+L……………(2)
750 ℃≦T1≦950 ℃……(7)
650 ℃≦T2≦900 ℃……(8)
但し、
K=50log(H2O/H2) +220 ………(3)
L=1000P+1440…………………(4)
上記式(3) 中、
H2O :前記した溶融亜鉛めっき前の加熱還元時〔:前記した(6) の工程〕の雰囲気ガス中H2O 濃度(vol %)
H2 :前記した溶融亜鉛めっき前の加熱還元時〔:前記した(6) の工程〕の雰囲気ガス中H2濃度(vol %)
上記式(4) 中、
P:鋼中P含有量(wt%)
を示す。
【0035】
なお、図1において、前記式(7) 、(8) の両者を満足する場合、加工性が良好であった。
また、前記式(1) 、(2) の両者を満足する場合、めっき性が良好であった。
次に、図2に、前記した焼鈍炉における加熱時〔:前記した(3) の工程〕の鋼板板温T1=800 ℃、鋼中P含有量=0.01wt%の場合のめっき性の評価結果を示す。
【0036】
なお、図2において、T2、H2O 、H2は前記したと同様に、下記内容を示し、○はめっき性が良好な条件、×はめっき性が不良の場合の条件を示す。
T2:溶融亜鉛めっき前の加熱還元時〔:前記した(6) の工程〕の鋼板板温(℃)
H2O :前記した溶融亜鉛めっき前の加熱還元時〔:前記した(6) の工程〕の雰囲気ガス中H2O 濃度(vol %)
H2 :前記した溶融亜鉛めっき前の加熱還元時〔:前記した(6) の工程〕の雰囲気ガス中H2濃度(vol %)
すなわち、図2に示されるように、前記した式(1) を満足する場合、めっき性が良好であった。
【0037】
次に、図3に、前記した焼鈍炉における加熱時〔:前記した(3) の工程〕の鋼板板温T1=800 ℃、鋼中P含有量=0.02〜0.095wt %の場合のめっき性の評価結果を示す。
なお、図3において、T2は前記したと同様に、下記内容を示し、○はめっき性が良好な条件、×はめっき性が不良の場合の条件を示す。
【0038】
T2:溶融亜鉛めっき前の加熱還元時〔:前記した(6) の工程〕の鋼板板温(℃)
すなわち、図3に示されるように、前記した式(2) を満足する場合、めっき性が良好であった。
以上、本発明の基礎となった実験結果について述べたが、上記した実験結果は、下記の理由に基づくものと考えられる。
【0039】
本発明においては、連続焼鈍ラインにおける加熱(以下第1段加熱とも記す)によって、一度Mnなどの易酸化性合金元素を十分鋼板表面に濃化させ、得られた濃化層を酸洗除去した後、還元性雰囲気下で再度加熱(以下第2段加熱とも記す)する。
この結果、第2段加熱時は、地鉄表層における合金元素が欠乏するため、第2段加熱時における易酸化性合金元素の鋼板表面における濃化、および酸化膜の形成が抑制され、不めっき欠陥の発生を防止することが可能となる。
【0040】
ただし、第1段加熱における鋼板の加熱温度が低い場合、地鉄表層における合金元素の欠乏度が不十分となり、第2段加熱における鋼板の加熱温度を上げた場合、第2段加熱において易酸化性合金元素の鋼板表面における濃化、および酸化膜の形成が生じ、不めっき欠陥が発生する。
このため、第1段加熱における鋼板の加熱温度の低下に対して第2段加熱における鋼板の加熱温度の許容下限値の低下が生じる。
【0041】
また、第2段加熱における雰囲気ガスの水分濃度と水素濃度の比であるH2O/H2比が低下すると、酸素ポテンシャルの低下により前記した表面濃化が増大するため、H2O/H2比の低下につれて第2段加熱における鋼板の加熱温度の許容下限値の低下が生じる。
この結果、不めっき欠陥の発生を防止し、優れためっき密着性を得ることができる条件は、下記式(1) となる。
【0042】
T2≦T1+K…………(1)
但し、
K=50log(H2O/H2) +220 ………(3)
上記式(1) 、(3) 中、
T1:第1段加熱(:鋼中成分の濃化層の酸洗除去前の加熱)における鋼板の加熱温度
T2:第2段加熱(:鋼中成分の濃化層の酸洗除去後の加熱還元)における鋼板の加熱温度
H2O :第2段加熱時(:鋼中成分の濃化層の酸洗除去後の加熱還元時)の雰囲気ガス中H2O 濃度(vol %)
H2 :第2段加熱時(:鋼中成分の濃化層の酸洗除去後の加熱還元時)の雰囲気ガス中H2濃度(vol %)
また、本発明者らは、高張力鋼板に多く含有されるMnなどの易酸化性元素の含有量が多い場合のめっき性改善方法として、一度焼鈍炉で焼鈍(第1段加熱)してMnなどの易酸化性元素の表面濃化物を析出させた後、酸洗によって濃化物を除去した後、雰囲気ガスの露点、水素濃度、加熱温度から決定されるP系酸化物が熱力学的に還元される適切な加熱条件にて加熱還元(第2段加熱)した直後にめっきすることによって、不めっき欠陥が全く発生せず、めっき密着性に優れた高強度溶融亜鉛めっき鋼板が製造可能であることを見出した。
【0043】
上記した第2段加熱における適切な加熱条件は、下記式(2) で示される。
T2≧−T1+L………(2)
但し、
L=1000P+1440…………………(4)
上記式(2) 、(4) 中、
T1:第1段加熱(:鋼中成分の濃化層の酸洗除去前の加熱)における鋼板の加熱温度(℃)
T2:第2段加熱(:鋼中成分の濃化層の酸洗除去後の加熱還元)における鋼板の加熱温度(℃)
P:鋼中P含有量(wt%)
を示す。
【0044】
また、上記した本発明の製造方法で得られた溶融亜鉛めっき鋼板をさらに加熱合金化処理する場合、合金化度すなわち合金化溶融亜鉛めっき層中のFe含有量が7〜13wt%、さらに好ましくは8〜11wt%であると合金化後のめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板が得られることが分かった。
また、本発明における2段加熱を施すことによって、地鉄表層部の粒界Pが清浄化し、その後の溶融亜鉛めっきの加熱合金化時にアウトバーストが生じ、合金化が促進されるだけでなく、合金化溶融亜鉛めっき層の表面に、凹部(クレータ)が形成され、表面形状がリングパターン化し、プレス加工時に凹部に保持された油によって摺動性が改善され、成形性に優れた高強度合金化溶融亜鉛めっき鋼板が得られることが分かった。
【0045】
さらに、図4に示すように、前記した本発明の製造方法で得られる合金化溶融亜鉛めっき鋼板の亜鉛−鉄合金相のX線回折における、Γ相の回折強度とδ相の回析強度との比が、鋼中P含有量に対して下記式(5) を満足し、かつ、ζ相の回折強度とδ相の回析強度との比が下記式(6) を満足する場合に、めっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板が得られることが分かった。
【0046】
Γ(2.59Å)/δ(2.13Å)≦0.008 ×〔{鋼中P含有量(wt%)}-0.8〕……………(5)
ζ(1.26Å)/δ(2.13Å)≦0.03………(6)
上記式(5) 、(6) 中、
Γ(2.59Å):結晶格子面間隔d=2.59ÅのΓ相の回折強度
ζ(1.26Å):結晶格子面間隔d=1.26Åのζ相の回折強度
δ(2.13Å):結晶格子面間隔d=2.13Åのδ相の回析強度
を示す。
【0047】
また、上記した高強度合金化溶融亜鉛めっき鋼板の合金化度すなわち合金化溶融亜鉛めっき層中のFe含有量が7wt%以上、13wt%以下、さらに好ましくは8wt%以上、11wt%以下であると合金化後のめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板が得られることが分かった。
さらに、上記した高強度合金化溶融亜鉛めっき鋼板における合金化溶融亜鉛めっき層中のP含有量が、0.0011wt%以上、0.03wt%以下であると、合金化後のめっき密着性に優れると共に、スポット溶接性に優れた高強度合金化溶融亜鉛めっき鋼板が得られることが分かった。
【0048】
以下、本発明におけるI.母材鋼板の組成、II. 製造条件およびIII.合金化溶融亜鉛めっき合金層のFe含有量、P含有量、相構造、表面形状(凹部の個数)について述べる。
〔I.母材鋼板の組成:〕
(P:0.10wt%以下の規定:)
Pは、高強度鋼板を得るために有効で、安価な元素であるが、含有量が0.10wt%を超える場合、スポット溶接性を著しく損なうため、母材鋼板のP含有量を0.10wt%以下と規定した。
【0049】
本発明においては、母材鋼板のP含有量を0.005 〜0.05wt%とするのがより好ましい。
(Mo:)
本発明においては、母材鋼板はMoを1.00wt%以下含有することが好ましい。
Moは、めっき性を損ねず、かつ固溶強化を図る上で有効な元素である。
【0050】
さらには、Moを添加した母材鋼板を用いた場合、得られるめっき鋼板の耐食性が良好になる傾向が見られる。
これは、Moは、Feよりも酸化されにくい元素であり、めっき層中へのMoの僅かな拡散、添加が耐食性を向上するためと考えられる。
本発明においては、母材鋼板中のMo含有量は、0.04wt%以上であることが好ましい。
【0051】
しかし、1.00wt%超の添加は著しく製造コストを高くしてしまうことから、1.00wt%以下が好ましい。
本発明においては、母材鋼板のMo含有量を0.04〜0.5wt %とするのがより好ましい。
(C:)
Cは、強化元素として含有させる元素であり、含有量が0.01wt%以上であれば強化効果が現れ、含有量が0.2wt %を超えると伸びの低下が著しくなり、加えて炭素当量が高くなって溶接性を害する。
【0052】
したがって、Cの含有量は、好ましくは0.01〜0.2wt %、より好ましくは0.03〜0.15wt%である。
(Si:)
Siは、α相中の固溶C量を減少させることにより、伸びなどの加工性を向上させる元素であるが、1.0wt %超のSiの含有は、めっき性を損ねる。
【0053】
本発明における母材鋼板のSi含有量は、好ましくは1.0wt %以下、より好ましくは0.5wt %以下であるが、本発明においては特にSi含有量に制限されるものではない。
(Mn:)
本発明における母材鋼板のMn含有量は、高強度を得るために1.0wt %以上であることが好ましく、伸びの低下あるいは炭素当量の増大を避けるため3.0wt %以下であることが好ましい。
【0054】
(S:)
Sは、熱間圧延時の熱間割れの原因になる他、スポット溶接部のナゲット内破断を誘発する元素であるため、Sの含有量を極力低減することが望ましい。
したがって、本発明ではSの含有量は0.05wt%以下とすることが好ましく、より好ましくは0.010wt %以下であるが、本発明においては特にS含有量に制限されるものではない。
【0055】
(Al:)
Alは、製鋼段階での脱酸剤として、また時効劣化の原因になるNをAlN として固定するのに有効な元素である。
しかしながら、Al含有量が0.10wt%を超える場合、製造コストの上昇を招く。
このため、Al含有量は、好ましくは0.10wt%以下、より好ましくは0.05wt%以下であるが、本発明においては特にAl含有量に制限されるものではない。
【0056】
(N:)
Nは、時効劣化の原因となり、降伏点(降伏比)の上昇、降伏伸びの発生を招くことからN含有量は0.010wt %以下に抑える必要があり、より好ましくは0.005wt %以下であるが、本発明においては特にN含有量に制限されるものではない。
【0057】
(Cr:)
Crは、組織強化を図る上で有効な元素であるが、1.0wt %超の添加はめっき性を損ねてしまうことから、本発明における母材鋼板のCr含有量は、好ましくは1.0wt %以下、より好ましくは0.5wt %以下であるが、本発明においては特にCr含有量に制限されるものではない。
【0058】
(Ti、Nb、V:)
Ti、Nb、Vは炭化物を形成し、鋼を高強度化するのに有効な元素であり、必要に応じて、母材鋼板が、Ti、NbおよびVから選ばれる1種または2種以上を合計量で0.0010wt%以上含有してもよい。
しかし、1.0wt %超の添加はコスト高となる他、降伏点(降伏比)を上昇させて加工性を低下させてしまう。
【0059】
このため、母材鋼板の上記合計量は、好ましくは0.0010〜1.0wt %、より好ましくは0.010 〜0.20wt%であるが、本発明においては特にTi、Nb、Vの含有量に制限されるものではない。
〔II. 製造条件:〕
以下、本発明における製造条件を、[1] 製造工程、[2] 焼鈍(第1段加熱)における条件、[3] 焼鈍(第1段加熱)後の酸洗条件、[4] 再加熱(第2段加熱)(加熱還元)における条件、[5] 溶融亜鉛めっき、加熱合金化処理における条件の順に説明する。
【0060】
[1] 製造工程:
前記したように、本発明における製造工程は、下記のとおりである。
〔製造工程:〕
熱間圧延鋼板→酸洗→(冷間圧延)→焼鈍(第1段加熱)→冷却→酸洗→還元性雰囲気下で再加熱(第2段加熱)(加熱還元)→溶融亜鉛めっき→(加熱合金化)
すなわち、本発明においては、Pを0.10wt%以下含有する鋼のスラブを、熱間圧延後、酸洗して黒皮スケールを除去する。
【0061】
このようにして得られた鋼板は、そのまま次工程の焼鈍(第1段加熱)、酸洗、還元性雰囲気下での再加熱(第2段加熱)(加熱還元)、溶融亜鉛めっき、さらには加熱合金化処理工程に通板してもよいし、熱間圧延後、酸洗して黒皮スケールを除去して得られた鋼板に冷間圧延を施した後、次工程の焼鈍(第1段加熱)、酸洗、還元性雰囲気下での再加熱(第2段加熱)(加熱還元)、溶融亜鉛めっき、さらには加熱合金化工程に通板してもよい。
【0062】
すなわち、本発明に係るめっき鋼板の母材鋼板は、熱延板、冷延板のどちらでもよい。
本発明の上記工程の焼鈍(第1段加熱)、酸洗、還元性雰囲気下での再加熱(第2段加熱)(加熱還元)における機能は、下記のとおりである。
焼鈍(第1段加熱):
母材鋼板を焼鈍炉において加熱することによって、鋼板表面にMnなどの易酸化性元素を濃化せしめる。
【0063】
また、第2段加熱の前に母材鋼板を焼鈍炉において加熱することによって、地鉄表層の粒界Pが清浄化し、後工程における溶融亜鉛めっきの加熱合金化時にアウトバーストが生じ易くなり、その結果、合金化溶融亜鉛めっき層の表面に凹部(クレータ)が形成される。
酸洗:
上記した焼鈍炉において形成された鋼板表面の鋼中成分(易酸化性元素)の濃化層を酸洗により除去する。
【0064】
還元性雰囲気下での再加熱(第2段加熱)(加熱還元):
前記した酸洗によって生成したFe−P系酸洗残渣である鋼板表面のP系酸化物を還元する。
[2] 焼鈍(第1段加熱)における条件:
750 ℃≦焼鈍(第1段加熱)における加熱温度:T1≦950 ℃
本発明においては、母材鋼板の焼鈍炉における加熱温度:T1は、750 ℃以上、950 ℃以下と規定する。
【0065】
焼鈍炉における加熱温度:T1が750 ℃未満の場合、高張力鋼板に一般的に含有されるMnなどの易酸化性元素の表面濃化量が少なく、その後のめっき直前の再加熱時にMnが、再度、鋼板表面に濃化する。
また、焼鈍炉における加熱温度:T1が750 ℃未満の場合、地鉄表層の粒界Pの清浄化が不十分となる。
【0066】
したがって、第1段階の加熱である焼鈍炉においては、750 ℃以上で加熱し、鋼板地鉄表層部のMnなどの易酸化性元素を十分に表面濃化させると共に、地鉄表層の粒界Pの清浄化を十分行うことが必要である。
また、焼鈍炉における加熱温度:T1が750 ℃未満の場合、母材中のバンド状の第2相中(鋼中セメンタイト析出相中)に濃化しているMnを分散することができず、不めっき欠陥が発生するため、焼鈍炉における加熱温度:T1は750 ℃以上とする。
【0067】
また、逆に、焼鈍炉における加熱温度:T1が950 ℃を超える場合、α−γ2相域を大きく外れるため所望の組織と材質が得られない。
[3] 焼鈍(第1段加熱)後の酸洗条件:
本発明においては、母材鋼板を焼鈍炉にて加熱した後、冷却し、その後、鋼板表面の鋼中成分の濃化層を酸洗により除去する。
【0068】
酸洗における酸液の酸としては、塩酸に限定されることはなく、硫酸、硝酸などを用いることが可能であり、特に酸の種類に制限されるものではない。
酸洗液のpHは1以下で操業することが好ましい。
pHが1を超える場合、酸洗による表面濃化物の除去効果が不十分となる。
塩酸を用いる場合、HCL 濃度は1〜10wt%であることが好ましい。
【0069】
HCL 濃度が1wt%未満の場合、酸洗による表面濃化物の除去効果が不十分となり、逆に10wt%を超える場合、過酸洗による鋼板表面の荒れが生じ、かつ使用する酸の原単位が高くなり、不適当である。
酸洗液の液温は40〜90℃であることが好ましく、40℃未満の場合、酸洗による表面濃化物の除去効果が不十分であり、逆に90℃を超える場合、過酸洗による鋼板表面の荒れが生じ、不適当である。
【0070】
なお、酸洗液の液温は、より好ましくは50℃〜70℃の範囲である。
酸洗時間は、1〜20秒間とするのが好ましく、1秒未満の場合、酸洗による表面濃化物の除去効果が不十分であり、逆に20秒を超える場合、過酸洗による鋼板表面の荒れが生じ、かつ製造時間が長くなり生産性が低下する。
なお、酸洗時間は、より好ましくは5〜10秒間の範囲である。
【0071】
[4] 再加熱(第2段加熱)における条件:
▲1▼雰囲気:還元性雰囲気
▲2▼650 ℃≦T2≦900 ℃
▲3▼T2≦T1+K…………(1)
▲4▼T2≧−T1+L………(2)
但し、上記式(1) 、(2) 中、
K=50log(H2O/H2) +220 ………(3)
L=1000P+1440…………………(4)
を示し、
上記式(1) 〜(4) 中、
T1:焼鈍(第1段加熱)時の加熱温度(℃)
T2:再加熱(第2段加熱)時の加熱温度(℃)
H2O :再加熱時の雰囲気ガス中H2O 濃度(vol %)
H2 :再加熱時の雰囲気ガス中H2濃度(vol %)
P:鋼中P含有量(wt%)
を示す。
【0072】
本発明においては、前記した酸洗の後、得られた鋼板を、好ましくは溶融亜鉛めっきラインに配設された加熱炉において、還元性雰囲気下、再度加熱し、その後、溶融亜鉛めっきを施す。
上記した第2段階の加熱である再加熱時の加熱温度:T2は、650 ℃以上、900 ℃以下と規定する。
【0073】
再加熱時の加熱温度T2が650 ℃未満の場合、鋼板表面の酸化鉄が還元されない恐れがある。
さらに本発明においては、下記理由から、再加熱時の加熱温度:T2は下記式(1) を満足する必要がある。
T2≦T1+K…………(1)
但し、上記式(1) 中、
K=50log(H2O/H2) +220 ………(3)
を示し、
上記式(3) 中、
H2O :鋼中成分の濃化層の酸洗除去後の加熱時(再加熱時)の雰囲気ガス中H2O 濃度(vol %)
H2 :鋼中成分の濃化層の酸洗除去後の加熱時(再加熱時)の雰囲気ガス中H2濃度(vol %)
を示す。
【0074】
すなわち、前記したように、本発明においては、焼鈍炉において一度Mnなどの易酸化性合金元素を十分鋼板表面に濃化させ、得られた濃化層を酸洗除去した後、溶融亜鉛めっき前に、還元性雰囲気下で再度加熱する。
この結果、再加熱時は、地鉄表層における合金元素が欠乏するため、再加熱時における易酸化性合金元素の鋼板表面における濃化および酸化膜の形成が抑制され、不めっき欠陥の発生を防止することが可能となる。
【0075】
これに対して、第1段階の加熱である焼鈍炉における加熱温度:T1が低い場合、地鉄表層における合金元素の欠乏度が不十分となり、第2段階の加熱である再加熱時に易酸化性合金元素の鋼板表面における濃化および酸化膜の形成が生じ、不めっき欠陥が発生する。
このため、焼鈍炉における鋼板の加熱温度:T1の低下に対して再加熱時の鋼板の加熱温度:T2の許容下限値の低下が生じる。
【0076】
また、再加熱時における雰囲気ガスの水分濃度と水素濃度の比であるH2O/H2比が低下すると、酸素ポテンシャルの低下により前記した表面濃化が増大するため、H2O/H2比の低下につれて再加熱時の鋼板の加熱温度:T2の許容下限値の低下が生じる。
この結果、不めっき欠陥の発生を防止し、優れためっき密着性を得ることができる条件は、下記式(1) となる。
【0077】
T2≦T1+K…………(1)
〔K=50log(H2O/H2) +220 ………(3) 〕
また、再加熱時における鋼板の加熱温度:T2が900 ℃を超える場合、焼鈍炉で形成された組織が変態するため所望の組織と材質が得られない。
さらに本発明においては、下記理由から、再加熱時の加熱温度:T2は、鋼中P含有量に対応して下記式(2) をも満足する必要がある。
【0078】
T2≧−T1+L………(2)
但し、上記式(2) 中、
L=1000P+1440…………………(4)
を示し、
上記式(4) 中、
P:鋼中P含有量(wt%)
を示す。
【0079】
すなわち、圧延鋼板の酸洗時に、鋼板表面に、地鉄の溶出に伴ってFe−P系酸洗残渣であるP系酸化物が生成し、残渣を完全に還元し、めっき性を改善するためには再加熱時の温度:T2を上げなければならない。
また、P系酸化物の生成量は鋼中P量にほぼ比例する。
このため、鋼中P量の増加に伴い加熱温度:T2を前記した式(2) に従って増加させなければならない。
【0080】
さらに、本発明においては、再加熱時の雰囲気ガス中の水素濃度が1vol %未満の場合、鋼板表面のP系酸化物が熱力学的にやや還元しにくく、長時間の加熱が必要であるため、再加熱時の雰囲気ガス中の水素濃度は1〜100vol%であることが好ましい。
また、再加熱時の雰囲気ガスの露点は−50℃〜0℃であることが好ましい。
【0081】
これは、再加熱時の雰囲気ガスの露点が0℃を超える場合、鋼板表面のP系酸化物が熱力学的にやや還元しにくく、長時間の加熱が必要であり、逆に、雰囲気ガスの露点を−50℃より低くすることは工業的に困難なためである。
以上述べたように、再加熱時の雰囲気を、鋼板表面のFe-P系酸洗残渣であるP系酸化物の還元促進およびMnなどの易酸化元素の表面濃化の抑制の両者を両立するように、加熱温度、露点、水素濃度を同時に制御することによって、初めて、良好なめっき性を確保することが出来る。
【0082】
[5] 溶融亜鉛めっき、加熱合金化処理における条件:
本発明においては、以上のようにして母材鋼板を加熱還元した後、溶融亜鉛めっき浴中で亜鉛めっきを施す。
溶融亜鉛めっき浴は、Alを0.08〜0.2wt %含有するめっき浴が適切であり、浴温は460 〜500 ℃が適切である。
【0083】
浴中に侵入するときの鋼板の板温は460 〜500 ℃が適切である。
また、溶融亜鉛めっき鋼板のめっき付着量は、鋼板片面当たり20〜120g/m2 であることが好ましい。
溶融亜鉛めっきの付着量が20g/m2未満の場合は、耐食性が低下し、逆にめっき付着量が120g/m2 を超える場合、耐食性向上効果が実用上飽和し、経済的でない。
【0084】
なお、上記した鋼板片面当たりの付着量とは、めっき付着量をめっき付着面積で除した単位面積当たりの付着量を示す。
すなわち、通常の両面めっきの場合は、めっき付着量を両面のめっき付着面積で除した単位面積当たりの付着量を示し、片面めっきの場合は、めっき付着量を片面のめっき付着面積で除した単位面積当たりの付着量を示す。
【0085】
本発明においては、加熱合金化処理は下記条件下で行うことが好ましい。
すなわち、加熱合金化処理時の鋼板の最高到達板温は、465 〜510 ℃の範囲内であることが好ましく、さらには最高到達板温は、470 〜505 ℃の範囲内であることがより好ましい。
これは、加熱合金化処理時の鋼板の最高到達板温が 465℃未満の場合、Fe−Zn合金層の表層に後記するζ相さらにはΓ相が生成し易く、めっき密着性が低下し、逆に最高到達板温が 510℃を超える場合、Γ相が生成し易くなりめっき密着性が低下する。
【0086】
本発明においては、合金化溶融亜鉛めっき鋼板のめっき付着量は、前記で定義される鋼板片面当たりの付着量として20〜120g/m2 であることが好ましい。
合金化溶融亜鉛めっきのめっき付着量が20g/m2未満の場合は、耐食性が低下し、逆にめっき付着量が120g/m2 を超える場合、耐食性向上効果が実用上飽和し、経済的でない。
【0087】
なお、上記した合金化溶融亜鉛めっきのめっき付着量は、めっき層をNaOH、KOH などのアルカリ含有溶液もしくはHCl 、H2SO4 などの酸含有溶液に溶解し、得られためっき溶解液を分析することによって測定することができる。
〔III.合金化溶融亜鉛めっき合金層のFe含有量、P含有量、相構造、表面形状(凹部の個数):〕
以上述べた本発明の溶融亜鉛めっき鋼板の製造方法で製造した溶融亜鉛めっき鋼板を加熱合金化するに際しては、合金化後のめっき密着性を良好にするために、加熱合金化後のめっき層中のFe拡散量すなわちめっき層中のFe含有量が、7〜13wt%であることが好ましく、さらには8〜11wt%であることがより好ましい。
【0088】
合金化後のめっき層中のFe含有量が7wt%未満の場合、焼けムラなどが発生するだけでなく、めっき層の剥離(フレーキング)が起こり、Fe含有量が13wt%を超える場合、過合金によるめっき密着性の劣化を招く。
さらに本発明は、母材鋼板中のP含有量に応じて溶融亜鉛めっき後の合金化温度をコントロールし、合金化めっき層の相構造を規制し、優れためっき密着性を確保することを特徴とするものである。
【0089】
本発明において、合金化めっき層の相構造は、下記の方法で定量化する。
すなわち、めっき層を、エポシキ系接着剤を用いて鉄板と貼り合わせて接着剤を硬化させた後、機械的に引っ張ってめっき層を地鉄界面から接着剤ごと剥離する。
次に、剥離しためっき層について、めっき層/鋼板(めっき鋼板)の界面側から、下記の条件下でX線回折を行い、合金相による回折ピークを測定する。
【0090】
〔X線回折の条件:〕
測定面:直径15mmの正円形状
θ/2θ法
X線管球:Cu管球
管電圧:50kV
管電流:250mA
合金相による回折ピークの内、Γ相(Fe3Zn10) およびΓ1 相(Fe5Zn21) に由来すると考えられる結晶格子面間隔d=2.59Åの回折強度(cps) :Γ(2.59Å)、δ1 相(FeZn7) に由来すると考えられる結晶格子面間隔d=2.13Åの回折強度(cps) :δ(2.13Å)、およびζ相(FeZn13)に由来すると考えられる結晶格子面間隔d=1.26Åの回折強度(cps) :ζ(1.26Å)を測定し、Γ(2.59Å)とδ(2.13Å)との比、ζ(1.26Å)とδ(2.13Å)との比を求める。
【0091】
なお、Γ相とΓ1 相を分別することは結晶学的に困難なため、本発明においてはΓ相とΓ1 相を合わせてΓ相と標記する。
本発明においては、Γ相の強度は、鋼中P含有量(wt%)に対して、下記式(5) を満足することが好ましく、またζ相の強度は、下記式(6) を満足することが好ましい。
【0092】
Γ(2.59Å)/δ(2.13Å)≦0.008 ×〔{鋼中P含有量(wt%)}-0.8〕……………(5)
ζ(1.26Å)/δ(2.13Å)≦0.03………(6)
Γ相は硬くて脆く、また、めっき層と地鉄界面に生成するため、Γ相の強度がδ相の強度に対して上記式(5) の範囲を超えて大きい場合、合金化溶融亜鉛めっき鋼板をプレスしたときにΓ相が破壊され、Γ相を境界としてめっき層が剥離する。
【0093】
さらに、鋼中P含有量が多くなるにつれてΓ相のδ相に対する強度比の許容上限値が低下するのは、P添加鋼は一般的にΓ相が生成しにくいためである。
また、ζ相は摺動性が悪いため、めっき層上面に生成するζ相のδ相に対する強度比が上記式(6) の範囲を超えて大きい場合、プレス時にめっき層が剥離し易い。
【0094】
前記した本発明の製造方法によって上記したΓ相の強度およびζ相の強度の両者が制限され、めっき密着性が良好な高強度合金化溶融亜鉛めっき鋼板が製造可能となる理由は下記の通りである。
すなわち、めっき前に鋼板を一度加熱炉で加熱した場合、溶融亜鉛めっきの加熱合金化時に合金化遅延を生じる。
【0095】
これに対して、Pを含有する鋼板の場合、めっき前の鋼板の加熱時に、粒界偏析している鋼中Pが一度表面に濃化するため粒界に偏析するPが少なくなる。
この結果、この濃化層を酸洗で除去した後再度溶融亜鉛めっきラインで加熱(:還元加熱)し、溶融亜鉛めっきした後、加熱合金化するときに合金化が遅延せず、短時間かつ500 ℃以下の低温で高速合金化が可能となり、Γ相の生成が抑制される。
【0096】
また、500 ℃近傍で短時間で合金化できるためζ相の生成も抑制することができる。
このため、本発明の製造方法によって、初めて、めっき密着性に悪影響を与えるΓ相およびζ相の生成が抑制され、前記した相構造を有するめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板を得ることが可能となった。
【0097】
本発明における合金化溶融亜鉛めっき鋼板においては、合金化溶融亜鉛めっき層中のP含有量が、0.0011wt%以上、0.03wt%以下であることが好ましい。
以下、その理由について述べる。
すなわち、本発明における製造方法によれば、最初の焼鈍炉における加熱によって、粒界に偏析しているPが粒界から地鉄表面に移動するため、溶融亜鉛めっきおよび加熱合金化時にめっき層中にPが拡散し易い。
【0098】
めっき層中にPが拡散しためっき鋼板は、Pが拡散していないめっき鋼板に比べてめっき密着性が極めて良好である。
この理由については厳密なところは不明であるが、以下のように推定できる。すなわち、加熱合金化時におけるめっき層中へのPの拡散が容易な場合、合金化時にめっき表面にZn系酸化物以外にp系酸化物が生成し、この酸化物が潤滑剤として働くため、摺動性が改善されめっき剥離(フレーキング)が起こりにくくなるためと推定される。
【0099】
この拡散量は、めっき直前の鋼板表面の微妙な表面状態によって左右されるため、必ずしも単純にFe拡散量に比例しない。
さらには、Pが焼鈍時に表面濃化すると鋼中P量と合金化時のFe拡散量から単純に推定できるP拡散量より多くなることがあるが、本発明の合金溶融亜鉛めっき鋼板においては、P含有量が0.1wt %の鋼の場合でも加熱合金化後のめっき層中へのP拡散量(:めっき層中のP含有量)の上限値は0.03wt%であった。
【0100】
本発明によれば、加熱合金化後のめっき層中のP含有量が、0.0011wt%以上、0.03wt%以下を満足する場合に、めっき密着性改善効果に優れた高強度合金化溶融亜鉛めっき鋼板が得られることが分かった。
めっき層中へのP拡散量(:加熱合金化後のめっき層中のP含有量)が0.0011wt%未満の場合、めっき密着性の改善効果が見られず、逆に、0.03wt%を超える場合、鋼中P含有量を0.1wt %よりも多くしなければならず、スポット溶接性など他の性能が劣化する。
【0101】
本発明においては、加熱合金化後のめっき層中のP含有量は、0.0011wt%以上、0.020wt %以下であることがより好ましい。
さらに、本発明によれば、2段加熱を施すことによって、溶融亜鉛めっき鋼板の合金化時にアウトバーストが生じ、合金化溶融亜鉛めっき層の表面に凹部(クレータ)が形成され、合金化溶融亜鉛めっき鋼板のプレス加工時に油保持性が改善され、摺動性が向上する。
【0102】
この結果、本発明によれば、合金化溶融亜鉛めっき鋼板のプレス加工時のめっき剥離などのフレーキングが防止可能となった。
本発明においては、合金化溶融亜鉛めっき鋼板のめっき層の表面を光学顕微鏡もしくは走査電子顕微鏡(SEM) もしくはレーザー顕微鏡で観察した場合の表面領域:100 μm ×100 μm 中に、クレータ状凹凸部の凹部が4〜100 個存在することが好ましい。
【0103】
表面領域:100 μm ×100 μm 中の凹部の個数が4個未満の場合、油保持性の改善によるプレス成形性の向上効果を得ることが困難となる。
逆に、表面領域:100 μm ×100 μm 中の凹部の個数が100 個を超える場合、凹部の個数の増加により、クレータ凸部(クレータ凹部の縁部を囲む外輪)の体積が増加する。
【0104】
その結果、クレータ凹部の実体積が減少し、保持される油の絶対量が減少し、摺動性改善効果が低減する。
本発明においては、合金化溶融亜鉛めっき鋼板のめっき層表面のクレータ状凹凸部の凹部の深さが2〜10μm 、凸部(クレータ凹部の縁部を囲む外輪)の高さが3μm 以下である凹部の個数が、表面領域:100 μm ×100 μm 中で4〜100 個存在することがより好ましい。
【0105】
これは、凹部の深さが2μm 未満の場合、プレス加工時の油の保持性に劣り、凹部の深さが10μm を超える場合、凸部の高さが3μm を超える場合、プレス加工時に凹部に保持された油による摺動性改善効果が低減するためである。
上記した凹部の深さ、凸部の高さは、光学顕微鏡もしくは走査電子顕微鏡(SEM) で合金化溶融亜鉛めっき鋼板を斜めから観察することによって判定することができ、レーザー顕微鏡で求めることができる。
【0106】
本発明においては、非常に優れた摺動性改善効果を得るために、表面領域:100 μm ×100 μm 中の凹部の個数の上限値を70個とすることがより好ましい。
【0107】
【実施例】
以下、本発明を実施例に基づいてさらに具体的に説明する。
表1に示す化学組成(鋼種:A〜N)の厚さ300mm の連続鋳造スラブを1200℃に加熱し、3パスの粗圧延後、7スタンドの仕上げ圧延機で圧延し、厚さ2.3mm の熱間圧延鋼板を得た。
【0108】
その後、表2に示す温度(:CT)で巻き取った。
得られた熱間圧延鋼板を酸洗後、鋼種Aについては熱間圧延鋼板のまま(実施例1、比較例5、6)もしくは板厚が1.0mm となるように冷間圧延を施した後(比較例1〜4)、連続焼鈍ラインに通板し、表2に示す加熱温度:T1で焼鈍した。
【0109】
また、鋼種B〜Nについては、熱間圧延鋼板を酸洗後、板厚が1.0mm となるように冷間圧延を施した後、連続焼鈍ラインに通板し、表2に示す加熱温度:T1で焼鈍した(実施例2〜14、比較例7〜10)。
その後、得られた各鋼種の圧延鋼板を連続溶融亜鉛めっきラインに通板し、表2に示す各種条件下で、前処理酸洗、加熱還元、溶融亜鉛めっき、加熱合金化処理を行った。
【0110】
また、実施例6においては、加熱合金化処理を施さずに、後記する評価方法、評価基準に基づいて、得られた溶融亜鉛めっき鋼板の性能の評価を行った。
なお、表2に示す製造条件以外の製造条件を下記(1) 〜(3) に示す。
(1) 連続溶融亜鉛めっきラインにおける酸洗(前処理酸洗):
表2に示す連続溶融亜鉛めっきラインにおける酸洗(前処理酸洗)は、液温:60℃、HCl 濃度:5wt%の酸洗液(:pH=1以下)または液温:60℃、H2SO4 濃度:5wt%の酸洗液(:pH=1以下)を用いて10秒間酸洗を行って実験を行ったが、どちらの条件でもめっき性改善に効果が認められた。
【0111】
(2) 連続溶融亜鉛めっきラインにおける加熱還元:
連続溶融亜鉛めっきラインにおける加熱還元は、表2に示すH2濃度のH2−N2ガス雰囲気下で行った。
(3) 溶融亜鉛めっきのめっき付着量、合金化溶融亜鉛めっきのめっき付着量:
溶融亜鉛めっきのめっき付着量は、いずれも、鋼板両面共40g/m2とした。
【0112】
また、合金化溶融亜鉛めっきのめっき付着量は、いずれも、鋼板両面共30〜60g/m2の範囲内であった。
次に、得られた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板のめっき性、めっき密着性、プレス成形性、合金化後の外観、合金化度、合金化めっき層中P含有量、合金化めっき層の相構造、加工性、耐食性、スポット溶接性について下記評価方法、評価基準に基づいて評価した。
【0113】
得られた評価結果を表3に示す。
なお、表2におけるP系酸化物の還元の有無は、鋼板表面をESCA(:光電子分光装置)で分析し、酸素と結合すると考えられるP化合物のピークが明瞭に認められるか否かによって判断した。
なお、上記した酸素と結合すると考えられるP化合物とは、リン酸根(PO4 3-) 、リン酸水素根(HPO4 2-,H2PO4 - ) 、水酸基(OH- ) および鉄イオン(Fe3+,Fe2+ ) を主構成要素とする下記リン酸鉄化合物である。
【0114】
リン酸鉄化合物:FeIII (PO4) ・nH2O 、FeIII 2(HPO4)3・nH2O 、FeIII (H2PO4)3・nH2O 、FeII 3(PO4)2 ・nH2O 、FeII(HPO4)・nH2O 、FeII(H2PO4)2・nH2O 、FeIII (HPO4)(OH)・nH2O 、FeIII 4 {(PO4)(OH) }3 ・nH2O (n:0以上の整数)
また、ESCAは定法にて測定し、一般的なスペクトル集に実測例として記載されている、上記したリン酸鉄化合物に対応する、Oと結合すると考えられる位置のPのスペクトル強度に着目し、ピーク高さはピーク以外のノイズ部分の平均振幅Nに比べてピーク位置のベースからの高さHが、H≧3Nの関係を満たす場合にピークが明瞭に認められるとした。
【0115】
〔めっき性:〕
溶融亜鉛めっき後のめっき鋼板(未合金化処理の溶融亜鉛めっき鋼板)の外観を、目視で評価。
○:不めっき欠陥無し(めっき性良好)
×:不めっき欠陥発生
〔めっき密着性:〕
めっき鋼板を、90度曲げ戻しの後、圧縮側のめっき層をセロハンテープ剥離し、セロハンテープに付着しためっき皮膜の量で評価した。
【0116】
(未合金化処理のめっき鋼板)
○:めっき層の剥離無し(めっき密着性良好)
×:めっき層の剥離有り(めっき密着性不良)
(合金化処理しためっき鋼板)
○:めっき剥離量が少ない(めっき密着性良好)
×:めっき剥離量が多い(めっき密着性不良)
〔表面形状(凹部の個数):〕
合金化溶融亜鉛めっき鋼板のめっき層の表面の凹部の深さが2〜10μm 、凹部の縁部を囲む凸部の高さが3μm 以下である凹部の個数を、表面領域:100 μm ×100 μm についてレーザー顕微鏡で測定した。
【0117】
〔プレス成形性:〕
塗油した合金化溶融亜鉛めっき鋼板をプレス加工し、めっきの剥離が少なく加工できるか否かを調査した。
すなわち、プレス加工後、金型に付着しためっきをセロハンテープで剥離し、セロハンテープに付着しためっき皮膜の量で評価した。
【0118】
○:めっき剥離量が少ない(プレス成形性良好)
×:めっき剥離量が多い(プレス成形性不良)
〔合金化後の外観:〕
目視で評価した。
○:合金化ムラがなく均一な外観が得られた
×:合金化ムラが発生した
〔合金化度、合金化めっき層中P含有量:〕
アルカリ性溶液もしくは酸性溶液による一般的なめっき層溶解方法によって、めっき層を溶解し、得られた溶液の分析によって合金化溶融亜鉛めっき層中のFe含有量、P含有量を分析、測定した。
【0119】
〔合金化めっき層の相構造:〕
前記した方法で定量化した。
〔加工性:〕
TS≧590MPaでかつEl≧30%を満足するものを良好とし、それ以外のものを不良とした。
【0120】
〔耐食性:〕
耐食性試験は、塩水噴霧試験(SST )による腐食減量により評価した。
〔スポット溶接性:〕
加圧力:2.01kN、電流:3.5kA 、通電時間:Ts=25cyc.、Tup =3cyc.、Tw=8cyc.、Th=5cyc.、To=50cyc.、チップ:DR6φ球形状でダイレクトスポット溶接を行ない、溶接できたものを優とし、溶接できなかったものを不良とした。
【0121】
表2、表3に示すように、本発明の製造方法によって製造した実施例1〜5、実施例7〜14の合金化溶融亜鉛めっき鋼板は、いずれも、不めっき欠陥が発生せず、めっき性に優れると共に、めっき密着性、プレス成形性、合金化後の外観、加工性、スポット溶接性についても何ら問題がなかった。
また、実施例6の溶融亜鉛めっき鋼板についても、不めっき欠陥が発生せずめっき性に優れると共に、めっき密着性、加工性、スポット溶接性についても何ら問題がなかった。
【0122】
これに対し、比較例1〜10の合金化溶融亜鉛めっき鋼板は、溶融亜鉛めっきに先立つ加熱還元温度、溶融亜鉛めっき後の加熱合金化時の合金化温度、合金化度、めっき層中P含有量、合金化めっき層の相構造、表面形状(凹部の個数)もしくは鋼組成が、本発明の条件もしくはより好適な条件とは異なるため、不めっき欠陥が発生するか、めっき品質、プレス成形性もしくは加工性、スポット溶接性が不良であった。
【0123】
さらに、表3に示すように、本発明においては、母材鋼板中にMoを含有するめっき鋼板が、腐食減量が少なく、耐食性に優れていることが分かった。
これは、めっき層中へのMoの拡散、添加によって腐食抑制効果が得られるためと考えられる。
【0124】
【表1】

Figure 0003752898
【0125】
【表2】
Figure 0003752898
【0126】
【表3】
Figure 0003752898
【0127】
【表4】
Figure 0003752898
【0128】
【表5】
Figure 0003752898
【0129】
【発明の効果】
本発明によれば、不めっき欠陥の発生を防止し、加工性およびめっき密着性に優れた高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板を得ることが可能となった。
さらに、本発明によれば、プレス成形性に優れた高強度合金化溶融亜鉛めっき鋼板を得ることが可能となった。
【0130】
この結果、本発明のめっき鋼板を適用することにより、自動車の軽量化、低燃費化が可能となり、ひいては地球環境の改善に大きく貢献することができる。
【図面の簡単な説明】
【図1】焼鈍炉における加熱時の鋼板板温:T1および溶融亜鉛めっき前の加熱還元時の鋼板板温:T2とめっき性および加工性との関係を示すグラフである。
【図2】溶融亜鉛めっき前の加熱還元時の鋼板板温:T2および溶融亜鉛めっき前の加熱時の雰囲気ガス中H2O 濃度とH2濃度との比:H2O/H2とめっき性との関係を示すグラフである。
【図3】溶融亜鉛めっき前の加熱還元時の鋼板板温:T2および鋼中P含有量とめっき性との関係を示すグラフである。
【図4】合金化めっき層の相構造および鋼中P含有量とめっき密着性との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to high-strength steel sheets for use in such automotive vehicle body manufacture how the hot-dip galvanized steel sheets and galvannealed steel sheet was material.
[0002]
[Prior art]
In recent years, the application of high-strength steel sheets and high-strength hot-dip galvanized steel sheets that are excellent in corrosion resistance for automobiles is increasing from the viewpoint of safety, weight reduction, fuel consumption reduction, and improvement of the global environment.
Among them, in order to produce a high-strength hot-dip galvanized steel sheet, the desired strength and workability are obtained after having good plating properties, passing through a hot-dip galvanizing bath, and further subjected to alloying treatment. It is necessary to manufacture the original plate to be manufactured in advance.
[0003]
Moreover, it is necessary that the plating adhesion of the plated steel sheet is excellent so that the plating peeling is prevented when the plated steel sheet is pressed and the mold need not be maintained.
In general, in order to increase the strength of the steel sheet, it is generally performed to add easily oxidizable elements such as Mn, but these elements become oxides during the reduction annealing before plating, and are concentrated on the steel sheet surface. A so-called non-plating defect is generated on the surface of the steel sheet, resulting in a decrease in wettability with the molten zinc and, as a result, almost no plating adheres to the surface of the steel sheet.
[0004]
This is because the recrystallization annealing atmosphere is a reducing atmosphere for Fe and does not produce Fe oxide, but it becomes an oxidizing atmosphere for oxidizable elements such as Mn, and these elements are concentrated on the steel sheet surface to form an oxide film. It is for forming and reducing the contact area of molten zinc and a steel plate.
As a method for producing a high-strength hot-dip galvanized steel sheet, Japanese Patent Application Laid-Open No. 55-50455 discloses a method for defining the cooling rate after annealing at the time of plating. No mention is made at all. Particularly, when the Mn content exceeds 1%, it is difficult to prevent non-plating, and there is no mention of a method for improving plating adhesion.
[0005]
For this reason, the high-strength steel sheet with excellent workability that is attractive as a high-strength material for automobiles is also hot-dip galvanized and used as a surface-treated steel sheet with excellent workability and excellent plating adhesion. The reality is that it lacks practical means.
Japanese Patent Publication No. 7-9055 discloses a method for improving the alloying rate of the P-added steel by performing galvanizing after pickling after annealing. It is intended and is not a method for preventing unplating.
[0006]
Moreover, the above-mentioned method does not mention the dew point of the atmospheric gas, the hydrogen concentration, and the temperature at the time of annealing immediately before plating, and it is considered that non-plating frequently occurs depending on the combination conditions of the steel type and the annealing atmosphere.
Japanese Patent Application Laid-Open No. 7-268584 discloses a method of secondary annealing at a temperature determined by the P content in steel. This is because the temperature range for preventing steel plate embrittlement is P in steel. This is based on the technical idea that it depends on the content, and is not a disclosure about the temperature for improving the plating property.
[0007]
As described later in the present invention, in the method of re-annealing a steel plate that has been once annealed, an important matter for ensuring plating properties is the atmosphere during reductive annealing.
This is because if the P-type pickling residue generated on the steel plate surface is not sufficiently reduced when pickling the steel plate once annealed, an oxide film having poor wettability with molten zinc is plated on the steel plate immediately after annealing. It is because it inhibits sex.
[0008]
Therefore, the basis for prescribing the secondary annealing temperature according to the P content in the steel is completely different between the present invention described later and the technique disclosed in Japanese Patent Application Laid-Open No. 7-268584. The optimal secondary annealing temperature range is not the same.
In addition to the above-described plating properties, the alloyed hot-dip galvanized steel sheet is required to have excellent press formability.
[0009]
That is, alloyed hot-dip galvanized steel sheets are originally poor in slidability during press working, and are often subjected to Fe-based upper layer plating to improve slidability.
On the other hand, from the economical aspect, an alloyed hot-dip galvanized steel sheet excellent in press formability that does not require upper plating is required, and the slidability of the alloyed hot-dip galvanized steel sheet must be improved.
[0010]
[Problems to be solved by the invention]
The present invention provides a high-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel that are excellent in workability and plating adhesion that can solve the problems of the prior art and prevent the occurrence of non-plating defects. an object of the present invention is to provide a manufacturing how of steel plate.
[0011]
The present invention further aims to provide a manufacturing how excellent galvannealed steel sheet press formability.
[0012]
[Means for Solving the Problems]
1st invention hot-rolls the slab of the steel containing P: 0.10 wt% or less, and after hot-rolling the obtained hot-rolled steel plate as it is or after performing cold rolling, heating temperature: T 1 is 750 ° C. or higher, then heated at 950 ° C. or less, after cooling, the concentrated layer of steel in components of the steel sheet surface was removed by pickling, the resultant steel sheet, a reducing atmosphere, the heating temperature: T 2) 650 ° C or higher and 900 ° C or lower, and heat reduction under conditions satisfying both of the following formulas (1) and (2), followed by hot dip galvanizing. This is a method for producing an excellent high-strength hot-dip galvanized steel sheet.
[0013]
T 2 ≦ T 1 + K ………… (1)
T 2 ≧ −T 1 + L ……… (2)
However, in the above formulas (1) and (2),
K = 50log (H 2 O / H 2 ) +220 ……… (3)
L = 1000P + 1440 ………………… (4)
Indicate
In the above formulas (1) to (4),
T 1 : heating temperature before cooling (° C.)
T 2 : Heating temperature (° C.) at the time of heat reduction after pickling removal of the concentrated layer of the steel components
H 2 O: H 2 O concentration (vol%) in the atmospheric gas at the time of heating reduction after pickling removal of the concentrated layer of the above-mentioned components in steel
H 2 : H 2 concentration (vol%) in the atmospheric gas at the time of heating reduction after pickling removal of the concentrated layer of the above-mentioned components in steel
P: P content in steel (wt%)
Indicates.
[0014]
In the first invention described above, the dew point of the atmospheric gas at the time of the heat reduction after pickling removal of the concentrated layer of the above-described steel component is -50 ° C to 0 ° C, and the hydrogen concentration in the atmospheric gas is 1 to 100 vol. % (First preferred embodiment of the first invention).
In the first preferred embodiment of the first invention and the first preferred embodiment of the first invention, the pickling method for the concentrated layer of the steel component described above is an acid having a pH of 1 and a liquid temperature of 40 to 90 ° C. The pickling method is preferably pickling in the washing solution for 1 to 20 seconds (second preferred embodiment of the first invention, third preferred embodiment).
[0015]
In the first invention and the first preferred embodiment to the third preferred embodiment of the first invention, the coating amount of the high-strength hot-dip galvanized steel sheet is 20 to 120 g / m per one surface of the steel sheet. 2 is preferable (fourth to seventh preferred embodiments of the first invention).
In the first preferred embodiment and the third preferred embodiment of the first invention described above, when the hydrogen concentration in the atmospheric gas is 1 vol% or more and less than 100 vol%, the remaining gas is an inert gas. The inert gas is preferably nitrogen gas.
[0016]
According to a second aspect of the present invention, there is provided a hot dip galvanized steel sheet obtained by the manufacturing method of the high-strength hot dip galvanized steel sheet according to the first aspect of the first invention and the first aspect of the first aspect. A method for producing a high-strength alloyed hot-dip galvanized steel sheet excellent in workability and plating adhesion, characterized by performing a heat alloying treatment.
In the above-described second invention, it is preferable that the maximum reached plate temperature of the hot-dip galvanized steel sheet during the above-described heat alloying treatment is 465 to 510 ° C, and further, the maximum reached plate temperature is 470 to 505 ° C. Is more preferable (first preferred embodiment of the second invention).
[0017]
In the second preferred embodiment and the first preferred embodiment of the second invention, the Fe content in the galvannealed layer is preferably 7 wt% or more and 13 wt% or less (second embodiment) Second preferred embodiment and third preferred embodiment of the invention).
In the second preferred embodiment and the first preferred embodiment to the third preferred embodiment of the second invention, the surface area of the galvannealed layer is 4 to 4 in the surface region: 100 μm × 100 μm. It is preferable to have 100 recesses (fourth to seventh preferred embodiments of the second invention).
[0018]
Further, in the above-described second invention, the first preferred embodiment to the seventh preferred embodiment of the second invention, the amount of plating adhesion of the above-described high-strength alloyed hot-dip galvanized steel sheet, It is preferably 20 to 120 g / m 2 per one side of the steel plate (eighth preferred embodiment to fifteenth preferred embodiment of the second invention).
In the third invention, in the X-ray diffraction of the zinc-iron alloy phase in the galvannealed layer, the ratio of the diffraction intensity of the Γ phase or the diffraction intensity of the ζ phase and the diffraction intensity of the δ phase is A high-strength galvannealed steel sheet excellent in plating adhesion, characterized by satisfying the following formulas (5) and (6). However, this third invention is outside the scope of the present invention.
[0019]
Γ (2.59mm) / δ (2.13mm) ≤ 0.008 × [{P content in steel (wt%)} -0.8 ] …………… (5)
ζ (1.26Å) / δ (2.13Å) ≦ 0.03 ……… (6)
In the above formulas (5) and (6),
Γ (2.59Å): Diffraction intensity ζ phase of crystal lattice plane spacing d = 2.59Å ζ (1.26Å): Diffraction intensity ζ phase of crystal lattice spacing d = 1.26Å δ (2.13Å): Crystal lattice plane spacing The diffraction intensity of the δ phase at d = 2.13% is shown.
[0020]
In the third invention described above, the Fe content in the galvannealed layer is preferably 7 wt% or more and 13 wt% or less (first preferred embodiment of the third invention).
In the above-described third and third preferred embodiments of the present invention, the P content in the galvannealed layer is preferably 0.0011 wt% or more and 0.03 wt% or less ( 2nd suitable aspect of 3rd invention, 3rd suitable aspect).
[0021]
In the above-described third invention and the first to third preferred embodiments of the third invention, the surface of the galvannealed alloy layer is 4 to 4 in the surface region: 100 μm × 100 μm. It is preferable to have 100 recesses (fourth to seventh preferred embodiments of the third invention).
Further, in the above-described third invention, the first preferred embodiment to the seventh preferred embodiment of the third invention, the plating adhesion amount of the alloyed hot-dip galvanized steel sheet of the high-strength alloyed hot-dip galvanized steel sheet, It is preferably 20 to 120 g / m 2 per one side of the steel sheet (eighth preferred embodiment to fifteenth preferred embodiment of the third invention).
[0022]
Further, the first invention, the second invention, the third invention, the first preferred embodiment to the seventh preferred embodiment of the first invention, and the first preferred embodiment to the fifteenth preferred embodiment of the second invention. In the preferred embodiment of the present invention, the first preferred embodiment to the fifteenth preferred embodiment of the third invention, the C content in the steel is more preferably 0.01 to 0.2 wt%, and Mo is contained in the steel at 1.00 wt% or less. It is more preferable to contain.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
In the first invention described above, the hot-rolled steel sheet containing P of 0.10 wt% or less is pickled, cold-rolled as necessary, heated in a heating furnace (annealing furnace), cooled, and then the steel sheet surface The concentrated steel layer is removed by pickling, and the obtained steel sheet is preferably heated again at a predetermined temperature and atmosphere in a hot dip galvanizing line, and then subjected to hot dip galvanization, thereby improving workability and A high-strength hot-dip galvanized steel sheet excellent in both plating adhesion is produced.
[0024]
Further, the second invention is excellent in both workability and plating adhesion by heat-alloying the hot-dip galvanized steel sheet obtained by the method for producing the high-strength hot-dip galvanized steel sheet of the first invention described above. High strength alloyed hot-dip galvanized steel sheet.
The third invention is a high-strength galvannealed steel sheet obtained by the method for producing a high-strength galvannealed steel sheet according to the second invention, and the zinc-iron in the galvannealed alloyed layer. In the X-ray diffraction of the alloy phase, the ratio of the diffraction intensity of the Γ phase or the diffraction intensity of the ζ phase and the diffraction intensity of the δ phase is limited to an appropriate range, and more preferably, the amount of Fe diffusion in the alloyed hot dip galvanized layer Furthermore, it is a high-strength galvannealed steel sheet excellent in plating adhesion that limits the amount of P diffusion to an appropriate range.
[0025]
Next, an experiment that is the basis of the present invention will be described.
0.09% C-0.01% Si-2.0% Mn-0.005 to 0.1% P-0.003% S-0.041% Al-0.0026% N-0.02% Cr chemical composition (where each% indicates wt%), thickness A 30 mm thick sheet bar was heated to 1200 ° C. to obtain a hot rolled steel sheet having a thickness of 2.5 mm in 5 passes.
Next, the obtained hot-rolled steel sheet was processed in the following order (1) → (10).
[0026]
(1); heat treatment at 540 ° C. for 30 minutes to perform winding equivalent processing.
(2); Liquid temperature: Pickling in a 5 wt% HCl solution at 80 ° C for 40 seconds.
(3); Hold in an annealing furnace at 700 to 1000 ° C (steel plate temperature) for 1 minute in a reducing atmosphere containing hydrogen.
(4); cooled to room temperature at a cooling rate of 10 ° C / sec.
[0027]
(5); Liquid temperature: Pickling in a 5 wt% HCl solution at 60 ° C. for 10 seconds.
(6); Maintained at 600-950 ° C (steel plate temperature) for 20 seconds in a reducing atmosphere containing hydrogen.
(7); Cooled to 480 ° C at a cooling rate of 10 ° C / sec.
(8); Bath temperature containing 0.15 wt% of Al: Hot dip galvanizing is performed by dipping in a hot dip galvanizing bath at 480 ° C. for 1 second.
[0028]
(9); Adjust the coating amount of the plated steel sheet pulled from the hot dip galvanizing bath to 40 g / m 2 by gas wiping.
(10); Hot dip galvanization obtained by applying hot dip galvanization immediately after heat reduction under the conditions of H 2 = 1 to 100 vol, dew point (: dp): −50 ° C. to 0 ° C. in the above (6) The steel sheet is heat-alloyed at 400 to 600 ° C.
[0029]
In addition, the steel plate sample was extract | collected also about the hot dip galvanized steel plate which does not give the above-mentioned heat alloying process.
Next, the performance of the obtained plated steel sheet was evaluated by the following evaluation methods and evaluation criteria.
[Plating properties:]
Visual evaluation of appearance of galvanized steel sheet after galvanizing (unalloyed galvanized steel sheet) ○: No non-plating defects (good plating properties)
X: Non-plating defect occurs [plating adhesion:]
The plated steel sheet was bent back 90 degrees, the compression-side plating layer was peeled off with cellophane tape, and the amount of plating film adhered to the cellophane tape was evaluated.
[0030]
(Unalloyed plated steel sheet)
○: No peeling of plating layer (good plating adhesion)
×: Plating layer peeled off (Poor plating adhesion)
(Alloyed plated steel sheet)
○: Less plating peeling (good plating adhesion)
×: Large amount of plating peeling (Poor plating adhesion)
[Appearance after alloying:]
Visually evaluated.
[0031]
○: Uniform appearance was obtained with no alloying unevenness ×: Alloying unevenness occurred [Workability:]
A sample satisfying El ≧ 30% and satisfying TS ≧ 590 MPa was judged good, and one or both of them satisfying the above criteria was judged defective.
[0032]
FIG. 1 shows the evaluation results of the plateability and workability when the P content in steel is 0.01 wt%.
In FIG. 1, T 1 (° C.) indicates the steel plate temperature during heating in the annealing furnace [: step (3) described above], and T 2 (° C.) is during heat reduction before hot dip galvanizing [: above The temperature of the steel sheet in step (6)] is shown.
[0033]
Moreover, (circle) shows favorable conditions for both metal-plating property and workability, and x shows the conditions from which either metal-plating property, workability, or both become defect.
That is, in order to ensure both good plating properties and good workability, T 1 and T 2 described above satisfy any of the following formulas (1), (2), (7), and (8): There is a need to.
[0034]
T 2 ≦ T 1 + K ……………… (1)
T 2 ≧ −T 1 + L ……… (2)
750 ℃ ≦ T 1 ≦ 950 ℃ …… (7)
650 ℃ ≦ T 2 ≦ 900 ℃ …… (8)
However,
K = 50log (H 2 O / H 2 ) +220 ……… (3)
L = 1000P + 1440 ………………… (4)
In the above formula (3),
H 2 O: H 2 O concentration (vol%) in the atmospheric gas during the heating reduction before the hot dip galvanizing [: step (6) described above]
H 2 : H 2 concentration (vol%) in the atmospheric gas during the heating reduction before hot dip galvanization [: step (6) described above]
In the above formula (4),
P: P content in steel (wt%)
Indicates.
[0035]
In FIG. 1, when both the above formulas (7) and (8) are satisfied, the workability is good.
Further, when both of the above formulas (1) and (2) were satisfied, the plating property was good.
Next, FIG. 2 shows the evaluation of the plating properties when the steel plate temperature T 1 = 800 ° C. and the P content in the steel = 0.01 wt% during the heating in the annealing furnace described above (step (3) described above). Results are shown.
[0036]
In FIG. 2, T 2 , H 2 O, and H 2 indicate the following contents, as described above, ◯ indicates a condition with good plating properties, and × indicates a condition with poor plating properties.
T 2 : Steel plate temperature (° C.) during heat reduction before hot dip galvanizing [: step (6) described above]
H 2 O: H 2 O concentration (vol%) in the atmospheric gas during the heating reduction before the hot dip galvanizing [: step (6) described above]
H 2 : H 2 concentration (vol%) in the atmospheric gas during the heating reduction before hot dip galvanization [: step (6) described above]
That is, as shown in FIG. 2, when the above formula (1) is satisfied, the plating property was good.
[0037]
Next, FIG. 3 shows the plating properties when the steel plate temperature T 1 = 800 ° C. and the P content in the steel = 0.02 to 0.095 wt% during the heating in the annealing furnace described above (step (3) described above). The evaluation result of is shown.
In FIG. 3, like the T 2 are described above, shows the following contents, ○ is good conditions plating properties, × indicates the conditions for the plating resistance is poor.
[0038]
T 2 : Steel plate temperature (° C.) during heat reduction before hot dip galvanizing [: step (6) described above]
That is, as shown in FIG. 3, when the above-described formula (2) is satisfied, the plating property was good.
As mentioned above, although the experimental result used as the basis of this invention was described, the above-mentioned experimental result is considered to be based on the following reason.
[0039]
In the present invention, by heating in a continuous annealing line (hereinafter also referred to as first stage heating), an easily oxidizable alloy element such as Mn is once sufficiently concentrated on the steel plate surface, and the resulting concentrated layer is pickled and removed. Thereafter, heating is performed again in a reducing atmosphere (hereinafter also referred to as second stage heating).
As a result, during the second stage heating, the alloy elements in the surface layer of the base iron are deficient, so that the concentration of the easily oxidizable alloy element on the steel plate surface during the second stage heating and the formation of the oxide film are suppressed. It becomes possible to prevent the occurrence of defects.
[0040]
However, when the heating temperature of the steel plate in the first stage heating is low, the deficiency of the alloy elements in the surface layer of the iron base becomes insufficient, and when the heating temperature of the steel plate in the second stage heating is increased, the oxidation is easily performed in the second stage heating. Concentration of the ferritic alloy element on the surface of the steel sheet and formation of an oxide film occur, resulting in non-plating defects.
For this reason, the lowering of the allowable lower limit of the heating temperature of the steel plate in the second stage heating occurs with respect to the reduction of the heating temperature of the steel plate in the first stage heating.
[0041]
Further, when the H 2 O / H 2 ratio is the ratio of water concentration and hydrogen concentration in the atmospheric gas in the second stage heating is reduced, since the surface segregation mentioned above by a decrease in oxygen potential increases, H 2 O / H As the 2 ratio decreases, the allowable lower limit of the heating temperature of the steel sheet in the second stage heating decreases.
As a result, the condition under which the occurrence of non-plating defects can be prevented and excellent plating adhesion can be obtained is represented by the following formula (1).
[0042]
T 2 ≦ T 1 + K ………… (1)
However,
K = 50log (H 2 O / H 2 ) +220 ……… (3)
In the above formulas (1) and (3),
T 1 : Heating temperature of the steel plate in the first stage heating (: heating before removing the pickled layer of the concentrated component of steel)
T 2 : Heating temperature of the steel plate in the second stage heating (heat reduction after pickling removal of the concentrated layer of steel components)
H 2 O: H 2 O concentration (vol%) in the atmosphere gas during the second stage heating (: during heating reduction after pickling removal of the concentrated layer of steel components)
H 2 : H 2 concentration (vol%) in the atmosphere gas during the second stage heating (: during heating reduction after pickling removal of the concentrated layer of steel components)
In addition, as a method for improving the plating property when the content of an easily oxidizable element such as Mn contained in the high-tensile steel plate is large, the present inventors once annealed (first stage heating) in an annealing furnace. After precipitating the surface concentrate of easily oxidizable elements such as, after removing the concentrate by pickling, the P-based oxide determined from the dew point of atmospheric gas, hydrogen concentration, and heating temperature is reduced thermodynamically. By plating immediately after heat reduction (second stage heating) under appropriate heating conditions, high-strength hot-dip galvanized steel sheets with no plating defects and excellent plating adhesion can be produced. I found out.
[0043]
Appropriate heating conditions in the second stage heating described above are expressed by the following formula (2).
T 2 ≧ −T 1 + L ……… (2)
However,
L = 1000P + 1440 ………………… (4)
In the above formulas (2) and (4),
T 1 : Heating temperature (° C) of the steel sheet in the first stage heating (heating before removal of pickling of the concentrated layer of steel components)
T 2 : Heating temperature (° C) of the steel plate in the second stage heating (: Heat reduction after pickling removal of the concentrated layer of steel components)
P: P content in steel (wt%)
Indicates.
[0044]
In addition, when the hot-dip galvanized steel sheet obtained by the above-described production method of the present invention is further heat-alloyed, the degree of alloying, that is, the Fe content in the hot-dip galvanized layer is 7 to 13 wt%, more preferably It was found that a high-strength galvannealed steel sheet excellent in plating adhesion after alloying was obtained when the content was 8 to 11 wt%.
In addition, by performing the two-stage heating in the present invention, the grain boundary P of the surface iron surface layer portion is cleaned, an outburst is generated during the subsequent hot galvanizing heating alloying, and not only the alloying is promoted, A crater is formed on the surface of the alloyed hot-dip galvanized layer, the surface shape is formed into a ring pattern, the slidability is improved by the oil retained in the recess during pressing, and a high-strength alloy with excellent formability It was found that a galvannealed steel sheet was obtained.
[0045]
Furthermore, as shown in FIG. 4, in the X-ray diffraction of the zinc-iron alloy phase of the galvannealed steel sheet obtained by the production method of the present invention described above, the diffraction intensity of the Γ phase and the diffraction intensity of the δ phase When the ratio of P satisfies the following formula (5) with respect to the P content in the steel, and the ratio of the diffraction intensity of the ζ phase and the diffraction strength of the δ phase satisfies the following formula (6): It was found that a high-strength galvannealed steel sheet with excellent plating adhesion can be obtained.
[0046]
Γ (2.59mm) / δ (2.13mm) ≤ 0.008 × [{P content in steel (wt%)} -0.8 ] …………… (5)
ζ (1.26Å) / δ (2.13Å) ≦ 0.03 ……… (6)
In the above formulas (5) and (6),
Γ (2.59Å): Diffraction intensity of Γ phase with crystal lattice spacing d = 2.59Å ζ (1.26Å): Diffraction strength of ζ phase with crystal lattice spacing d = 1.26Å δ (2.13Å): Crystal lattice spacing The diffraction intensity of the δ phase at d = 2.13% is shown.
[0047]
Further, the degree of alloying of the high-strength galvannealed steel sheet, that is, the Fe content in the galvannealed layer is 7 wt% or more and 13 wt% or less, more preferably 8 wt% or more and 11 wt% or less. It was found that a high-strength galvannealed steel sheet excellent in plating adhesion after alloying can be obtained.
Furthermore, when the P content in the galvannealed layer in the high-strength galvannealed steel sheet is 0.0011 wt% or more and 0.03 wt% or less, the plating adhesion after alloying is excellent, It was found that a high-strength galvannealed steel sheet excellent in spot weldability can be obtained.
[0048]
Hereinafter, I. Composition of base steel sheet, II. Production conditions and III. Fe content, P content, phase structure, surface shape (number of recesses) of alloyed hot-dip galvanized alloy layer will be described.
[I. Composition of base steel sheet:]
(P: 0.10wt% or less :)
P is an effective and inexpensive element for obtaining a high-strength steel plate. However, if the content exceeds 0.10 wt%, the spot weldability is significantly impaired, so the P content of the base steel plate is 0.10 wt% or less. Stipulated.
[0049]
In the present invention, the P content of the base steel sheet is more preferably 0.005 to 0.05 wt%.
(Mo :)
In the present invention, the base steel sheet preferably contains 1.00 wt% or less of Mo.
Mo is an element that does not impair the plating property and is effective in strengthening the solid solution.
[0050]
Furthermore, when the base material steel plate which added Mo is used, the tendency for the corrosion resistance of the plated steel plate obtained to become favorable is seen.
This is presumably because Mo is an element that is less likely to be oxidized than Fe, and slight diffusion and addition of Mo into the plating layer improves the corrosion resistance.
In the present invention, the Mo content in the base steel sheet is preferably 0.04 wt% or more.
[0051]
However, addition of more than 1.00 wt% significantly increases the manufacturing cost, so 1.00 wt% or less is preferable.
In the present invention, the Mo content of the base steel plate is more preferably 0.04 to 0.5 wt%.
(C :)
C is an element to be contained as a strengthening element. If the content is 0.01 wt% or more, a strengthening effect appears. If the content exceeds 0.2 wt%, the elongation decreases significantly, and in addition, the carbon equivalent increases. Damage the weldability.
[0052]
Therefore, the content of C is preferably 0.01 to 0.2 wt%, more preferably 0.03 to 0.15 wt%.
(Si :)
Si is an element that improves workability such as elongation by reducing the amount of solid solution C in the α-phase, but inclusion of Si in excess of 1.0 wt% impairs the plateability.
[0053]
The Si content of the base steel sheet in the present invention is preferably 1.0 wt% or less, more preferably 0.5 wt% or less, but in the present invention, the Si content is not particularly limited.
(Mn :)
The Mn content of the base steel sheet in the present invention is preferably 1.0 wt% or more in order to obtain high strength, and is preferably 3.0 wt% or less in order to avoid a decrease in elongation or an increase in carbon equivalent.
[0054]
(S :)
In addition to causing hot cracking during hot rolling, S is an element that induces fracture in the nugget of the spot weld, so it is desirable to reduce the S content as much as possible.
Therefore, in the present invention, the S content is preferably 0.05 wt% or less, and more preferably 0.010 wt% or less. However, in the present invention, the S content is not particularly limited.
[0055]
(Al :)
Al is an element effective as a deoxidizer in the steelmaking stage and to fix N which causes aging deterioration as AlN.
However, when the Al content exceeds 0.10 wt%, the manufacturing cost increases.
For this reason, the Al content is preferably 0.10 wt% or less, more preferably 0.05 wt% or less. However, in the present invention, the Al content is not particularly limited.
[0056]
(N :)
N causes aging deterioration and causes an increase in yield point (yield ratio) and yield elongation, so the N content must be suppressed to 0.010 wt% or less, and more preferably 0.005 wt% or less. In the present invention, the N content is not particularly limited.
[0057]
(Cr :)
Cr is an effective element for strengthening the structure. However, the addition of more than 1.0 wt% impairs the plateability. Therefore, the Cr content of the base steel sheet in the present invention is preferably 1.0 wt% or less. More preferably, it is 0.5 wt% or less, but the present invention is not particularly limited to the Cr content.
[0058]
(Ti, Nb, V :)
Ti, Nb, and V are elements that are effective in forming carbides and increasing the strength of the steel. If necessary, the base steel plate is made of one or more selected from Ti, Nb, and V. You may contain 0.0010 wt% or more in a total amount.
However, addition of more than 1.0 wt% increases the cost and raises the yield point (yield ratio) and decreases the workability.
[0059]
For this reason, the total amount of the base steel plate is preferably 0.0010 to 1.0 wt%, more preferably 0.010 to 0.20 wt%. However, in the present invention, the total amount is particularly limited to the contents of Ti, Nb, and V. is not.
[II. Manufacturing conditions:]
The manufacturing conditions in the present invention are as follows: [1] manufacturing process, [2] conditions in annealing (first stage heating), [3] pickling conditions after annealing (first stage heating), [4] reheating ( The conditions in the second stage heating) (heat reduction), [5] hot dip galvanizing, and the conditions in the heat alloying treatment will be described in this order.
[0060]
[1] Manufacturing process:
As described above, the manufacturing process in the present invention is as follows.
〔Manufacturing process:〕
Hot rolled steel plate → Pickling → (Cold rolling) → Annealing (first stage heating) → Cooling → Pickling → Reheating under reducing atmosphere (second stage heating) (Heat reduction) → Hot galvanizing → ( Heating alloying)
That is, in the present invention, a steel slab containing 0.10 wt% or less of P is hot-rolled and then pickled to remove the black scale.
[0061]
The steel sheet thus obtained is directly annealed in the next step (first stage heating), pickling, reheating in a reducing atmosphere (second stage heating) (heat reduction), hot dip galvanizing, and The steel sheet may be passed through a heating alloying treatment process, or after hot rolling, pickled to remove the black skin scale, and then subjected to cold rolling, followed by annealing in the next process (first Step heating), pickling, reheating in a reducing atmosphere (second stage heating) (heating reduction), hot dip galvanizing, and further heating alloying step may be used.
[0062]
That is, the base steel plate of the plated steel plate according to the present invention may be either a hot rolled plate or a cold rolled plate.
The functions of annealing (first stage heating), pickling, and reheating (second stage heating) (heating reduction) in a reducing atmosphere in the above steps of the present invention are as follows.
Annealing (first stage heating):
By heating the base steel plate in an annealing furnace, an easily oxidizable element such as Mn is concentrated on the steel plate surface.
[0063]
In addition, by heating the base steel plate in the annealing furnace before the second stage heating, the grain boundary P of the surface layer of the base metal is cleaned, and an outburst is likely to occur at the time of hot alloying of the hot dip galvanization in the subsequent process, As a result, a recess (crater) is formed on the surface of the galvannealed layer.
Pickling:
The concentrated layer of the steel component (easily oxidizable element) on the surface of the steel sheet formed in the annealing furnace is removed by pickling.
[0064]
Reheating in a reducing atmosphere (second stage heating) (heating reduction):
The P-based oxide on the steel sheet surface, which is the Fe-P-based pickling residue generated by the pickling, is reduced.
[2] Conditions in annealing (first stage heating):
750 ° C ≤ Heating temperature in annealing (first stage heating): T 1 ≤ 950 ° C
In the present invention, the heating temperature in the annealing furnace of the base material steel plate: T 1 is, 750 ° C. or higher, is defined as 950 ° C. or less.
[0065]
Heating temperature in annealing furnace: When T 1 is less than 750 ° C, the surface concentration of easily oxidizable elements such as Mn generally contained in high-tensile steel is small, and Mn is reduced during reheating immediately after plating. Again, it thickens on the steel plate surface.
Further, when the heating temperature T 1 in the annealing furnace is less than 750 ° C., the grain boundary P on the surface layer of the ground iron is not sufficiently cleaned.
[0066]
Therefore, in the annealing furnace, which is the first stage of heating, heating is performed at 750 ° C. or more to sufficiently enrich the surface of oxidizable elements such as Mn in the steel plate surface layer, and the grain boundary P on the surface layer of the steel plate. It is necessary to sufficiently clean.
Moreover, when the heating temperature in the annealing furnace: T 1 is less than 750 ° C., the concentrated Mn cannot be dispersed in the band-like second phase (in the cementite precipitation phase in the steel) in the base material, Since non-plating defects occur, the heating temperature in the annealing furnace: T 1 is 750 ° C. or higher.
[0067]
Conversely, the heating temperature in the annealing furnace: T 1 may exceed 950 ° C., alpha-.gamma.2 not obtained the desired tissue and material far off for the phase region.
[3] Pickling conditions after annealing (first stage heating):
In this invention, after heating a base material steel plate in an annealing furnace, it cools, Then, the concentrated layer of the component in steel of the steel plate surface is removed by pickling.
[0068]
The acid of the acid solution in the pickling is not limited to hydrochloric acid, and sulfuric acid, nitric acid and the like can be used, and the acid type is not particularly limited.
The pickling solution is preferably operated at a pH of 1 or less.
When pH exceeds 1, the removal effect of the surface concentrate by pickling becomes inadequate.
When hydrochloric acid is used, the HCL concentration is preferably 1 to 10 wt%.
[0069]
If the HCL concentration is less than 1 wt%, the effect of removing the surface concentrate by pickling will be insufficient. Conversely, if it exceeds 10 wt%, the steel plate surface will be roughened by over pickling, and the basic unit of acid used will be It is expensive and inappropriate.
The temperature of the pickling solution is preferably 40 to 90 ° C. When the temperature is lower than 40 ° C, the effect of removing the surface concentrate by pickling is insufficient. The surface of the steel sheet is rough, which is inappropriate.
[0070]
The temperature of the pickling solution is more preferably in the range of 50 ° C to 70 ° C.
The pickling time is preferably 1 to 20 seconds, and if it is less than 1 second, the effect of removing the surface concentrate by pickling is insufficient. Roughness occurs, and the manufacturing time becomes longer and the productivity is lowered.
The pickling time is more preferably in the range of 5 to 10 seconds.
[0071]
[4] Conditions for reheating (second stage heating):
(1) Atmosphere: Reducing atmosphere (2) 650 ℃ ≦ T 2 ≦ 900 ℃
(3) T 2 ≦ T 1 + K …… (1)
(4) T 2 ≧ −T 1 + L (2)
However, in the above formulas (1) and (2),
K = 50log (H 2 O / H 2 ) +220 ……… (3)
L = 1000P + 1440 ………………… (4)
Indicate
In the above formulas (1) to (4),
T 1 : Heating temperature (° C) during annealing (first stage heating)
T 2 : Heating temperature (° C) during reheating (second stage heating)
H 2 O: H 2 O concentration (vol%) in the atmospheric gas during reheating
H 2 : H 2 concentration in the atmospheric gas during reheating (vol%)
P: P content in steel (wt%)
Indicates.
[0072]
In the present invention, after the above pickling, the obtained steel sheet is preferably heated again in a reducing atmosphere in a heating furnace provided in a hot dip galvanizing line, and then hot dip galvanized.
The heating temperature at the time of reheating which is the above-mentioned second stage heating: T 2 is defined as 650 ° C. or more and 900 ° C. or less.
[0073]
When the heating temperature T 2 at the time of re-heating is lower than 650 ° C., there is a possibility that the iron oxide of the steel sheet surface is not reduced.
Furthermore, in the present invention, for the following reasons, the heating temperature T 2 at the time of reheating needs to satisfy the following formula (1).
T 2 ≦ T 1 + K ………… (1)
However, in the above formula (1),
K = 50log (H 2 O / H 2 ) +220 ……… (3)
Indicate
In the above formula (3),
H 2 O: H 2 O concentration (vol%) in the atmospheric gas during heating (reheating) after pickling removal of the concentrated layer of steel components
H 2 : H 2 concentration (vol%) in atmospheric gas during heating (reheating) after pickling removal of concentrated layer of steel components
Indicates.
[0074]
That is, as described above, in the present invention, an oxidizable alloy element such as Mn is once sufficiently concentrated on the surface of the steel sheet in the annealing furnace, and after the resulting concentrated layer is pickled and removed, before galvanizing. Then, it is heated again in a reducing atmosphere.
As a result, since the alloy elements in the surface layer of the base metal are deficient during reheating, concentration of oxidizable alloy elements on the steel sheet surface and formation of oxide films during reheating are suppressed, preventing the occurrence of non-plating defects. It becomes possible to do.
[0075]
In contrast, the heating temperature in the annealing furnace is a heating of the first step: If T 1 is low, becomes insufficient depletion of alloying elements in the base steel surface layer, easily oxidized during reheating in a heating of the second stage Concentration of the alloying element on the steel sheet surface and formation of an oxide film occur, and non-plating defects occur.
For this reason, the lowering of the allowable lower limit value of the heating temperature: T 2 of the steel plate during reheating occurs with respect to the lowering of the heating temperature: T 1 of the steel plate in the annealing furnace.
[0076]
In addition, when the H 2 O / H 2 ratio, which is the ratio between the moisture concentration and the hydrogen concentration of the atmospheric gas during reheating, decreases, the surface concentration increases due to the decrease in oxygen potential, so H 2 O / H 2 the heating temperature of the steel sheet at the time of re-heating with decreasing ratio: reduction in the T 2 of the allowable lower limit value occurs.
As a result, the condition under which the occurrence of non-plating defects can be prevented and excellent plating adhesion can be obtained is represented by the following formula (1).
[0077]
T 2 ≦ T 1 + K ………… (1)
[K = 50log (H 2 O / H 2 ) +220 ……… (3)]
Further, when the heating temperature of the steel sheet during reheating: T 2 exceeds 900 ° C., the structure formed in the annealing furnace is transformed, so that a desired structure and material cannot be obtained.
Furthermore, in the present invention, for the following reasons, the heating temperature T 2 at the time of reheating needs to satisfy the following formula (2) corresponding to the P content in steel.
[0078]
T 2 ≧ −T 1 + L ……… (2)
However, in the above formula (2),
L = 1000P + 1440 ………………… (4)
Indicate
In the above formula (4),
P: P content in steel (wt%)
Indicates.
[0079]
That is, during pickling of a rolled steel sheet, a P-based oxide, which is a Fe-P-based pickling residue, is generated on the steel sheet surface along with the elution of the base iron, and the residue is completely reduced to improve the plating property. The temperature during reheating: T 2 must be increased.
Further, the amount of P-based oxide produced is substantially proportional to the amount of P in steel.
For this reason, the heating temperature: T 2 must be increased according to the above-described formula (2) as the amount of P in the steel increases.
[0080]
Furthermore, in the present invention, when the hydrogen concentration in the atmospheric gas at the time of reheating is less than 1 vol%, the P-based oxide on the steel sheet surface is slightly less thermodynamically reduced, and heating for a long time is required. The hydrogen concentration in the atmospheric gas during reheating is preferably 1 to 100 vol%.
Moreover, it is preferable that the dew point of atmospheric gas at the time of reheating is -50 degreeC-0 degreeC.
[0081]
This is because when the dew point of the atmospheric gas at the time of reheating exceeds 0 ° C., the P-based oxide on the surface of the steel plate is slightly less thermodynamically reduced, and heating for a long time is necessary. This is because it is industrially difficult to make the dew point lower than −50 ° C.
As described above, the atmosphere during reheating is compatible with both the promotion of the reduction of P-based oxides, which are Fe-P-based pickling residues on the steel sheet surface, and the suppression of the surface concentration of easily oxidizable elements such as Mn. Thus, good plating properties can be secured for the first time by simultaneously controlling the heating temperature, dew point, and hydrogen concentration.
[0082]
[5] Conditions for hot dip galvanizing and heat alloying treatment:
In the present invention, the base steel plate is heated and reduced as described above, and then galvanized in a hot dip galvanizing bath.
The hot dip galvanizing bath is suitably a plating bath containing 0.08 to 0.2 wt% of Al, and the bath temperature is suitably 460 to 500 ° C.
[0083]
The plate temperature of the steel sheet when entering the bath is suitably 460-500 ° C.
Moreover, it is preferable that the plating adhesion amount of a hot dip galvanized steel plate is 20-120 g / m < 2 > per one surface of a steel plate.
When the adhesion amount of the hot dip galvanizing is less than 20 g / m 2 , the corrosion resistance is lowered. Conversely, when the adhesion amount of the plating exceeds 120 g / m 2 , the effect of improving the corrosion resistance is practically saturated and is not economical.
[0084]
In addition, the above-mentioned adhesion amount per one side of the steel sheet indicates an adhesion amount per unit area obtained by dividing the plating adhesion amount by the plating adhesion area.
That is, in the case of normal double-sided plating, the amount of adhesion per unit area divided by the amount of plating adhered on both sides is shown. In the case of single-sided plating, the unit of plating adhesion divided by the area of plating adhesion on one side The amount of adhesion per area is shown.
[0085]
In the present invention, the heat alloying treatment is preferably performed under the following conditions.
That is, the maximum reached plate temperature of the steel sheet during the heat alloying treatment is preferably in the range of 465 to 510 ° C, and the maximum reached plate temperature is more preferably in the range of 470 to 505 ° C. .
This is because when the maximum temperature of the steel sheet during the heat alloying treatment is less than 465 ° C., the ζ phase and further the Γ phase described later are easily generated on the surface layer of the Fe-Zn alloy layer, and the plating adhesion is reduced. On the other hand, when the maximum plate temperature exceeds 510 ° C., the Γ phase is easily generated and the plating adhesion is lowered.
[0086]
In the present invention, the coating amount of the galvannealed steel plate is preferably 20 to 120 g / m 2 as the amount of coating per one surface of the steel plate defined above.
When the coating weight of alloyed hot dip galvanizing is less than 20 g / m 2 , the corrosion resistance decreases, and conversely, when the coating weight exceeds 120 g / m 2 , the corrosion resistance improvement effect is practically saturated and is not economical. .
[0087]
In addition, the plating adhesion amount of the above-mentioned alloyed hot dip galvanizing was analyzed by dissolving the plating layer in an alkali-containing solution such as NaOH or KOH or an acid-containing solution such as HCl or H 2 SO 4 and analyzing the resulting plating solution. Can be measured.
[III. Fe content, P content, phase structure, surface shape (number of recesses) of alloyed hot-dip galvanized alloy layer:]
When the hot-dip galvanized steel sheet produced by the method for producing a hot-dip galvanized steel sheet according to the present invention is heat-alloyed, in order to improve the plating adhesion after alloying, in the plated layer after heat-alloying The amount of Fe diffusion, that is, the Fe content in the plating layer is preferably 7 to 13 wt%, and more preferably 8 to 11 wt%.
[0088]
If the Fe content in the plated layer after alloying is less than 7 wt%, not only unevenness of the burn will occur, but peeling (flaking) of the plated layer will occur, and if the Fe content exceeds 13 wt%, It causes deterioration of plating adhesion due to the alloy.
Furthermore, the present invention controls the alloying temperature after hot dip galvanizing according to the P content in the base steel sheet, regulates the phase structure of the alloyed plating layer, and ensures excellent plating adhesion. It is what.
[0089]
In the present invention, the phase structure of the alloyed plating layer is quantified by the following method.
That is, after a plating layer is bonded to an iron plate using an epoxy adhesive and the adhesive is cured, the plating layer is mechanically pulled to peel the plating layer together with the adhesive from the base iron interface.
Next, the peeled plating layer is subjected to X-ray diffraction under the following conditions from the interface side of the plating layer / steel plate (plated steel plate), and the diffraction peak due to the alloy phase is measured.
[0090]
[Conditions for X-ray diffraction:]
Measurement surface: 15mm diameter circular shape θ / 2θ method X-ray tube: Cu tube Voltage: 50kV
Tube current: 250mA
Among diffraction peaks due to alloy phases, diffraction intensity (cps) of crystal lattice spacing d = 2.59 ら れ る considered to be derived from Γ phase (Fe 3 Zn 10 ) and Γ 1 phase (Fe 5 Zn 21 ): Γ (2.59 Å ), Diffractive intensity (cps) of crystal lattice spacing d = 2.13 Å considered to be derived from δ 1 phase (FeZn 7 ): δ (2.13 Å), and crystal lattice plane considered to be derived from ζ phase (FeZn 13 ) Diffraction intensity (cps) at interval d = 1.26 :: ζ (1.26 測定) measured, ratio of Γ (2.59 Å) and δ (2.13 Å), ratio of ζ (1.26 Å) and δ (2.13 Å) Ask for.
[0091]
Incidentally, it fractionating gamma phase and gamma 1 phase for crystallographically difficult, in the present invention is labeled as gamma phases combined gamma phase and gamma 1 phase.
In the present invention, the strength of the Γ phase preferably satisfies the following formula (5) with respect to the P content (wt%) in the steel, and the strength of the ζ phase satisfies the following formula (6): It is preferable to do.
[0092]
Γ (2.59mm) / δ (2.13mm) ≤ 0.008 × [{P content in steel (wt%)} -0.8 ] …………… (5)
ζ (1.26Å) / δ (2.13Å) ≦ 0.03 ……… (6)
Since the Γ phase is hard and brittle, and it forms at the interface between the plating layer and the ground iron, if the strength of the Γ phase is greater than the range of the above formula (5) with respect to the strength of the δ phase, alloyed hot dip galvanizing When the steel sheet is pressed, the Γ phase is destroyed, and the plating layer peels off at the Γ phase as a boundary.
[0093]
Furthermore, the allowable upper limit of the strength ratio of the Γ phase to the δ phase decreases as the P content in the steel increases because the P-added steel generally does not easily generate the Γ phase.
In addition, since the ζ phase has poor slidability, when the strength ratio of the ζ phase generated on the upper surface of the plating layer to the δ phase is larger than the range of the above formula (6), the plating layer is easily peeled off during pressing.
[0094]
The reason why both the strength of the Γ phase and the strength of the ζ phase are limited by the above-described production method of the present invention and a high-strength galvannealed steel sheet with good plating adhesion can be produced is as follows. is there.
That is, when a steel plate is once heated in a heating furnace before plating, an alloying delay occurs during hot galvanization heating alloying.
[0095]
On the other hand, in the case of a steel sheet containing P, P in the steel that has segregated at the grain boundary once concentrates on the surface when the steel sheet before plating is heated, so that P that segregates at the grain boundary decreases.
As a result, the concentrated layer is removed by pickling and then heated again in the hot dip galvanizing line (reduction heating). High-speed alloying becomes possible at a low temperature of 500 ° C. or lower, and the formation of Γ phase is suppressed.
[0096]
Further, since alloying can be performed in the vicinity of 500 ° C. in a short time, formation of ζ phase can be suppressed.
For this reason, for the first time by the production method of the present invention, the formation of a Γ phase and a ζ phase that adversely affect the plating adhesion is suppressed, and the high-strength galvannealed steel sheet having the above-described phase structure and excellent plating adhesion It became possible to get.
[0097]
In the galvannealed steel sheet according to the present invention, the P content in the galvannealed layer is preferably 0.0011 wt% or more and 0.03 wt% or less.
The reason will be described below.
That is, according to the production method of the present invention, P segregated at the grain boundary moves from the grain boundary to the surface of the iron core by heating in the first annealing furnace. P easily diffuses into the surface.
[0098]
The plated steel sheet in which P is diffused in the plating layer has extremely good plating adhesion compared to the plated steel sheet in which P is not diffused.
The exact reason for this is unknown, but can be estimated as follows. That is, when diffusion of P into the plating layer at the time of heating alloying is easy, a p-based oxide is generated on the plating surface in addition to the Zn-based oxide at the time of alloying, and this oxide works as a lubricant. It is presumed that the slidability is improved and plating peeling (flaking) is less likely to occur.
[0099]
Since this diffusion amount depends on the delicate surface state of the steel sheet surface immediately before plating, it is not necessarily proportional to the Fe diffusion amount.
Furthermore, when P is concentrated during annealing, it may be greater than the amount of P diffusion in the steel and the amount of P diffusion that can be simply estimated from the amount of Fe diffusion during alloying. In the alloy hot-dip galvanized steel sheet of the present invention, Even in the case of steel with a P content of 0.1 wt%, the upper limit of the amount of P diffusion into the plated layer after heat alloying (: P content in the plated layer) was 0.03 wt%.
[0100]
According to the present invention, when the P content in the plated layer after heating alloying satisfies 0.0011 wt% or more and 0.03 wt% or less, the high strength alloyed hot dip galvanizing excellent in plating adhesion improvement effect. It was found that a steel plate was obtained.
If the amount of P diffusion into the plating layer (: P content in the plating layer after heat alloying) is less than 0.0011 wt%, the effect of improving the plating adhesion is not seen, and conversely exceeds 0.03 wt% In this case, the P content in the steel must be more than 0.1 wt%, and other performances such as spot weldability deteriorate.
[0101]
In the present invention, the P content in the plated layer after heat alloying is more preferably 0.0011 wt% or more and 0.020 wt% or less.
Furthermore, according to the present invention, by performing two-stage heating, an outburst occurs during alloying of the hot dip galvanized steel sheet, and a crater is formed on the surface of the alloyed hot dip galvanized layer. Oil retention is improved during the press working of the plated steel sheet, and slidability is improved.
[0102]
As a result, according to the present invention, flaking such as plating peeling at the time of press working of the galvannealed steel sheet can be prevented.
In the present invention, the surface area of the plated layer of the galvannealed steel sheet is observed with an optical microscope, a scanning electron microscope (SEM), or a laser microscope. It is preferable that 4 to 100 recesses exist.
[0103]
When the number of recesses in the surface area: 100 μm × 100 μm is less than 4, it is difficult to obtain an effect of improving press formability by improving oil retention.
Conversely, when the number of concave portions in the surface region: 100 μm × 100 μm exceeds 100, the volume of the crater convex portion (the outer ring surrounding the edge of the crater concave portion) increases as the number of concave portions increases.
[0104]
As a result, the actual volume of the crater recess is reduced, the absolute amount of oil retained is reduced, and the sliding improvement effect is reduced.
In the present invention, the depth of the concave portion of the crater-like uneven portion on the surface of the plated layer of the galvannealed steel sheet is 2 to 10 μm, and the height of the convex portion (the outer ring surrounding the edge of the crater concave portion) is 3 μm or less. More preferably, the number of recesses is 4 to 100 in the surface region: 100 μm × 100 μm.
[0105]
This is because if the depth of the recess is less than 2 μm, the oil retainability is poor during pressing, if the depth of the recess exceeds 10 μm, if the height of the protrusion exceeds 3 μm, This is because the effect of improving the slidability by the retained oil is reduced.
The depth of the concave portion and the height of the convex portion can be determined by observing the alloyed hot-dip galvanized steel sheet obliquely with an optical microscope or a scanning electron microscope (SEM), and can be determined with a laser microscope. .
[0106]
In the present invention, in order to obtain a very excellent slidability improving effect, it is more preferable that the upper limit value of the number of recesses in the surface region: 100 μm × 100 μm is 70.
[0107]
【Example】
Hereinafter, the present invention will be described more specifically based on examples.
A 300 mm thick continuous cast slab having the chemical composition shown in Table 1 (steel type: A to N) is heated to 1200 ° C., roughly rolled for 3 passes, and then rolled with a 7-stand finish rolling mill to obtain a thickness of 2.3 mm. A hot rolled steel sheet was obtained.
[0108]
Then, it wound up at the temperature (: CT) shown in Table 2.
After pickling the obtained hot-rolled steel sheet, after steel plate A was hot-rolled steel sheet (Example 1, Comparative Examples 5 and 6) or cold-rolled to a thickness of 1.0 mm (Comparative example 1-4), and Tsuban a continuous annealing line, the heating temperature shown in Table 2: was annealed at T 1.
[0109]
For steel types B to N, after pickling the hot-rolled steel sheet, it was cold-rolled to a thickness of 1.0 mm, then passed through a continuous annealing line, and the heating temperatures shown in Table 2 were: and annealed by T 1 (example 2 to 14, Comparative examples 7 to 10).
Then, the obtained rolled steel plate of each steel type was passed through a continuous hot dip galvanizing line, and pretreatment pickling, heat reduction, hot dip galvanizing, and heat alloying treatment were performed under various conditions shown in Table 2.
[0110]
Moreover, in Example 6, the performance of the obtained hot dip galvanized steel sheet was evaluated based on the evaluation method and evaluation criteria described later without performing the heat alloying treatment.
In addition, manufacturing conditions other than the manufacturing conditions shown in Table 2 are shown in the following (1) to (3).
(1) Pickling (pretreatment pickling) in continuous galvanizing line:
Pickling (pretreatment pickling) in the continuous hot dip galvanizing line shown in Table 2 is as follows: liquid temperature: 60 ° C., HCl concentration: 5 wt% pickling solution (pH = 1 or less) or liquid temperature: 60 ° C., H 2 SO 4 concentration: An experiment was carried out by pickling for 10 seconds using a pickling solution (pH: 1 or less) of 5 wt%, and an effect for improving the plating property was recognized under either condition.
[0111]
(2) Heat reduction in continuous hot dip galvanizing line:
The heat reduction in the continuous hot dip galvanizing line was performed in an H 2 -N 2 gas atmosphere having the H 2 concentration shown in Table 2.
(3) Plating adhesion amount of hot dip galvanizing, Plating adhesion amount of alloyed hot dip galvanizing:
The coating amount of hot dip galvanizing was 40 g / m 2 on both sides of the steel plate.
[0112]
In addition, the coating amount of the alloyed hot dip galvanizing was in the range of 30 to 60 g / m 2 on both sides of the steel sheet.
Next, plating performance, plating adhesion, press formability, appearance after alloying, degree of alloying, P content in alloyed plating layer, alloying of the obtained hot dip galvanized steel sheet, galvannealed steel sheet The phase structure, workability, corrosion resistance, and spot weldability of the plating layer were evaluated based on the following evaluation methods and evaluation criteria.
[0113]
The obtained evaluation results are shown in Table 3.
In addition, the presence or absence of the reduction | restoration of the P-type oxide in Table 2 was judged by analyzing the steel plate surface with ESCA (: photoelectron spectrometer), and whether the peak of the P compound considered to couple | bond with oxygen is recognized clearly. .
The P compound that is considered to be bonded to oxygen described above is phosphate group (PO 4 3− ), hydrogen phosphate group (HPO 4 2− , H 2 PO 4 ), hydroxyl group (OH ) and iron ion ( The following iron phosphate compounds having Fe 3+ and Fe 2+ ) as main constituent elements.
[0114]
Iron phosphate compounds: Fe III (PO 4 ) · nH 2 O, Fe III 2 (HPO 4 ) 3 · nH 2 O, Fe III (H 2 PO 4 ) 3 · nH 2 O, Fe II 3 (PO 4 ) 2 · nH 2 O, Fe II (HPO 4 ) · nH 2 O, Fe II (H 2 PO 4 ) 2 · nH 2 O, Fe III (HPO 4 ) (OH) · nH 2 O, Fe III 4 {( PO 4 ) (OH)} 3 · nH 2 O (n is an integer of 0 or more)
In addition, ESCA is measured by a conventional method, and is described as an actual measurement example in a general spectrum collection, focusing on the spectral intensity of P at a position considered to be combined with O, corresponding to the iron phosphate compound described above, The peak height is clearly recognized when the height H from the base of the peak position satisfies the relationship of H ≧ 3N as compared with the average amplitude N of the noise part other than the peak.
[0115]
[Plating properties:]
Visually evaluate the appearance of the hot-dip galvanized steel sheet (unalloyed hot-dip galvanized steel sheet).
○: No plating defects (good plating properties)
×: Non-plating defect occurred [plating adhesion:]
The plated steel sheet was bent back 90 degrees, the compression-side plating layer was peeled off with cellophane tape, and the amount of plating film adhered to the cellophane tape was evaluated.
[0116]
(Unalloyed plated steel sheet)
○: No peeling of plating layer (good plating adhesion)
×: Plating layer peeled off (Poor plating adhesion)
(Alloyed plated steel sheet)
○: Less plating peeling (good plating adhesion)
×: Large amount of plating peeling (Poor plating adhesion)
[Surface shape (number of recesses):]
The number of recesses with a depth of 2 to 10 μm on the surface of the plated layer of the alloyed hot-dip galvanized steel sheet and the height of the protrusions surrounding the edges of the recesses is 3 μm or less is the surface area: 100 μm × 100 μm Was measured with a laser microscope.
[0117]
[Press formability:]
The oiled galvannealed steel sheet was pressed to investigate whether it could be processed with little peeling of the plating.
That is, after press working, the plating adhering to the mold was peeled off with a cellophane tape, and the amount of the plating film adhering to the cellophane tape was evaluated.
[0118]
○: Plating peeling amount is small (good press formability)
X: Large amount of plating peeling (poor press formability)
[Appearance after alloying:]
Visually evaluated.
○: Uniform appearance was obtained with no alloying unevenness ×: Alloying unevenness occurred [degree of alloying, P content in alloyed plating layer:]
The plating layer was dissolved by a general plating layer dissolution method using an alkaline solution or an acidic solution, and the Fe content and the P content in the alloyed hot-dip galvanized layer were analyzed and measured by analyzing the obtained solution.
[0119]
[Phase structure of alloyed plating layer:]
Quantification was performed as described above.
[Machinability:]
Those satisfying TS ≧ 590 MPa and satisfying El ≧ 30% were evaluated as good, and the others were regarded as defective.
[0120]
[Corrosion resistance:]
The corrosion resistance test was evaluated by the weight loss by the salt spray test (SST).
[Spot weldability:]
Pressure: 2.01 kN, Current: 3.5 kA, Energizing time: Ts = 25 cyc., Tup = 3 cyc., Tw = 8 cyc., Th = 5 cyc., To = 50 cyc. Those that could be welded were considered excellent, and those that could not be welded were considered defective.
[0121]
As shown in Tables 2 and 3, none of the alloyed hot-dip galvanized steel sheets of Examples 1 to 5 and Examples 7 to 14 manufactured by the manufacturing method of the present invention is free from non-plating defects and is plated. In addition to excellent properties, there was no problem with respect to plating adhesion, press formability, appearance after alloying, workability, and spot weldability.
In addition, the hot dip galvanized steel plate of Example 6 was excellent in plating properties with no unplating defects, and had no problems with respect to plating adhesion, workability, and spot weldability.
[0122]
On the other hand, the alloyed hot dip galvanized steel sheets of Comparative Examples 1 to 10 are the heating reduction temperature prior to hot dip galvanizing, the alloying temperature during hot alloying after hot dip galvanizing, the degree of alloying, and the P content in the plating layer. The amount, the phase structure of the alloyed plating layer, the surface shape (number of recesses) or the steel composition are different from the conditions of the present invention or more suitable conditions, so that non-plating defects occur, plating quality, press formability Or workability and spot weldability were poor.
[0123]
Furthermore, as shown in Table 3, in the present invention, it was found that the plated steel sheet containing Mo in the base material steel sheet has little corrosion weight loss and excellent corrosion resistance.
This is presumably because a corrosion inhibiting effect is obtained by diffusion and addition of Mo into the plating layer.
[0124]
[Table 1]
Figure 0003752898
[0125]
[Table 2]
Figure 0003752898
[0126]
[Table 3]
Figure 0003752898
[0127]
[Table 4]
Figure 0003752898
[0128]
[Table 5]
Figure 0003752898
[0129]
【The invention's effect】
According to the present invention, it is possible to obtain a high-strength hot-dip galvanized steel sheet and a high-strength galvannealed steel sheet that are excellent in workability and plating adhesion by preventing the occurrence of non-plating defects.
Furthermore, according to the present invention, a high-strength galvannealed steel sheet excellent in press formability can be obtained.
[0130]
As a result, by applying the plated steel sheet according to the present invention, it is possible to reduce the weight and fuel consumption of the automobile, thereby contributing greatly to the improvement of the global environment.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between steel plate temperature during heating in an annealing furnace: T 1 and steel plate temperature during heating reduction before hot dip galvanizing: T 2 and plating properties and workability.
[Fig. 2] Steel plate temperature during hot reduction before hot dip galvanization: T 2 and ratio of H 2 O concentration to H 2 concentration in atmospheric gas during heating before hot dip galvanization: H 2 O / H 2 It is a graph which shows the relationship with plating property.
FIG. 3 is a graph showing the relationship between the steel plate temperature at the time of heat reduction before hot dip galvanizing: T 2 and the P content in steel and the plating properties.
FIG. 4 is a graph showing the phase structure of an alloyed plating layer and the relationship between P content in steel and plating adhesion.

Claims (7)

P:0.10wt%以下含有する鋼のスラブを熱間圧延し、得られた熱間圧延鋼板を、酸洗後、そのまま、もしくは冷間圧延を施した後、加熱温度:T1が 750℃以上、950 ℃以下で加熱し、冷却した後、鋼板表面の鋼中成分の濃化層を酸洗により除去し、得られた鋼板を、還元性雰囲気下、加熱温度:T2が 650℃以上、900 ℃以下でかつ下記式(1) 、(2) の両者を満足する条件下で加熱還元した後、溶融亜鉛めっきを施すことを特徴とする加工性およびめっき密着性に優れた高強度溶融亜鉛めっき鋼板の製造方法。

T2≦T1+K…………(1)
T2≧−T1+L………(2)
但し、上記式(1) 、(2) 中、
K=50log(H2O/H2) +220 ………(3)
L=1000P+1440…………………(4)
を示し、
上記式(1) 〜(4) 中、
T1:前記した冷却前の加熱温度(℃)
T2:前記した鋼中成分の濃化層の酸洗除去後の加熱還元時の加熱温度(℃)
H2O :前記した鋼中成分の濃化層の酸洗除去後の加熱還元時の雰囲気ガス中H2O 濃度(vol %)
H2 :前記した鋼中成分の濃化層の酸洗除去後の加熱還元時の雰囲気ガス中H2濃度(vol %)
P:鋼中P含有量(wt%)
を示す。
P: hot-rolled steel slab containing 0.10 wt% or less, and hot-rolled steel sheet obtained after pickling, or after cold rolling, heating temperature: T 1 is 750 ° C or higher After heating at 950 ° C. or lower and cooling, the concentrated layer of steel components on the steel plate surface is removed by pickling, and the resulting steel plate is heated in a reducing atmosphere at a heating temperature: T 2 of 650 ° C. or higher. High-strength hot-dip zinc alloy with excellent workability and plating adhesion, characterized by hot reduction under 900 ℃ or less and satisfying both of the following formulas (1) and (2). Manufacturing method of plated steel sheet.
Record
T 2 ≦ T 1 + K ………… (1)
T 2 ≧ −T 1 + L ……… (2)
However, in the above formulas (1) and (2),
K = 50log (H 2 O / H 2 ) +220 ……… (3)
L = 1000P + 1440 ………………… (4)
Indicate
In the above formulas (1) to (4),
T 1 : heating temperature before cooling (° C.)
T 2 : Heating temperature (° C.) at the time of heat reduction after pickling removal of the concentrated layer of the steel components
H 2 O: H 2 O concentration (vol%) in the atmospheric gas at the time of heating reduction after pickling removal of the concentrated layer of the above-mentioned components in steel
H 2 : H 2 concentration (vol%) in the atmospheric gas at the time of heating reduction after pickling removal of the concentrated layer of the above-mentioned components in steel
P: P content in steel (wt%)
Indicates.
前記した鋼中成分の濃化層の酸洗除去後の加熱還元時の雰囲気ガスの露点が−50℃〜0℃、該雰囲気ガス中水素濃度が1〜100vol%であることを特徴とする請求項1記載の加工性およびめっき密着性に優れた高強度溶融亜鉛めっき鋼板の製造方法。  The dew point of the atmospheric gas at the time of the heating reduction after pickling removal of the concentrated layer of the above-described component in steel is -50 ° C to 0 ° C, and the hydrogen concentration in the atmospheric gas is 1 to 100 vol%. Item 2. A method for producing a high-strength hot-dip galvanized steel sheet excellent in workability and plating adhesion according to Item 1. 前記した鋼中成分の濃化層の酸洗法が、pH≦1、液温:40〜90℃の酸洗液中で1〜20秒間酸洗する酸洗法であることを特徴とする請求項1または2記載の加工性およびめっき密着性に優れた高強度溶融亜鉛めっき鋼板の製造方法。  The pickling method for the concentrated layer of the above-mentioned steel component is a pickling method in which pickling is performed in a pickling solution of pH ≦ 1, liquid temperature: 40 to 90 ° C. for 1 to 20 seconds. Item 3. A method for producing a high-strength hot-dip galvanized steel sheet excellent in workability and plating adhesion according to Item 1 or 2. 請求項1〜3のいずれかに記載の高強度溶融亜鉛めっき鋼板の製造方法で得られた溶融亜鉛めっき鋼板に、さらに、加熱合金化処理を施すことを特徴とする加工性およびめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。  A heat-alloying treatment is further applied to the hot-dip galvanized steel sheet obtained by the method for producing a high-strength hot-dip galvanized steel sheet according to any one of claims 1 to 3. A method for producing excellent high-strength galvannealed steel sheets. 前記した加熱合金化処理時の溶融亜鉛めっき鋼板の最高到達板温が465 〜510 ℃であることを特徴とする請求項4記載の加工性およびめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。  5. The high-strength galvannealed high-galvanized steel excellent in workability and plating adhesion according to claim 4, wherein the maximum temperature of the hot-dip galvanized steel sheet during the heat-alloying treatment is 465 to 510 ° C. Manufacturing method of steel sheet. 合金化溶融亜鉛めっき層中のFe含有量が7wt%以上、13wt%以下であることを特徴とする請求項4または5記載の加工性およびめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。  The high-strength galvannealed steel sheet with excellent workability and plating adhesion according to claim 4 or 5, wherein the Fe content in the galvannealed layer is 7 wt% or more and 13 wt% or less. Manufacturing method. 合金化溶融亜鉛めっき層の表面に、表面領域:100 μm ×100 μm 中に4〜100 個の凹部を有することを特徴とする請求項4〜6いずれかに記載の加工性およびめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法 7. The processability and plating adhesion according to claim 4, wherein the surface of the galvannealed layer has 4 to 100 recesses in a surface region of 100 μm × 100 μm. A method for producing excellent high-strength galvannealed steel sheets .
JP20188199A 1999-07-15 1999-07-15 Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet Expired - Fee Related JP3752898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20188199A JP3752898B2 (en) 1999-07-15 1999-07-15 Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20188199A JP3752898B2 (en) 1999-07-15 1999-07-15 Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005278351A Division JP2006077329A (en) 2005-09-26 2005-09-26 High-strength galvannealed steel sheet

Publications (2)

Publication Number Publication Date
JP2001026853A JP2001026853A (en) 2001-01-30
JP3752898B2 true JP3752898B2 (en) 2006-03-08

Family

ID=16448411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20188199A Expired - Fee Related JP3752898B2 (en) 1999-07-15 1999-07-15 Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JP3752898B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4510697B2 (en) * 2005-05-18 2010-07-28 新日本製鐵株式会社 P-added steel sheet galvannealed alloying method
JP4757622B2 (en) * 2005-12-20 2011-08-24 新日本製鐵株式会社 Method for producing alloyed hot-dip galvanized steel with excellent appearance quality
JP5593770B2 (en) * 2009-03-31 2014-09-24 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet
JP5593771B2 (en) * 2009-03-31 2014-09-24 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet
DE102009044861B3 (en) 2009-12-10 2011-06-22 ThyssenKrupp Steel Europe AG, 47166 Process for producing a readily deformable flat steel product, flat steel product and method for producing a component from such a flat steel product
JP5742115B2 (en) * 2010-05-24 2015-07-01 新日鐵住金株式会社 Method for producing galvannealed cold-rolled steel sheet
JP6390712B2 (en) 2014-11-05 2018-09-19 新日鐵住金株式会社 Hot-dip galvanized steel sheet
US10113223B2 (en) 2014-11-05 2018-10-30 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvanized steel sheet
EP3216891B1 (en) 2014-11-05 2020-01-15 Nippon Steel Corporation Hot-dip galvanized steel sheet
WO2019026116A1 (en) 2017-07-31 2019-02-07 新日鐵住金株式会社 Zinc hot-dipped steel sheet
KR102345533B1 (en) 2017-07-31 2021-12-31 닛폰세이테츠 가부시키가이샤 hot dip galvanized steel
BR112020001437A2 (en) 2017-07-31 2020-07-28 Nippon Steel Corporation hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JP2001026853A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
KR100595947B1 (en) High strength thin steel sheet, high strength galvannealed steel sheet and manufacturing method thereof
KR100928860B1 (en) Surface treated steel plate and method for production thereof
KR101707984B1 (en) HOT-DIP Al-Zn COATED STEEL SHEET
JP4464720B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4119804B2 (en) High-strength galvannealed steel sheet with excellent adhesion and method for producing the same
JP3898923B2 (en) High-strength hot-dip Zn-plated steel sheet excellent in plating adhesion and ductility during high processing and method for producing the same
JP3752898B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP2008019465A (en) High-strength hot-dip galvanized steel sheet superior in adhesiveness of plating film, and manufacturing method therefor
EP3034646A1 (en) Production method for high-strength hot-dip galvanized steel sheets and production method for high-strength alloyed hot-dip galvanized steel sheets
JP2011153349A (en) Hot-dip galvannealed steel sheet having excellent appearance characteristic, and method for manufacturing the same
JP2003096541A (en) High tensile hot dip galvanizing steel sheet and high tensile galvannealed steel sheet having excellent balance in strength and ductility, plating adhesion, and corrosion resistance
JP3912014B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5009035B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent appearance
JP3468004B2 (en) High strength hot-dip galvanized steel sheet
JP4331915B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in fatigue durability and corrosion resistance and method for producing the same
JP2006077329A (en) High-strength galvannealed steel sheet
JP2007314858A (en) Hot dip galvannealed steel sheet and production method therefor
JP3606102B2 (en) Hot-rolled steel sheet, hot-dipped hot-rolled steel sheet and method for producing them
JP3684914B2 (en) High-strength hot-dip galvanized steel sheet, method for producing high-strength galvannealed steel sheet, and high-strength galvannealed steel sheet
JP2002371342A (en) Hot-dip galvanized steel sheet and manufacturing method therefor
KR20120041619A (en) Galvanizing steel sheet having good galvanizabilty and adhesion and method for manufacturing the same
JP2002047547A (en) Method for producing hot dip metal coated high tensile steel sheet
JP3105533B2 (en) Method for producing hot-dip galvanized steel sheet with excellent bake hardenability and pitting corrosion resistance
JP2005097744A (en) High strength hot-dip galvanized steel sheet and method for producing high strength alloyed hot-dip galvanized steel sheet
JP4055597B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees