JP3752541B2 - Electric field detection probe and three-dimensional electric field measurement method using the probe - Google Patents

Electric field detection probe and three-dimensional electric field measurement method using the probe Download PDF

Info

Publication number
JP3752541B2
JP3752541B2 JP2002376878A JP2002376878A JP3752541B2 JP 3752541 B2 JP3752541 B2 JP 3752541B2 JP 2002376878 A JP2002376878 A JP 2002376878A JP 2002376878 A JP2002376878 A JP 2002376878A JP 3752541 B2 JP3752541 B2 JP 3752541B2
Authority
JP
Japan
Prior art keywords
electric field
probe
axis
tip
coaxial cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002376878A
Other languages
Japanese (ja)
Other versions
JP2004205416A (en
Inventor
行志 兵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002376878A priority Critical patent/JP3752541B2/en
Publication of JP2004205416A publication Critical patent/JP2004205416A/en
Application granted granted Critical
Publication of JP3752541B2 publication Critical patent/JP3752541B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電界検出プローブの改良、及び該プローブを使用した三次元電界計測方法に関する。
【0002】
【従来の技術】
従来、例えば液体中の電界計測法としては、同軸ケーブルの先端部を垂直に曲げ、先端部においてその内部導体と外部導体の先端部を一定の間隔で露出させ、その間の電界を計測するプローブが用いられていた。
【0003】
図1(a)及び図2は従来のプローブを示す(非特許文献1、非特許文献2参照)。図1(b)は図1(a)のプローブを拡大した説明図である。図中、1はプローブ,1Aは軸部、1Bは軸部1Aに対してL字状に垂直に曲げた水平部、2は内部導体の先端露出部、3は外部導体の先端露出部、4、5はそれぞれ内部導体、外部導体に接続されたプローブ出力端子を表す。又、15は生理食塩水、16は容器、17は容器16を載せる台、18は生理食塩水15に電位を発生する電界発生用コイル、19はプローブ固定枠を示す。なお、本明細書及び図面の参照符号が同じものは同じ機能を示すので説明を省略する。
【0004】
図1、図2の両プローブとも、内部導体2と外部導体3を約1cmの間隔で露出させている。そして、外部導体と内部導体の先端露出部間の電位差(V)をオシロスコープ等で測定することにより、外部導体と内部導体方向の電界(V/m)を算出している。電界発生用コイル19は生理食塩水16に電界を発生して、プローブ1の機能試験するためのものである。
【0005】
更に、円偏波及び直線偏波共用一次放射器において、電磁波の水平偏波、垂直偏波の電界検出の希望する方の電磁波の電界方向に結合するように回転して電界を検出するL字型プローブがある(例えば特許文献1参照)。
【0006】
【非特許文献1】
P.J. Maccabee, V.E. Amassian, R.Q. Cracco, J.B. Cracco, L. Eberle and A. Rudell, Stimulation of the Human Nervous System Using the Magnetic Coil, Journal of Clinical Neurophysiology, Vol. 8, No. 1 (1991) p 38-55
【非特許文献2】
Makoto Kobayashi, Shoogo Ueno, Takahide Kurokawa, Importance of soft tissue inhomogeneity in magnetic peripheral nerve stimulation, Elecrtroecnephalography and clinical Neurophysiology, 105 (1997) ,p406-413
【特許文献1】
特開平5−83004号公報
【0007】
【発明が解決しようとする課題】
しかしながら、従来のプローブには、二つの問題点があった。その一つは、電界は図1のZ軸周りの回転により一平面内(XY平面)の電界しか計測できないこと、二つめは、プローブを回転するには、L字水平部の長さ(図1(b)のa)を半径とする円領域等が被計測側に不可欠である点である。プローブのこの回転操作は被測定領域を乱し、場合によっては破壊する可能性もある。特に、生体内の電界を計測する際には細胞を切断するので使用できない。
【0008】
【問題を解決するための手段】
本発明の電界検出用プローブは、上記課題を解決するために、同軸ケーブルの内部導体、外部導体の先端露出部を中心軸に対して傾斜した先端面から露出させたことを特徴とする。
【0009】
更に、本発明の三次元計測方法は、同軸ケーブルの内部導体、外部導体の先端部分を中心軸に対する傾斜面から露出させ、且つこれらの先端部分を回転可能にする係合部材を設けた電界検出用プローブを、初期位置と90度回転、180度回転した位置において電界を検出して、三次元電界を計測することを特徴とする。
【0010】
プローブのL字水平部の構造をなくしたので、被計測領域には1方向から挿入でき、被測定領域を乱すことなく、プローブ軸の回転によって微小領域における直交3軸方向の電界検出が可能となる。本発明の計測電界の演算は、検出電位差の四則演算のみで、それぞれの三次元直交成分を求めることが可能となる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図3〜図5の実施例を参照して説明する。
図3は本発明の電界検出プローブ1A(断面)の概念図を示す。図中、1Aはプローブ、6は内部導体、7は外部導体(網目状)、8は絶縁材、9は絶縁被覆を表し、これらの構成は同軸ケーブルを構成している。10はプローブ先端の導体露出部以外固定、絶縁する絶縁・接着・固定材(接着剤)、11はプローブケーシングを表す。
【0012】
同軸ケーブルの内部導体の先端露出部2と外部導体の先端露出部3は中心軸に対して傾斜した先端面11Bから所定距離露出している。プローブの先端の先端露出部以外は、10の絶縁・接着・固定材(接着剤)により外部と絶縁され、プローブケーシング11に埋入されている。11Aはプローブ1Aを同軸ケーブルの中心軸周りに回転させるための回転機構に係合される係合部材である。
【0013】
外部導体(網目状導体)7はその一部分のみが線状に加工されて先端露出部を構成する。図3の例では、先端露出部2,3間の距離を長くとるため、同軸ケーブル径周囲の位置に先端露出部2,3は配置されている。内部導体、外部導体をそのまま延長して先端露出部2,3を構成しても良い。
【0014】
図4は、本発明の電界検出プローブ1Aを使用した電界計測装置構成例の模式図を示す。20は被測定域、21はプローブ固定枠、22は同軸ケーブル、23はオシロスコープ等電位計測器、24は演算記録装置、25はプローブ1を支持し、プローブ垂直軸周りに回転させる回転・支持装置を表す。なお、電位計測器(オシロスコープ)23に表示された図の波形は、電界発生用コイル18に流れるパルス電流によって被測定域に誘起された電界を計測した場合の波形である。プローブの同軸ケーブルの末端同軸ケーブル22は電位計測器23に結線されている。
【0015】
図5は、本発明の電界検出プローブによる電界計測方法の原理を説明する図である。図5(a)は定義されたプローブ座標系を示す。プローブの中心軸方向をZ軸、プローブの先端露出部2,3間を結ぶ直線とZ軸との交点Oをとおり該直線とZ軸を含む平面上でZ軸に垂直な軸をX軸とし、該交点をとおりZ軸,X軸に垂直な軸をY軸とする(図では、Y軸方向は紙面に対して向こう側方向である。)。該交点が座標系原点である。傾斜した先端面11BはY軸に平行な面である。被測定域の求める電界のX軸方向、Y軸方向、Z軸方向の成分をそれぞれEx、Ey、Ezで表す。
【0016】
図5(b)はプローブの初期位置、同(c)は初期位置からZ軸回りに90度回転させたプローブの位置、同(d)は、Z軸回りに180度回転させたプローブの位置での状態を示す。初期位置、90度回転させた位置、180度回転した位置での先端露出部2,3間における電位差を、それぞれV,V,Vで表す。電位差V、V、Vは、X軸成分Vx、Y軸成分Vy、Z軸成分Vzにより、次の(1)式〜(3)式で表せる。
【0017】
=Vx+Vz (1)
=Vy+Vz (2)
=−Vx+Vz (3)
【0018】
(1)式〜(3)式をもとに、Vx、Vy、Vzは次の(4)式〜(6)式により求まる。
Vx=(V−V)/2 (4)
Vy=V−(V+V)/2 (5)
Vz=(V+V)/2 (6)
【0019】
(4)式〜(6)式をもとに、目的とする電界のX軸成分Ex、Y軸成分Ey、Z軸成分Ezは次の(7)式〜(9)式により求まる。ここでbは先端露出部間距離(m)、θはプローブ中心軸(Z軸)と、先端露出部を結ぶ直線がなす角度(度)である。
Ex=Vx/(b・sinθ) (7)
Ey=Vy/(b・sinθ) (8)
Ez=Vz/(b・cosθ) (9)
【0020】
先ず、プローブの初期位置(図5(b))において先端露出部間の電位差を検出する。得られた値がVである。同様に90度回転位置(図5(c))、180度回転位置(図5(d))で先端露出部間の電位差V、Vが検出され、(4)式〜(6)式により軸方向の電位Vx、Vy、Vzが演算される。(7)式〜(9)式により電界のX軸、Y軸、Z軸成分Ex(V/m)、Ey(V/m)、Ez(V/m)が演算される。この電界は、座標系原点の電界である。
【0021】
図5の装置において、本発明のプローブ1Aは、必要な場合設けられる係合部材11Aで回転機構に係合されている。回転指示装置によりプローブは90度、180度とZ軸回りに駆動される。プローブの初期位置、90度回転、180度回転位置において、検出された電位差は、演算・記録装置24において電界の3次元直交成分が演算記憶される。
【0022】
図6は、従来型プローブで計測した一方向(Ex方向)の電界をレファレンスとし、本発明によるプローブとの結果を比較した例を示す。外径1.3mmの細径同軸ケーブル(SUMITOMO SS753201)を使用し、従来型プローブの外部導体と内部導体の先端露出部間の距離は9mmで、本発明のプローブの外部導体と内部導体の先端露出部間の距離(b)は約2.4mm、傾斜角(θ)約60度、プローブケーシング外径約2.4mmである。
【0023】
横軸は従来型プローブを用いて計測した一方向(X軸)での電界Exを示し、縦軸は本発明のプローブを用いて計測した電界である。両者の関係はほぼ線形であり、回帰分析係数は1.05であった。これらは、校正により、より正確な電位検出が可能となる。これは、他の方向での電位Vy、Vzに関しても同様である。
【0024】
【発明の効果】
上述したように、本発明の電界検出プローブは、被計測体へ1方向からの挿入のみで、軸を180度回転することによって、直交3軸方向の電界計測を可能とした。更に、プローブを細径化する(直径0.6mm等)ことにより、より微小領域での計測も可能となる。プローブの回転操作による被測定領域の乱れ、場合によっては破壊の可能性はより少なくなる。例えば、マウスの脳の電界計測に際して、脳細胞を切断することなく電界を有効に測定できた。
【図面の簡単な説明】
【図1】従来の電界検出プローブ例(その1)を示す。
【図2】従来の電界検出プローブ例(その2)を示す。
【図3】本発明の一実施例を示す断面図の概念図を示す。
【図4】本発明による三次元計測装置例を示す。
【図5】本発明による三次元電界計測方法の原理を説明する図である。
【図6】検出電界の比較例を示す。
【符号の説明】
1 プローブ(従来型)
1A プローブ
2 同軸ケーブル内部導体の先端露出部
3 同軸ケーブル外部導体の先端露出部
6 同軸ケーブル内部導体
7 同軸ケーブル外部導体
11 プローブケーシング
11A 係合部材
11B 傾斜した先端面
24 演算・記録装置
25 回転・支持装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in an electric field detection probe and a three-dimensional electric field measurement method using the probe.
[0002]
[Prior art]
Conventionally, as an electric field measurement method in liquid, for example, a probe that bends the tip of a coaxial cable vertically, exposes the tip of the inner conductor and the outer conductor at a certain distance at the tip, and measures the electric field therebetween. It was used.
[0003]
FIG. 1A and FIG. 2 show a conventional probe (see Non-Patent Document 1 and Non-Patent Document 2). FIG. 1B is an enlarged view of the probe shown in FIG. In the figure, 1 is a probe, 1A is a shaft portion, 1B is a horizontal portion bent vertically in an L shape with respect to the shaft portion 1A, 2 is a tip exposed portion of the inner conductor, 3 is a tip exposed portion of the outer conductor, 4 Reference numerals 5 denote probe output terminals connected to the inner conductor and the outer conductor, respectively. Reference numeral 15 denotes physiological saline, 16 denotes a container, 17 denotes a table on which the container 16 is placed, 18 denotes an electric field generating coil for generating a potential in the physiological saline 15, and 19 denotes a probe fixing frame. In addition, since the thing with the same referential mark of this specification and drawing shows the same function, description is abbreviate | omitted.
[0004]
In both probes of FIGS. 1 and 2, the inner conductor 2 and the outer conductor 3 are exposed at an interval of about 1 cm. Then, the electric field difference (V / m) between the outer conductor and the inner conductor is calculated by measuring the potential difference (V) between the outer conductor and the exposed end of the inner conductor with an oscilloscope or the like. The electric field generating coil 19 is for generating an electric field in the physiological saline 16 and testing the function of the probe 1.
[0005]
Furthermore, in a circularly polarized wave and linearly polarized wave primary primary radiator, an L-shape that detects an electric field by rotating so as to be coupled to the electric field direction of the desired electromagnetic wave for detecting the electric field of the horizontally polarized wave and the vertically polarized wave. There is a type probe (see Patent Document 1, for example).
[0006]
[Non-Patent Document 1]
PJ Maccabee, VE Amassian, RQ Cracco, JB Cracco, L. Eberle and A. Rudell, Stimulation of the Human Nervous System Using the Magnetic Coil, Journal of Clinical Neurophysiology, Vol. 8, No. 1 (1991) p 38-55
[Non-Patent Document 2]
Makoto Kobayashi, Shoogo Ueno, Takahide Kurokawa, Importance of soft tissue inhomogeneity in magnetic peripheral nerve stimulation, Elecrtroecnephalography and clinical Neurophysiology, 105 (1997), p406-413
[Patent Document 1]
JP-A-5-83004 [0007]
[Problems to be solved by the invention]
However, the conventional probe has two problems. One is that the electric field can be measured only in one plane (XY plane) by rotating around the Z axis in FIG. 1, and the second is that the length of the L-shaped horizontal part (see FIG. A circular region having a radius of 1 (b) is essential for the measured side. This rotation of the probe disturbs the area to be measured and can possibly destroy it. In particular, when measuring an electric field in a living body, the cell is cut, so it cannot be used.
[0008]
[Means for solving problems]
In order to solve the above problems, the electric field detection probe of the present invention is characterized in that the exposed end portions of the inner conductor and the outer conductor of the coaxial cable are exposed from the tip surface inclined with respect to the central axis.
[0009]
Furthermore, the three-dimensional measurement method of the present invention is such that the tip portions of the inner conductor and outer conductor of the coaxial cable are exposed from the inclined surface with respect to the central axis, and an electric field detection provided with an engagement member that enables the tip portions to rotate. The three-dimensional electric field is measured by detecting the electric field at the position where the probe is rotated 90 degrees and 180 degrees from the initial position.
[0010]
Since the structure of the L-shaped horizontal part of the probe is eliminated, it can be inserted into the measurement area from one direction, and the electric field can be detected in three orthogonal directions in the micro area by rotating the probe axis without disturbing the measurement area. Become. The calculation of the measurement electric field of the present invention can be obtained only by the four arithmetic operations of the detected potential difference, and the respective three-dimensional orthogonal components can be obtained.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the examples of FIGS.
FIG. 3 is a conceptual diagram of the electric field detection probe 1A (cross section) of the present invention. In the figure, 1A is a probe, 6 is an internal conductor, 7 is an external conductor (mesh-like), 8 is an insulating material, and 9 is an insulating coating. These configurations constitute a coaxial cable. Reference numeral 10 denotes an insulating / adhesive / fixing material (adhesive) for fixing and insulating other than the exposed conductor at the tip of the probe, and 11 denotes a probe casing.
[0012]
The exposed end portion 2 of the inner conductor of the coaxial cable and the exposed end portion 3 of the outer conductor are exposed a predetermined distance from the end face 11B inclined with respect to the central axis. Except for the tip exposed portion at the tip of the probe, it is insulated from the outside by 10 insulating / adhesive / fixing materials (adhesive) and embedded in the probe casing 11. 11A is an engaging member engaged with a rotation mechanism for rotating the probe 1A around the central axis of the coaxial cable.
[0013]
Only a part of the outer conductor (mesh-like conductor) 7 is processed into a linear shape to constitute a tip exposed portion. In the example of FIG. 3, the tip exposed portions 2 and 3 are arranged at positions around the coaxial cable diameter in order to increase the distance between the tip exposed portions 2 and 3. The tip exposed portions 2 and 3 may be configured by extending the inner conductor and the outer conductor as they are.
[0014]
FIG. 4 is a schematic diagram of a configuration example of an electric field measurement device using the electric field detection probe 1A of the present invention. 20 is a measurement area, 21 is a probe fixing frame, 22 is a coaxial cable, 23 is an oscilloscope equipotential measuring device, 24 is an arithmetic recording device, 25 is a rotation / support device that supports the probe 1 and rotates it around the probe vertical axis. Represents. Note that the waveform shown in the figure displayed on the potential measuring instrument (oscilloscope) 23 is a waveform when an electric field induced in the measurement area by a pulse current flowing through the electric field generating coil 18 is measured. A terminal coaxial cable 22 of the probe coaxial cable is connected to a potential measuring device 23.
[0015]
FIG. 5 is a diagram for explaining the principle of the electric field measurement method using the electric field detection probe of the present invention. FIG. 5A shows a defined probe coordinate system. The central axis direction of the probe is the Z-axis, and the axis perpendicular to the Z-axis on the plane including the straight line and the Z-axis passing through the intersection O of the straight line connecting the probe tip exposed portions 2 and 3 and the Z-axis is the X-axis. The Z axis and the axis perpendicular to the X axis passing through the intersection are defined as the Y axis (in the figure, the Y axis direction is the direction away from the paper surface). The intersection is the origin of the coordinate system. The inclined tip surface 11B is a surface parallel to the Y axis. Ex, Ey, and Ez represent components in the X-axis direction, Y-axis direction, and Z-axis direction of the electric field required in the measurement area.
[0016]
5B shows the initial position of the probe, FIG. 5C shows the position of the probe rotated 90 degrees around the Z axis from the initial position, and FIG. 5D shows the position of the probe rotated 180 degrees around the Z axis. The state at is shown. The potential differences between the tip exposed portions 2 and 3 at the initial position, the position rotated 90 degrees, and the position rotated 180 degrees are represented by V 1 , V 2 , and V 3 , respectively. The potential differences V 1 , V 2 , V 3 can be expressed by the following formulas (1) to (3) based on the X-axis component Vx, the Y-axis component Vy, and the Z-axis component Vz.
[0017]
V 1 = Vx + Vz (1)
V 2 = Vy + Vz (2)
V 3 = −Vx + Vz (3)
[0018]
Based on the formulas (1) to (3), Vx, Vy, and Vz are obtained by the following formulas (4) to (6).
Vx = (V 1 −V 3 ) / 2 (4)
Vy = V 2 − (V 1 + V 3 ) / 2 (5)
Vz = (V 1 + V 3 ) / 2 (6)
[0019]
Based on the equations (4) to (6), the X-axis component Ex, the Y-axis component Ey, and the Z-axis component Ez of the target electric field are obtained by the following equations (7) to (9). Here, b is a distance (m) between the tip exposed portions, and θ is an angle (degree) formed by a straight line connecting the probe central axis (Z axis) and the tip exposed portion.
Ex = Vx / (b · sin θ) (7)
Ey = Vy / (b · sin θ) (8)
Ez = Vz / (b · cos θ) (9)
[0020]
First, the potential difference between the tip exposed portions is detected at the initial position of the probe (FIG. 5B). The resulting value is V 1. Similarly, potential differences V 2 and V 3 between the tip exposed portions are detected at the 90 ° rotation position (FIG. 5C) and the 180 ° rotation position (FIG. 5D), and the equations (4) to (6) are detected. Thus, axial potentials Vx, Vy, and Vz are calculated. The X-axis, Y-axis, and Z-axis components Ex (V / m), Ey (V / m), and Ez (V / m) of the electric field are calculated by the equations (7) to (9). This electric field is the electric field at the origin of the coordinate system.
[0021]
In the apparatus shown in FIG. 5, the probe 1A of the present invention is engaged with a rotating mechanism by an engaging member 11A provided when necessary. The probe is driven around the Z axis by 90 degrees and 180 degrees by the rotation instruction device. The three-dimensional orthogonal component of the electric field is calculated and stored in the calculation / recording device 24 for the detected potential difference at the initial position of the probe, 90 ° rotation and 180 ° rotation positions.
[0022]
FIG. 6 shows an example in which the electric field in one direction (Ex direction) measured with a conventional probe is used as a reference and the result of the probe according to the present invention is compared. Using a thin coaxial cable (SUMITOMO SS753201) with an outer diameter of 1.3 mm, the distance between the outer conductor of the conventional probe and the exposed end of the inner conductor is 9 mm, and the tip of the outer conductor and inner conductor of the probe of the present invention The distance (b) between the exposed portions is about 2.4 mm, the inclination angle (θ) is about 60 degrees, and the outer diameter of the probe casing is about 2.4 mm.
[0023]
The horizontal axis represents the electric field Ex in one direction (X axis) measured using the conventional probe, and the vertical axis represents the electric field measured using the probe of the present invention. The relationship between the two was almost linear, and the regression analysis coefficient was 1.05. These can be more accurately detected by calibration. The same applies to the potentials Vy and Vz in other directions.
[0024]
【The invention's effect】
As described above, the electric field detection probe of the present invention can measure electric fields in three orthogonal directions by rotating the shaft 180 degrees only by inserting the object into the measurement object from one direction. Further, by reducing the diameter of the probe (diameter 0.6 mm, etc.), it is possible to measure in a finer region. There is less possibility of disturbance of the measurement area due to the rotation of the probe, and in some cases destruction. For example, when measuring the electric field of the mouse brain, the electric field could be measured effectively without cutting the brain cells.
[Brief description of the drawings]
FIG. 1 shows an example (part 1) of a conventional electric field detection probe.
FIG. 2 shows a second example of a conventional electric field detection probe.
FIG. 3 is a conceptual diagram of a cross-sectional view showing an embodiment of the present invention.
FIG. 4 shows an example of a three-dimensional measuring apparatus according to the present invention.
FIG. 5 is a diagram illustrating the principle of a three-dimensional electric field measurement method according to the present invention.
FIG. 6 shows a comparative example of a detection electric field.
[Explanation of symbols]
1 Probe (conventional type)
1A Probe 2 Coaxial cable inner conductor tip exposed portion 3 Coaxial cable outer conductor tip exposed portion 6 Coaxial cable inner conductor 7 Coaxial cable outer conductor 11 Probe casing 11A Engaging member 11B Inclined tip surface 24 Calculation / recording device 25 Rotation / Support device

Claims (2)

同軸ケーブルの内部導体、外部導体の先端部分を中心軸に対して傾斜した先端面から露出させたことを特徴とする電界検出用プローブ。  A probe for electric field detection, characterized in that the inner conductor and outer conductor of a coaxial cable are exposed from the tip surface inclined with respect to the central axis. 同軸ケーブルの内部導体、外部導体の先端部分を中心軸に対して傾斜した先端面から露出させた電界検出用プローブにより、初期位置、90度回転、180度回転位置における電界検出により、三次元電界を計測することを特徴とする三次元電界計測方法。  A three-dimensional electric field is detected by detecting the electric field at the initial position, 90 degree rotation, and 180 degree rotation position by using an electric field detection probe in which the inner conductor and outer conductor of the coaxial cable are exposed from the tip surface inclined with respect to the central axis. A three-dimensional electric field measurement method characterized by measuring a current.
JP2002376878A 2002-12-26 2002-12-26 Electric field detection probe and three-dimensional electric field measurement method using the probe Expired - Lifetime JP3752541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376878A JP3752541B2 (en) 2002-12-26 2002-12-26 Electric field detection probe and three-dimensional electric field measurement method using the probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002376878A JP3752541B2 (en) 2002-12-26 2002-12-26 Electric field detection probe and three-dimensional electric field measurement method using the probe

Publications (2)

Publication Number Publication Date
JP2004205416A JP2004205416A (en) 2004-07-22
JP3752541B2 true JP3752541B2 (en) 2006-03-08

Family

ID=32814210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376878A Expired - Lifetime JP3752541B2 (en) 2002-12-26 2002-12-26 Electric field detection probe and three-dimensional electric field measurement method using the probe

Country Status (1)

Country Link
JP (1) JP3752541B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833861A (en) * 2015-04-30 2015-08-12 江汉大学 Three-dimensional electric field intensity measuring apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029454B2 (en) 2003-11-05 2011-10-04 Baxter International Inc. High convection home hemodialysis/hemofiltration and sorbent system
JP4635544B2 (en) * 2004-09-29 2011-02-23 株式会社日立製作所 Electric field distribution measuring method and electric field distribution measuring apparatus
JP4747208B2 (en) * 2008-06-03 2011-08-17 キヤノン株式会社 Electromagnetic field measuring apparatus and method
JP2010223934A (en) 2009-02-27 2010-10-07 Fujitsu Ltd Electric field sensing probe, method of detecting electric field, and method of manufacturing circuit board
CN102879650B (en) * 2012-09-29 2015-05-27 兰州大学 Intelligent range-adjustable sandstorm electric field measuring system based on shielded probe
CN102879653B (en) * 2012-09-29 2015-04-15 兰州大学 Three-dimensional probe and intelligent sandstorm electric field measuring system based thereon
CN110082611B (en) * 2019-04-19 2021-03-09 中国人民解放军海军工程大学 Positioning method of electric field measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833861A (en) * 2015-04-30 2015-08-12 江汉大学 Three-dimensional electric field intensity measuring apparatus

Also Published As

Publication number Publication date
JP2004205416A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP5570691B2 (en) Method and apparatus for guiding a locking screw distally into an intramedullary nail
JP5666091B2 (en) Magnetic tracking system for imaging system
JP6298126B2 (en) Probe device
US8249689B2 (en) Coil arrangement for electromagnetic tracking method and system
US5711299A (en) Surgical guidance method and system for approaching a target within a body
Hummel et al. Design and application of an assessment protocol for electromagnetic tracking systems
US8391952B2 (en) Coil arrangement for an electromagnetic tracking system
JP6710747B2 (en) Position tracking system
ES2279540T3 (en) CALIBRATION OF RADIANT ELEMENT.
Wang et al. A localization method using 3-axis magnetoresistive sensors for tracking of capsule endoscope
JP3752541B2 (en) Electric field detection probe and three-dimensional electric field measurement method using the probe
US20080238413A1 (en) Electromagnetic tracking method and system
US20210270922A1 (en) Magnetic field probe for determining a disposition of an implantable magnetic marker
JP2019181279A (en) Magnetomotive probe system and method of use thereof
JP3237590B2 (en) Magnetic field measurement device
JP2015165890A (en) Calibration jig for flat location pad
US20220323160A1 (en) Magnetic field probe for determining a disposition of an implantable marker using two or more detection zones
JP2018173340A (en) Vector potential detector, ac magnetic field detector, vector potential measuring device, and tomography device
JP2021081223A (en) Smart guide wire and guide wire operation system
Stawicki et al. A new transducer for magnetic induction tomography
CN108519563A (en) A kind of high-resolution orthogonal fluxgate three axis magnetometer and its manufacturing technology based on amorphous wire
Quirin et al. Towards tracking of deep brain stimulation electrodes using an integrated magnetometer
CN114732521B (en) Tracking and positioning precision evaluation system of magnetic positioning device
WO2023167051A1 (en) METHOD FOR PRODUCING Cr-Ni-BASED STAINLESS MAGNET FOR GUIDE WIRES, SMART GUIDE WIRE, GUIDE WIRE OPERATION SYSTEM, AND GUIDE WIRE OPERATION ROBOT SYSTEM
JP2003307404A (en) Method and apparatus for measuring shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

R150 Certificate of patent or registration of utility model

Ref document number: 3752541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term