WO2023167051A1 - METHOD FOR PRODUCING Cr-Ni-BASED STAINLESS MAGNET FOR GUIDE WIRES, SMART GUIDE WIRE, GUIDE WIRE OPERATION SYSTEM, AND GUIDE WIRE OPERATION ROBOT SYSTEM - Google Patents

METHOD FOR PRODUCING Cr-Ni-BASED STAINLESS MAGNET FOR GUIDE WIRES, SMART GUIDE WIRE, GUIDE WIRE OPERATION SYSTEM, AND GUIDE WIRE OPERATION ROBOT SYSTEM Download PDF

Info

Publication number
WO2023167051A1
WO2023167051A1 PCT/JP2023/006159 JP2023006159W WO2023167051A1 WO 2023167051 A1 WO2023167051 A1 WO 2023167051A1 JP 2023006159 W JP2023006159 W JP 2023006159W WO 2023167051 A1 WO2023167051 A1 WO 2023167051A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
guide wire
rotation
tip
sensor
Prior art date
Application number
PCT/JP2023/006159
Other languages
French (fr)
Japanese (ja)
Inventor
本蔵義信
本蔵晋平
Original Assignee
マグネデザイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マグネデザイン株式会社 filed Critical マグネデザイン株式会社
Publication of WO2023167051A1 publication Critical patent/WO2023167051A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising

Definitions

  • the present invention includes an in vivo sensor, a built-in guide wire with a magnet manufactured by a method for manufacturing a Cr—Ni stainless steel magnet, a magnetic vector sensor grid placed outside the patient's body (ex vivo), and various sensor data.
  • the present invention relates to a smart guide wire, a guide wire manipulation system, and a guide wire manipulation robot system comprising a sensor data processing device and its display device obtained from, etc.
  • Catheterization is an operation in which a catheter is inserted directly into the patient's body instead of surgery, and the burden on the patient is light.
  • the treating doctor identifies the diseased area on the blood vessel map created by X-rays, and guides the catheter toward that position.
  • the treating doctor manipulates the catheter while observing the tip position of the catheter on the blood vessel map with X-rays.
  • the burden on the patient's body due to long-time irradiation of X-rays and administration of a contrast agent is a problem.
  • X-ray exposure of treating doctors and the like is also a problem. Therefore, the technological development of robot therapy is being actively pursued.
  • Patent Document 1 For example, a magnet or sensor is inserted into the patient's body (blood vessel) along with a catheter, and a magnetic sensor or the like is placed outside the patient's body (body), and the treating doctor treats the patient while looking at a display device (display).
  • a display device display
  • Non-Patent Document 1 Small and highly sensitive strain gauges have been researched and developed using semiconductor methods and stress impedance sensors (hereinafter referred to as SI sensors) (Non-Patent Document 1), but have not yet been successfully developed.
  • the tip of the guide wire is controlled by the torque applied to the driver at hand and the amount of rotation of the torquer, but the current situation is that the operation depends on the experience and intuition of the treating doctor. Therefore, many years of experience and advanced knowledge are required, which is an obstacle to the training of treating doctors. There is a need to quantify and visualize the control parameters on the driver side, and to advance the quantification and visualization of the movement of the tip of the wire and the contact pressure with the blood vessel corresponding to it, to make the surgery easier for the treating doctor. .
  • a first object of the present invention is to A smart guide wire consisting of a guide wire consisting of a wire tip to be inserted into the living body (inside a blood vessel), a driver part, and a wire connecting part that connects the two, and a data processing device outside the patient's body that operates the guide wire, It is a particularly difficult development task to develop a device that includes a magnet at the wire tip of a guide wire, attaches a magnetic field sensor to the outside of the body, and detects the in vivo position of the magnet. This is because there is a contradictory characteristic between the size of the magnet and the positional accuracy. In the present invention, this problem is solved by modifying the Cr--Ni stainless steel member at the tip of the wire itself into a magnet.
  • a strain gauge is attached to the tip of the wire, and a device for measuring the load applied to the tip is provided
  • the driver unit is equipped with a torque sensor, torquer rotation measurement device, driver rotation angle detection sensor, and rotation speed detection sensor.
  • a magnetic vector sensor grid for placement outside the patient's body and a position sensor data processor for calculating the position and orientation of the wire tip using data from the magnetic vector sensor grid;
  • a stress sensor data processing device that calculates the contact pressure and bending stress of the wire tip, the torque and amount of rotation of the driver part, and the rotation direction and rotation speed of the driver, a rotation (torque, rotation amount) sensor data processing device, and a rotation detection ( The purpose is to develop a sensor-embedded smart guidewire consisting of a sensor data processing device and a display device that displays the calculated measured values.
  • the first issue in the development of new elemental technology is to focus on the fact that the guide wire is made of Cr-Ni stainless steel, which is a semi-hard magnetic material. After reforming to , part of the tip is magnetized to form a Cr-Ni stainless steel magnet, and the magnetic field emitted therefrom is detected by a magnetic vector sensor grid placed outside the patient's body, and the magnetic vector sensor grid.
  • the goal is to develop a smart guidewire consisting of a position sensor data processor that uses data to calculate the position and orientation of the wire tip and a display that displays the calculated position and orientation values.
  • the wire tip of the guide wire is made of Cr—Ni stainless steel
  • the hard magnetic properties are improved, and the magnetic properties are obtained by magnetizing only a part of the tip and the semi-hard magnetic material over the entire length of the wire.
  • As a permanent magnet there has been a demand for the development of a composite magnetic material that combines both properties.
  • the Cr—Ni stainless steel magnet in order to ensure the target positioning accuracy of 0.1 mm or less when the distance between the tip and the center of the grid is 5 cm or less, and the azimuth accuracy of 1 degree or less, the Cr—Ni stainless steel magnet must be 1 ⁇ 10 Development of a magnet with a magnetic moment of -9 Wbm to 20 ⁇ 10 -9 Wbm or more and development of a magnetic vector sensor with a magnetic detection power of 10 nT or less have been desired. Strictly speaking, the positional accuracy greatly depends on the depth of the tip inside the body. Therefore, considering the treatment depth of the tip of the guidewire, the strength of the tip magnet and the detection power of the magnetic sensor are combined, preferably 1 mm or less. must ensure an accuracy of 0.1 mm or less.
  • the second issue in the development of new elemental technology is to develop an ultra-compact strain gauge with a width of 0.2mm and a length of 3mm, and a highly sensitive strain gauge with a gauge factor of 1000 or more. It is possible to detect the contact pressure and bending stress of the tip of the wire by installing it on the part of the wire.
  • the third issue in the development of new elemental technology is to develop a torque sensor using the strain gauge developed above.
  • the fourth issue in the development of new elemental technology is to attach a torque sensor to the handle and torquer of the driver part, measure the force applied to the wire tip rotation with the torque sensor on the handle, and load the wire insertion with the torque applied to the torquer.
  • the pressing force applied is measured, the amount of relative rotation between the handle and the torquer is measured by a rotation amount measuring device, and the feed amount of the wire is calculated from the amount of rotation.
  • a small and highly sensitive twist gauge and a small and small rotational amount measuring device capable of detecting minute rotation angles.
  • the fifth issue in the development of new elemental technology is to attach a motion sensor to the steering wheel of the driver to detect the direction of rotation, the amount of rotation, and the rotation speed of the steering wheel. Therefore, the azimuth accuracy of the electronic compass is improved from 5 degrees to about 0.1 degrees, and the azimuth accuracy of the composite sensor that combines the electronic compass, 3-axis acceleration sensor and gyro sensor is reduced from about 10 degrees to 1 degree or less. It is to improve.
  • the second subject of the present invention is A smart guide wire with built-in magnets and sensors, a vascular network map obtained from X-ray images, a marking system that designates the treatment affected area position on the vascular network map, and a position that transmits the position of the tip of the guide wire at any time to the treating doctor
  • the transmission system calculates and transmits to the treating physician information consisting of torque, wire push-in amount and rotation angle required to guide the guidewire tip to the next target position at the next time, that is, after a predetermined time interval. It is to develop an information transmission system and a guide wire operation assist system that assists the treatment in which the treating physician repeats this operation and finally guides the smart guide wire to the position of the treatment affected area.
  • the third subject of the present invention is In the above guide wire operation assist system, it is to develop a guide wire operation robot system in which the operation of the driver is replaced by a robot operation system instead of the treating doctor.
  • the first issue in the development of new elemental technology is to improve the hard magnetic properties of the semi-hard magnetic material of the Cr-Ni stainless steel guide wire, and partially magnetize the tip to 1 ⁇ 10 -9 Wbm ⁇ .
  • a Cr—Ni stainless steel magnet having a magnetic moment of 20 ⁇ 10 ⁇ 9 Wbm is used, and the magnetic field generated therefrom is detected by an external magnetic vector sensor grid.
  • a smart guidewire consisting of a sensor data processor that calculates position and orientation and a display device that displays the calculated position and orientation measurement values (position and orientation display device).
  • the Cr--Ni stainless steel at the tip of the guide wire consists of a core wire, a spring coil and a reinforcing coil.
  • the distal end portion of the guide wire is made of Cr--Ni (austenitic) non-magnetic stainless steel which is subjected to strong wire drawing at a workability of 50% or more to increase the strength of the material and enhance the spring property.
  • the Md point which is a measure of the stability of the austenitic layer of the austenitic stainless steel, is adjusted appropriately to the amount of Cr and the amount of Ni, and the working temperature is set to -50°C to 100°C. to ensure a martensite content of 50-95%.
  • the Md point is the temperature at which 50% of the martensite content is generated when 30% cold working is applied, and is represented by formula (1).
  • the present inventors processed a Cr—Ni stainless steel guide wire at a workability of 50% or more, made the amount of martensite 60% or more, had a saturation magnetization Ms of 10 kG or more, and an anisotropy of 800 G or more.
  • a semi-hard magnetic material having a magnetic field and a coercive force of 100 Oe or more is used.
  • tension heat treatment is performed at 550° C. for 30 minutes under a tension of 25 kg/mm 2 to magnetize in the drawing direction, that is, in the direction of the fiber structure.
  • a new finding was obtained that the tensile strength increased by 30% or more compared to the as-processed state, reaching 0.7 T or more.
  • the magnet properties of the guide wire are set such that the amount of martensite is 60% or more, the coercive force is 100 Oe or more, the saturation magnetization is 1 T or more, and the residual magnetism is 0.7 T or more, and the shape of the guide wire is 0.3 mm in diameter. 1 mm, the length of the saturated magnetized portion is 5 mm to 25 mm, and the permeance coefficient is 5 to 80, a magnet having a magnetic moment of 1 ⁇ 10 ⁇ 9 Wbm to 20 ⁇ 10 ⁇ 9 Wbm. found to get Regarding the tension heat treatment, the residual magnetism Br was improved by about 20% at a heat treatment temperature of 500 to 570° C. and a tension of 5 to 100 kg/mm 2 .
  • the coercive force of the Cr--Ni stainless steel magnet is about 100 to 200 Oe. This value is considerably smaller than the coercive force of 4 to 40 kOe for ferrite magnets and rare earth magnets, but assuming a normal magnetic field environment of 50 Oe or less by making the magnet shape elongated and having a permeance coefficient of 5 or more, , the demagnetization due to the magnetic field can be avoided.
  • FIG. 2 shows an example of measurement results of the magnetic field emitted from a Cr—Ni stainless steel magnet that is part of the wire tip of the guide wire. Assuming a maximum measurement height (distance from the magnet) of 150 mm, it is necessary to detect a minute magnetic field of 1 to 10 nT. Therefore, we have developed a highly sensitive magnetic vector sensor grid (hereinafter referred to as sensor grid) that can detect minute magnetic fields of 0.1 to 10 nT.
  • sensor grid highly sensitive magnetic vector sensor grid
  • a magnetic vector sensor is a magnetic sensor that can simultaneously measure three magnetic field components at any point at any time Ti.
  • Conventional magnetic positioning systems often use three-axis magnetic sensors. In this case, the measurement positions of the magnetic field components Hx, Hy, and Hz deviate by about 0.5 mm to 2 mm, and the deviations are directly added to the errors in the positional accuracy, thereby increasing the errors.
  • the present invention is based on the development of a small magnetic vector sensor capable of detecting an nT magnetic field, and by using it, a positional accuracy of 0.1 mm or less is ensured.
  • the present invention detects the magnetic field from the ultra-small magnet at the tip of the guide wire and determines its position with an accuracy of 0.1 mm. If there is a deviation of 0.1 mm or more, the required accuracy cannot be ensured.
  • the thickness can be suppressed to 5 ⁇ m or less. In the present invention, the deviation should be 0.01 mm or less.
  • the principle of calculating the measurement positions X, Y, and Z of the magnet and the orientations ⁇ and ⁇ of the magnet is that, as a general method, a magnetic field emitted from a magnet oriented in a predetermined direction at a predetermined position is generated at each magnetic vector sensor position.
  • Non-Patent Document 1 As a strain gauge.
  • the miniaturization of the SI sensor is based on the data of Non-Patent Document 1, and as a result of intensive research, the length of the amorphous wire of the SI element is reduced from 30 mm to 3 mm or less, and the diameter of the amorphous wire is reduced from 30 ⁇ m to 10 ⁇ m. Further, by increasing the excitation frequency from 20 MHz to 200 MHz, it was found that an SI sensor having a length of about 2 mm and a strain gauge factor of 1000 or more can be realized.
  • the inventor devised a structure in which the SI element can be easily attached to the device under test.
  • the feature of this structure is that the amorphous magnetostrictive wire (hereinafter referred to as magnetostrictive wire) as a stress detector and the magnetostrictive wire electrodes at both ends of the magnetostrictive wire are provided on the surface of the flexible substrate. It can be fixed to the surface of the device under test with an adhesive.
  • magnetostrictive wire amorphous magnetostrictive wire
  • the magnetostrictive wire is ring-shaped with permalloy to provide a magnetic shield.
  • FIG. 3 shows the shape of the SI element produced based on this finding.
  • a typical size is 0.2 mm wide and 2 mm long.
  • the electrodes are wire terminals at both ends of the wire and two electrode terminals for external connection.
  • the outer periphery is surrounded by a permalloy thin film and has a magnetic shielding structure.
  • the above numerical values are not limited as long as the sizes can be attached.
  • a pulse oscillator for applying a pulse current to the magnetostrictive wire and a sample hold for sampling and holding the impedance change corresponding to the strain amount generated in the magnetostrictive wire as the magnetostrictive wire voltage change.
  • an amplifier circuit that amplifies and outputs the hold voltage.
  • the magnetostrictive wire voltage can also be detected by an electronic circuit such as an integrating circuit method or an impedance analyzer method.
  • the wire tip consists of a highly springy portion and a relatively soft tip.
  • the distal end portion is curved for convenience of blood vessel route guidance, and the degree of curvature varies depending on the doctor and treatment site. In consideration of this, it is necessary to measure the contact pressure applied to the tip of the wire and the degree of bending. Therefore, as shown in FIG. 5, four SI elements are attached to the tip of the guide wire in 90-degree symmetry, and their outputs are connected to an external electronic circuit by flexible wiring, and the four values ( ⁇ x1, ⁇ x2, ⁇ y1, The average value of ⁇ y2) was calculated, and the value was obtained as the contact pressure (contact pressure).
  • FIG. 6 a combination of four electronic circuits shown in FIG. 3 was used.
  • ⁇ xy ( ⁇ x, ⁇ y) of the wire tip. It is now possible to determine the bending strength (ie bending angle).
  • FIG. devised In order to solve the third problem of new elemental technology development, as shown in FIG. devised.
  • SI sensor elements X1, X2, Y1, Y2
  • X1, X2, Y1, Y2 are arranged on a flexible substrate diagonally with four-fold symmetry around the origin (point O). Then, the stress in the X-axis direction, ⁇ x1 and ⁇ x2, is added to the stress ( ⁇ x1, ⁇ x2, ⁇ y1, ⁇ y2) measured by each SI sensor element, and the stress in the Y-axis direction perpendicular to the X-axis direction is obtained.
  • the above two torque sensors are attached to the handle of the driver part and the torquer respectively, and the torque sensor on the handle measures the force applied to the rotation of the wire tip. The pressing force was measured. The force applied to the torquer was measured by fixing the handle and rotating the torquer.
  • a magnetic scale memory is engraved on the surface of the torquer shaft, and the amount of rotation is measured by a magnetic sensor attached to the end face of the handle side to detect the amount of rotation. invented the device. Thereby, the amount of relative rotation between the handle and the torquer can be measured, and the feed amount of the wire can be calculated from the amount of rotation.
  • a motion sensor consisting of an electronic compass as a rotation angle detection sensor and a 3-axis acceleration sensor as a rotation speed detection sensor is attached to the steering wheel of the driver.
  • a direction and rotation speed We decided to detect the direction and rotation speed.
  • the azimuth accuracy of the electronic compass has been greatly improved from 5 degrees, which is the azimuth accuracy of a general-purpose electronic compass used in smartphones, etc., to about 0.1 degrees. did.
  • the rotation speed can also be measured by attaching a MEMS type gyro sensor at the same time.
  • the orientation of the tip of the wire is appropriately controlled by the rotation of the driver to efficiently guide along the course. Wires can now be guided.
  • path information of a blood vessel map measured from time t(0) to t(i-1) until reaching the tip position of the guidewire at a certain time t(i) Create a database that integrates the azimuth/position and movement amount of the tip position of the wire, the torque value on the driver side, the amount of rotation of the handle, the torque and amount of rotation of the torquer, and the measurement values of the wire feed length.
  • the azimuth and position to the tip position to be guided from an arbitrary time t(i) obtained by the guidewire operation assist system program to the next time t(i+1) are minute.
  • Inform the treating doctor of the amount of change determine the minute movement amount of the direction and position to the tip position to be guided based on it, enter the value with the input device, and automatically perform the input value so that it can be realized.
  • the Cr-Ni stainless steel at the tip of the guide wire is partially magnetized after tension heat treatment to form a permanent magnet, and the position thereof is calculated with an accuracy of 0.1 mm or less by a magnetic vector sensor system.
  • the contact pressure between the tip and the blood vessel, and the guidewire with built-in sensors such as a torque sensor, a rotation angle sensor, and a torquer rotation measurement device on the operating driver side at the treating doctor's hand. It is effective in digitizing direction and driver's operation information and transmitting it to the treating doctor to assist the treatment.
  • the treating doctor is assisted by advising the treating doctor on how to operate, such as the torque to be applied to the driver and the amount of rotation of the torquer, or by performing automatic operation, thereby reducing the X-ray irradiation time. It is a technology that makes it possible.
  • FIG. 2 is a diagram showing the relationship between the coercive force of a Cr—Ni stainless steel magnet and the amount of martensite.
  • FIG. 2 is a diagram showing the relationship between the magnetic field intensity generated by a Cr—Ni stainless steel magnet and the distance from the magnet. It is a figure which shows the structure of the SI element used for this invention.
  • FIG. 4 is a diagram showing an electronic circuit of an SI sensor used in the present invention; It is a figure which shows a mode that four SI elements (contact pressure sensor element) were attached to the wire front-end
  • FIG. 4 shows an electronic circuit for simultaneously measuring values from four SI elements;
  • FIG. 4 is a plan view showing a torque sensor element used in the present invention;
  • FIG. 3 is a diagram showing the configuration of a sensor-embedded guidewire;
  • the first embodiment of the present invention is a sensor data processing obtained from an in vivo sensor, a guide wire with a built-in magnet, a magnetic vector sensor grid placed outside the patient's body (ex vivo), and various sensor data.
  • a smart guidewire consisting of a device and its display.
  • a method for manufacturing a Cr--Ni stainless steel magnet for a guide wire, which enables the first embodiment, will be described as the first embodiment.
  • a method for manufacturing a Cr—Ni stainless steel magnet for a guide wire that constitutes a smart guide wire includes: (1) A wire of Cr—Ni system non-magnetic stainless steel is drawn at a workability of 50% or more to have a diameter of 0.3 mm to 1 mm, and a semi-hard magnetic characteristic having a martensite amount of 50 to 95%. forming a guidewire for a catheter; (2) The guide wire is subjected to tension heat treatment at a heat treatment temperature of 500 to 570° C. and a tension of 5 to 100 kg/mm 2 to improve the semi-hard magnetic properties to a saturation magnetization of 8,000 to 12,000 G and a saturation magnetization of 100 to 200 Oe.
  • the guide wire consists of a wire tip portion, a driver portion, and a wire connecting portion that connects the two,
  • the wire tip has a coercive force of 100 to 200 Oe, an anisotropic magnetic field of 800 G or more, a residual magnetism of 6,000 to 10,000 G, and a residual magnetism of 1 ⁇ 10 -9 Wbm to 20 ⁇ 10 -9 Wbm consisting of a magnet having a magnetic moment,
  • a magnetic vector sensor grid is provided in a diagnostic device placed outside the patient's body,
  • the magnetic vector sensor constituting the magnetic vector sensor grid has a magnetic detection power of 10 nT or less
  • a position sensor data processor uses the data measured by the magnetic vector sensor grid to calculate the position and orientation of the tip of the guidewire;
  • the display device displays the measured values of the position and orientation calculated by the position sensor data processing device.
  • the driver part of the guide wire consists of a handle and a torquer
  • the handle has a torque sensor that measures the torque applied to the handle
  • the torquer comprises a torquer rotation amount measuring device for measuring the amount of rotation of the torquer, a rotation sensor data processor that calculates the torque and amount of rotation of the driver; and a display device for displaying the measured values of the calculated torque and rotation amount.
  • the handle that constitutes the driver of the guide wire is provided with a rotation angle detection sensor that detects the rotation direction and a rotation speed detection sensor that detects the rotation speed, a rotation detection sensor data processor that calculates the rotational orientation and rotational speed of the driver section; and a display device for displaying a measured value consisting of the calculated rotational azimuth and rotational speed.
  • the smart guidewire will be described below. Improving the hard magnetic properties of the semi-hard magnetic material of the Cr--Ni stainless steel guide wire, and partially magnetizing the tip for a predetermined length to achieve 1 ⁇ 10 ⁇ 9 to 20 ⁇ 10 ⁇ 9 Wbm.
  • a sensor that uses a Cr-Ni stainless steel magnet with a large magnetic moment, detects the magnetic field emitted from it with an external magnetic vector sensor grid, and uses the data of the magnetic vector sensor grid to calculate the position and orientation of the tip of the guide wire. It is a smart guide wire consisting of a data processing device and a display device (position/orientation display device) that displays the calculated position/orientation measurement values.
  • the driver part of the guide wire is equipped with a strain gauge that measures the stress applied to the wire tip of this smart guide wire
  • the driver part of the guide wire is equipped with a torque sensor, a torquer rotation amount measuring device, a rotation angle detection sensor, and a rotation speed detection sensor, Equipped with a magnetic vector sensor grid external to the patient's body, a position sensor data processor that uses data from the magnetic vector sensor grid to calculate the position and orientation of the wire tip; Equipped with a stress sensor data processing device, a rotation sensor data processing device, and a rotation detection sensor data processing device that calculate the contact pressure and bending stress of the wire tip, and the torque, rotation amount, rotation direction, and rotation speed of the driver, respectively,
  • a smart guidewire comprising a display for displaying calculated measurements.
  • the basic function of the smart guidewire is to equip a part of the wire tip 41 of the guidewire 4 to be inserted into the living body with a magnet 415, and place a magnetic vector sensor grid (not shown) outside the patient's body.
  • a position/orientation (abbreviated as position) sensor data processor is provided for detecting the magnetic field emitted from the magnet by the magnetic vector sensor grid and using the detected data to calculate the position and orientation of the tip of the guidewire. Then, the position and orientation of the distal end portion of the guidewire are transmitted to the treating physician based on the calculated measurement values by a position/orientation display device (abbreviated as a display device).
  • the wire tip portion 41 is made of a semi-hard magnetic material such as Cr—Ni stainless steel, and a portion of the wire tip portion 41 extending from the tip of the guide wire 4 is magnetized to obtain a Cr— Composite magnetic wires made of Ni stainless steel magnets are used.
  • Part of the magnet at the tip of the wire is a Cr-Ni system non-magnetic stainless steel that is strongly worked at a workability of 50% or more to induce a martensite phase of 50% or more and then magnetized in the longitudinal direction.
  • - It is a Ni-based stainless magnet.
  • the Md point which is a measure of the stability of the austenite layer of austenitic stainless steel, is -50. °C to 100°C. Then, cold working of 50% to 90% is performed at room temperature to secure a martensite amount of 50% to 95%.
  • the Md point is the temperature at which 50% of the martensite content is generated when 30% cold working is applied, and is represented by formula (1).
  • Md30 (°C) 413 - 462 (% C + % N) - 9.2 (% Si) - 8.1 (% Mn) - 13.7 (% Cr) - 9.5 (% Ni) - 6 (% Cu)-18.5 (% Mo) (1)
  • the magnetic properties of the Cr--Ni stainless steel magnet are such that the amount of martensite is set to 50% to 95%, the saturation magnetization of 8,000 to 12,000 G, the coercive force of 100 to 200 Oe, and the difference of 800 G or more are achieved by a predetermined tension heat treatment.
  • a directional magnetic field and residual magnetism of 6,000 to 10,000G were used. This value is considerably smaller than the coercive force of ferrite magnets and rare earth magnets, which is 4k to 40kOe. as a countermeasure against demagnetization in
  • the magnetic field emitted from the Cr—Ni stainless steel magnet at the tip of the wire depends on the strength of the magnetic moment of the magnet. That is, it depends on the diameter and length of the magnet and the amount of martensite.
  • a magnetic vector sensor grid arranges a plurality of magnetic vector sensors in a grid.
  • a GSR sensor with a detection sensitivity of 1 nT was used as the magnetic vector sensor.
  • Four GSR sensors with a length of 2 mm are attached to a three-dimensional element pedestal in the shape of a truncated square pyramid (base length is 6 mm, inclination angle is 30°C) in 90-degree symmetry, and data from the four sensors is sent to the control circuit.
  • a magnetic vector sensor was obtained by connecting them and calculating the magnetic vector.
  • the detection sensitivity of the magnetic vector sensor is assumed to be 0.1 nT to 10 nT.
  • the magnetic vector sensors were arranged on a sensor board plate having a length of 100 mm and a width of 100 mm in a grid pattern of 9 rows in the length direction and 9 columns in the width direction at intervals of 10 mm.
  • the installation position error between the measurement positions of Hx, Hy, and Hz was set to 10 ⁇ m or less.
  • This sensor grid can detect the magnetic field generated by a Cr-Ni stainless steel magnet in any position and in any direction, and use the sensor grid data to calculate the position and orientation of the wire tip.
  • a program was created and embedded in the position sensor data processor. This measured value is displayed on the display device.
  • the principle of calculation for determining the magnet measurement positions X, Y, and Z and the magnet orientations ⁇ and ⁇ is a general method.
  • the smart guidewire has a strain gauge (contact pressure sensor) 416 that measures the stress applied to the wire tip 41 at the wire tip 41, and the contact pressure and bending force of the wire tip outside the patient's body.
  • a stress sensor data processor is provided for calculating stress. Then, the measured values obtained by calculation are displayed by a contact pressure/bending stress display device (abbreviated as display device).
  • the strain gauge is an ultra-high-sensitivity compact SI element having a width of 0.3 mm or less, a length of 5 mm or less, a strain gauge factor of 1000 or more, and a flexible substrate.
  • the structure of the SI element 10 is such that an amorphous magnetostrictive wire 13 (hereinafter referred to as a magnetostrictive wire), which is a stress detector, and magnetostrictive wire electrodes 161 at both ends of the magnetostrictive wire are placed on the flexible substrate 11 on the surface. , 162, the substrate surface can be easily fixed to the surface portion of the device under test with an adhesive.
  • the magnetostrictive wire may be annularly surrounded by a permalloy 11P for magnetic shielding.
  • the SI element 1 has amorphous magnetostrictive wires 13 arranged in grooves 12 of a resist layer 11R formed on a flexible substrate 11, and magnetostrictive wire terminals 14 are provided at both ends of the magnetostrictive wires 13, respectively.
  • the magnetostrictive wire terminals 14 are connected to the magnetostrictive wire electrodes 16 (161, 162) via the connection wiring 15.
  • FIG. A ring-shaped permalloy 11P for magnetically shielding the magnetostrictive wire 13 is formed around the resist layer 11R.
  • the electronic circuit 2 comprises a pulse oscillator 21 for applying a pulse current to the magnetostrictive wire 22 , an electronic switch 22 , a high-speed electronic switch 24 and a sample hold circuit 26 comprising a capacitor 25 , and an amplifier 27 .
  • a pulse oscillator that applies a pulse current to the magnetostrictive wire, a sample-and-hold circuit that samples and holds the impedance change corresponding to the amount of strain generated in the magnetostrictive wire as a magnetostrictive wire voltage change, and an amplifier circuit that amplifies and outputs the hold voltage. consists of The excitation frequency was set to 200 MHz.
  • the contact pressure applied to the wire tip and the degree of bending are measured considering that the wire tip consists of a portion with high springiness and a relatively soft distal end.
  • four SI elements 31 made of magnetostrictive wires 311) are attached to the core wire 32 at the tip of the wire in 90-degree symmetry as contact pressure sensor elements. It was connected to an electronic circuit outside the body, the average value of the four values ( ⁇ x1, ⁇ x2, ⁇ y1, ⁇ y2) was calculated, and the value was obtained as the contact pressure P.
  • an electronic circuit as shown in FIG. 6, a combination of four electronic circuits shown in FIG. 3 was used.
  • Data output from an electronic circuit outside the patient's body is processed by a stress sensor data processing device to obtain contact pressure and bending stress, which are displayed on a display device.
  • the smart guidewire is equipped with a torque sensor and a torquer rotation amount measuring device for measuring the torque and rotation amount applied to the handle and the torquer in the driver part, and a torque sensor data processing device and a rotation amount measuring device outside the patient's body.
  • a sensor data processor is provided. Then, the calculated measured values are displayed by a torque/rotation amount display device (abbreviated as a display device).
  • the structure of the torque sensor element for measuring the surface stress of the test object according to the present invention is obtained by arranging the above four SI elements symmetrically at 90 degrees.
  • Four SI elements (X1, X2, Y1, Y2) are arranged on a flexible substrate diagonally with four-fold symmetry around the origin (point O).
  • ⁇ x1 and ⁇ x2, which are stresses in the X-axis direction are added to the stresses ( ⁇ x1, ⁇ x2, ⁇ y1, ⁇ y2) measured by each SI element, and ⁇ y1 and ⁇ y1, which are stresses in the Y-axis direction orthogonal to the X-axis direction, are added.
  • ⁇ xy ( ⁇ x1 + ⁇ x2) - ( ⁇ y1 + ⁇ y2) at the position of the origin (O point) Allows measurement of torque.
  • the torque sensor element 1A comprises a magnetostrictive wire 13 arranged in a groove 12 on a flexible substrate 11, a magnetostrictive wire output terminal 141 at one end of the magnetostrictive wire 13, and a magnetostrictive wire ground terminal 142 at the other end. are arranged (X1, X2, Y1, Y2), and the ground common electrode 160 provided at the origin (point O) and the four magnetostrictive wire ground terminals 142 are connected.
  • the four magnetostrictive wire output terminals 141 are connected to the magnetostrictive wire output electrodes 161 through the wires 15 and are connected to the outside by lead wires (for output electrodes) 17 .
  • the ground common electrode 160 is connected to the magnetostrictive wire ground electrode 162 through the wiring 16, and is connected to the outside by the lead wire 18 (for ground electrode).
  • the torque sensor consists of a torque sensor element 1A and an electronic circuit 2A shown in FIG.
  • the above two torque sensors are attached to the handle and torquer of the driver, respectively.
  • the torque sensor on the handle measures the force applied to the wire tip rotation
  • the torque applied to the torquer measures the pressing force applied when the wire is inserted and fed. did.
  • the force applied to the torquer was measured by fixing the handle and rotating the torquer.
  • the torque on the handle corresponds to the resistance force when rotating the handle to rotate the guidewire tip.
  • a magnetic scale memory is engraved on the shaft surface of the torquer side, and a magnetic sensor attached to the end face of the handle side detects the rotation amount.
  • the driver unit is equipped with a rotation angle detection sensor for detecting the rotation direction and a rotation speed detection sensor for detecting the rotation speed, and a rotation sensor data processing device is provided outside the patient's body, and the measurement obtained by calculation The value is displayed by the display device.
  • a motion sensor consisting of an electronic compass and a 3-axis acceleration sensor was attached to the steering wheel to measure the rotational azimuth, the amount of rotation, and the rotational speed of the steering wheel.
  • the azimuth accuracy of the electronic compass has been greatly improved from 5 degrees, which is the azimuth accuracy of a general-purpose electronic compass used in smartphones, etc., to about 0.1 degrees. did.
  • the direction of the tip can be appropriately controlled by rotating the driver to efficiently follow the course. can guide the guidewire.
  • the guide wire 4 consists of a wire distal end portion 41, a driver portion 42 and a wire connecting portion.
  • the wire tip portion 41 is composed of a tip (platinum) 411 at the distal end, a core wire 412 made of Cr—Ni stainless steel made of a semi-hard magnetic material, a reinforcing coil 413 and a spring coil 414.
  • a portion of the core wire 412 is magnetized to form a Cr—Ni stainless steel magnet 415 , and a contact pressure sensor 416 consisting of an SI element 31 for detecting contact pressure and bending stress is arranged on the outer peripheral portion of the core wire 412 .
  • the driver section 42 includes a handle 42H and a torquer 42T.
  • the steering wheel 42H is provided with motion sensors including a torque sensor 421 for measuring the torque of the steering wheel, an MCU (microcomputer unit) 422, an electronic compass 423 for measuring the rotational azimuth and rotational speed of the steering wheel, and an acceleration sensor 424.
  • the torquer 42T is provided with a rotation amount measuring sensor 425, which is a torquer rotation amount measuring device for measuring the amount of rotation of the torquer 42T, and a torque sensor 426 for measuring the torque of the torquer 42T.
  • Rotation of the wire tip 41 is indicated by 41R
  • rotation of the handle 42H is indicated by 42HR
  • rotation of the torquer 42T is indicated by 42TR.
  • the position and orientation of the tip of the guide wire can be determined by combining the Cr—Ni stainless steel magnet 415 in which part of the wire tip 41 is magnetized, an external magnetic vector sensor grid, and a position calculation data processing device. It became so. 2)
  • Four strain gauges (SI elements) at the tip of the wire made it possible to measure the contact pressure at the tip of the wire, the bending stress at the tip, the angle, and the direction of bending.
  • the torque sensor 426 attached to the torquer 42T of the driver unit 42 can measure the wire pushing pressure and the torquer rotation amount measuring device 425 (rotation amount measuring sensor) can measure the wire feed length by the torquer 42T.
  • Torque sensors (421, 426), rotational azimuth (423), and tachometer (424) attached to the driver unit 42 allow quantitative understanding of the operational relationship between the orientation of the tip of the guide wire and the amount of rotation. It became possible.
  • the smart guidewire with the built-in sensor and magnet enables guidewire insertion treatment, which until now relied on the experience and intuition of the treating physician, to quantitatively understand the movement of the tip of the guidewire by the driver at hand. It is expected that the treating physician will be able to perform treatment while observing the numerical relationship between the two, and that treatment will be performed more quickly and accurately.
  • the second embodiment of the present invention consists of a guidewire manipulation assist system program using the smart guidewire with built-in sensor.
  • a smart guidewire a vascular network map obtained from an X-ray image, a marking system that specifies the position of the affected area for treatment on the vascular network map, a system that communicates the guidewire tip position at any time to the treating doctor, and the following: A system that calculates and transmits to the treating doctor the torque, wire pushing amount, and rotation angle required to guide the guidewire tip to the next target position at the time, that is, after a predetermined time interval, and repeats this operation. It is a guide wire manipulation assist system that assists the treatment doctor to finally guide the guide wire to the position of the treatment affected area.
  • the guidewire operation assistance system program is a vascular map path information and a wire tip position measured from time t(0) to t(i) until reaching the tip position of the guidewire at a certain time t(i).
  • a database that integrates the azimuth/position, amount of movement, torque value on the driver side, amount of rotation of the handle, torque and amount of rotation of the torquer, and measurement values of the wire feed length, and the tip to be guided at the next time t(i+1)
  • a program that calculates minute changes in the orientation and position to the position and conveys it to the treating doctor, and from the state of the blood vessel obtained from the X-ray image, that is, considering the diameter, degree of occlusion, curvature, and distance of the blood vessel, the above database Based on this, the amount of rotation and torque of the driver and torque of the torquer and the amount of rotation of the torquer necessary for guidance are estimated, and the program is transmitted to the treating doctor, and the treating doctor refers to the data and compares it with the empirical value while performing treatment
  • the third embodiment of the present invention is based on the smart guide wire with built-in sensor and the guide wire manipulation assist system program, and automates guide wire manipulation, that is, robot manipulation. That is, in the above-mentioned guide wire manipulation assist system, the guide wire manipulating robot system replaces the operation of the driver with the robot manipulating system.
  • the robot operation conveys to the treating doctor the amount of slight change in the orientation and position from an arbitrary time t (i) to the tip position to be guided to the next time t (i+1) obtained by the guide wire operation assist system program, Based on that, determine the amount of minute movement of the direction and position to the tip position to be guided, enter the value with the input device, and automatically calculate the necessary amount of rotation of the driver so that the input value can be realized. and torque and torque of the torquer and amount of rotation of the torquer A robot operation system that calculates a predetermined torque and amount of rotation of the torquer and operates the driver with a computer.
  • a Cr—Ni stainless steel magnet 415 and an SI element 416 are arranged in a part of the wire tip portion 41 of the guide wire 4 made of a Cr—Ni stainless steel composite magnetic wire, and torque sensors 421, 426, A torquer rotation amount measuring device 425, a driver rotation angle detection sensor 424, and a rotation speed detection sensor 425 are arranged.
  • a magnetic vector sensor grid is positioned outside the patient's body, and a position sensor data processor that uses data from the sensor grid to calculate the position and orientation of the wire tip.
  • a stress sensor data processing device, a rotation sensor data processing device, and a rotation detection sensor data processing device for calculating the contact pressure and bending stress of the wire tip, the torque and rotation amount of the driver part, and the rotation direction and rotation speed of the driver, and calculation It consists of a display device that displays the measured values obtained by
  • the magnet at the tip of the wire is made of Cr-Ni non-magnetic stainless steel with a degree of working of 80% to induce a martensitic phase of 90%. It is a magnet that is magnetized in the longitudinal direction after tension heat treatment at 0.8° C. and has a residual magnetism of 0.8 T.
  • the Md point which is a measure of the stability of the austenitic layer of austenitic stainless steel, has a Cr content of 18.5%, a Ni content of 8.2%, a Mn content of 1.0%, a Cu content of 0.2%, and a Mo The amount was adjusted to 0.2%, the amount of Si to 0.3%, the amount of C to 0.02%, and the amount of N to 0.02%. Then, by performing 80% cold working at normal temperature, 80% martensite content was ensured.
  • the performance of the Cr-Ni stainless steel magnet was 12,000G saturation magnetization, 100Oe coercive force, 1000G anisotropic magnetic field and 9,000G residual magnetism.
  • the magnet geometry was 0.5 mm in diameter, 5 mm in length, and had a magnetic moment as large as 5 ⁇ 10 ⁇ 9 Wbm. Moreover, the permeance coefficient was 10, and there was no risk of demagnetization in a normal magnetic field environment of about 50 Oe or less.
  • the magnetic field emitted from the Cr—Ni stainless steel magnet at the tip of the wire was 10 nT at a position 150 mm away from the magnet.
  • a GSR sensor with a detection sensitivity of 1 nT was used as the magnetic vector sensor.
  • Four GSR sensors with a length of 2 mm are attached to a three-dimensional pedestal in the shape of a truncated square pyramid (base length is 6 mm, inclination angle is 30°C) in 90-degree symmetry. to form a magnetic vector sensor.
  • magnetic vector sensors using this GSR sensor were arranged on a sensor board plate having a length of 100 mm and a width of 100 mm in a grid of 9 rows in the length direction and 9 columns in the width direction at intervals of 10 mm.
  • this sensor grid scans the measurements with a fast changeover switch, feeds the values into a microcomputer, integrates 324 data points and outputs them at a rate of 50 Hz.
  • the magnetic vector sensor grid data is used to calculate the position and orientation of the wire tip.
  • the SI element 1 attached to the core wire 412 of the wire tip portion 41 is an ultra-high-sensitivity compact strain gauge having a width of 0.2 mm, a length of 2 mm, a strain gauge factor of 1500 and a flexible substrate.
  • the structure of the SI element 1 is as shown in FIG. 162, the substrate surface can be easily fixed to the surface of the device under test with an adhesive.
  • the magnetostrictive wire 13 is annularly surrounded by a permalloy 11P to provide a magnetic shield.
  • Permalloy 11P is a thin film with a width of 0.05 mm and a thickness of 5 ⁇ m. As shown in FIG.
  • the electronic circuit 2 of the SI sensor includes a pulse oscillator 21 that applies a pulse current to the SI element 23 (magnetostrictive wire 13) and a wire voltage change that generates an impedance change corresponding to the amount of strain generated in the magnetostrictive wire 13. It is composed of a sample-and-hold circuit 26 for sampling and holding and an amplifier circuit 27 for amplifying and outputting the hold voltage.
  • the excitation frequency was set to 200 MHz.
  • the structure of the torque sensor element for measuring the surface stress of the test object of the present invention is, as shown in FIG. It is arranged.
  • SI elements X1, X2, Y1, Y2
  • X1, X2, Y1, Y2 are arranged diagonally on a flexible substrate 11 with four-fold symmetry around the origin (point O).
  • the two torque sensors (421, 426) are attached to the handle 42H and the torquer 42T of the driver unit 42, respectively.
  • the pressing force applied during insertion was measured.
  • the force applied to the torquer 42T was measured by fixing the handle 42H and rotating the torquer 42T.
  • the torque applied to the handle 42H corresponds to the resistance force when the handle 42H is rotated to rotate the guidewire tip.
  • a magnetic scale memory is engraved on the surface of the shaft on the side of the torquer, and the amount of rotation is detected by a magnetic sensor attached to the end face on the side of the handle.
  • a motion sensor consisting of an electronic compass 423 (size: 2 mm ⁇ 2 mm ⁇ thickness 1 mm) and a triaxial acceleration sensor 424 (size: 2 mm ⁇ 2 mm ⁇ thickness 1 mm) is attached to the steering wheel 42H to measure the rotational azimuth, amount of rotation, and rotational speed of the steering wheel. was measured.
  • an electronic compass utilizing a GSR sensor was adopted, and the azimuth accuracy of the electronic compass was set to 0.1 degree.
  • the direction of the distal end portion is appropriately controlled by the rotational operation of the driver to efficiently set the course.
  • a guide wire could be guided along.
  • FIG. 8 shows a guide wire 4 incorporating the above sensor.
  • the position and orientation of the tip of the guide wire 4 could be determined by combining the Cr--Ni stainless steel magnet 415 of the wire tip 41 with an external magnetic vector sensor grid and position calculation data processing device.
  • the four contact pressure sensors 416 at the tip of the wire were able to measure the contact pressure of the tip of the wire, the bending stress of the tip, the angle, and the direction of bending.
  • the torque sensor 426 attached to the torquer 42T of the driver unit 42 could measure the wire pushing pressure and the torquer rotation amount measuring device 425 could measure the length of the wire fed by the torquer 42T.
  • the smart guidewire makes it possible to grasp the quantitative relationship of the movement of the distal end portion 41 of the guidewire by the driver portion 42 at hand, instead of relying on the experience and intuition of the treating doctor until now. It is expected that the treating physician will be able to perform treatment while observing the numerical relationship between the two, and treatment will be performed more quickly and accurately.
  • Example 2 It consists of the smart guide wire described in the first embodiment and the guide wire manipulation assist system program.
  • the guide wire manipulation assist system program is The route information of the blood vessel map, the orientation/position of the tip position of the wire, the amount of movement, and the driver measured from time t(0) to t(i) until reaching the tip position of the guidewire at a certain time t(i) side torque value, handle rotation amount, torque and rotation amount of the torquer, and measured values of wire feed length, and the minute azimuth and position to the tip position to be guided at the next time t (i+1)
  • a program that calculates the amount of change and notifies the treating doctor, Based on the state of the blood vessel obtained from the X-ray image, that is, the diameter, degree of occlusion, curvature, and distance of the blood vessel, the amount of rotation and torque of the driver required for guidance and the torque and rotation of the torquer are determined based on the above database.
  • It consists of a program that estimates the amount and notifies it to the treating doctor, and a program that the treating doctor performs treatment while comparing the data with the empirical value as a reference, and repeats this to create a database of treatment results.
  • the guide wire operation is automated, that is, a robot operation is used.
  • the robot operation conveys to the treating doctor the amount of slight change in the orientation and position from an arbitrary time t (i) to the tip position to be guided to the next time t (i+1) obtained by the guide wire operation assist system program, Based on that, determine the amount of minute movement of the direction and position to the tip position to be guided, enter the value with the input device, and automatically calculate the necessary amount of rotation of the driver so that the input value can be realized. and torque and torque of the torquer and amount of rotation of the torquer A robot operation system that calculates a predetermined torque and amount of rotation of the torquer and operates the driver with a computer.
  • the present invention enables robot manipulation by incorporating a sensor into the guide wire, and is expected to be widely used as a technology that facilitates treatment manipulation and reduces the X-ray irradiation time. is.
  • SI element stress impedance sensor element
  • 11 flexible substrate (substrate), 11R: resist layer, 11P: permalloy, 12: groove, 13: magnetostrictive wire, 14: magnetostrictive wire terminal, 15: wiring, 16 (161, 162): magnetostrictive wire electrode 1A: torque sensor Element 10: SI element (X1, X2, Y1, Y2), 11: flexible substrate, 12: groove, 13: magnetostrictive wire, 141: magnetostrictive wire output terminal, 142: magnetostrictive wire ground terminal, 15: wiring, 160: ground Common electrode 161: Output electrode 162: Ground electrode 17: Lead wire (for output electrode) 18: Lead wire (for ground electrode) 2: electronic circuit 21: pulse oscillator, 22: electronic switch, 23: SI element, 24: high-speed electronic switch, 25: capacitor, 26: sample and hold circuit, 27: amplifier 2A: electronic circuit 21: pulse oscillator, 22 (22A , 22B, 22C, 22D): electronic switch, 23 (23A,

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Pulmonology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Power Engineering (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

[Problem] The present invention provides a technique for enabling a robot operation by incorporating a sensor in a guide wire, facilitating a treatment operation and reducing the time of irradiation by X-ray. [Solution] The position and orientation of a tip part of a guide wire are calculated using a Cr-Ni-based stainless magnet positioned at the tip part and an external magnetic vector sensor grid system. The contact pressure applied to the tip part is measured by attaching a strain gauge to a wire. The torque on the driver side and the feed quantity and rotation amount of the wire are measured by installing a torque sensor, a torquer rotation quantity measuring sensor and an azimuth meter in a driver. The treatment with the guide wire can be automatically controlled using these measurement values.

Description

ガイドワイヤ用Cr-Ni系ステンレス磁石の製造方法、スマートガイドワイヤ、ガイドワイヤ操作システムおよびガイドワイヤ操作ロボットシステムMethod for manufacturing Cr-Ni stainless steel magnet for guide wire, smart guide wire, guide wire operating system, and guide wire operating robot system
 本発明は、生体内のセンサとCr-Ni系ステンレス磁石の製造方法により製造された磁石の内臓式のガイドワイヤと患者の身体外部(生体外)に配置する磁気ベクトルセンサグリッドと各種のセンサデータ等から得られるセンサデータ処理装置およびその表示装置からなるスマートガイドワイヤ、ガイドワイヤ操作システムおよびガイドワイヤ操作ロボットシステムに関するものである。 The present invention includes an in vivo sensor, a built-in guide wire with a magnet manufactured by a method for manufacturing a Cr—Ni stainless steel magnet, a magnetic vector sensor grid placed outside the patient's body (ex vivo), and various sensor data. The present invention relates to a smart guide wire, a guide wire manipulation system, and a guide wire manipulation robot system comprising a sensor data processing device and its display device obtained from, etc.
カテーテル治療は、外科手術に代わって直接患者の生体内にカテーテルを挿入して治療する患者への負担が軽い手術で、急速に普及している。治療医師は、X線で血管マップを作成したマップ上に患部を特定し、その位置に向けてカテーテルを誘導する。治療医師はX線で血管マップ上のカテーテルの先端位置を見ながらカテーテルを操作する。
本治療において、X線の長時間照射および造影剤の投与による患者の身体への負担が問題となっている。また、治療医師等のX線被曝も問題となっている。そのためにロボット治療の技術開発が活発に取り組まれている。例えば、患者の生体(血管)内に磁石やセンサをカテーテルとともに挿入し、また患者の生体(身体)外に磁気センサなどを配置して治療医師は表示装置(ディスプレー)を見ながら治療している(特許文献1、特許文献2)。
Catheterization is an operation in which a catheter is inserted directly into the patient's body instead of surgery, and the burden on the patient is light. The treating doctor identifies the diseased area on the blood vessel map created by X-rays, and guides the catheter toward that position. The treating doctor manipulates the catheter while observing the tip position of the catheter on the blood vessel map with X-rays.
In this treatment, the burden on the patient's body due to long-time irradiation of X-rays and administration of a contrast agent is a problem. In addition, X-ray exposure of treating doctors and the like is also a problem. Therefore, the technological development of robot therapy is being actively pursued. For example, a magnet or sensor is inserted into the patient's body (blood vessel) along with a catheter, and a magnetic sensor or the like is placed outside the patient's body (body), and the treating doctor treats the patient while looking at a display device (display). (Patent Document 1, Patent Document 2).
他方、ガイドワイヤは、直径が0.3mmから1mmと非常に小さいため、磁石を内装したカテーテルのような自律的誘導システムは開発されていない。これはガイドワイヤの直径が非常に小さく、そこにより小さな磁石を内蔵すると、磁石からは非常に小さな磁界しか発生せず、その磁石を患者身体の外部に取り付けた磁界センサで検出することは困難であった。さらに小さなガイドワイヤの先端を±0.1mm以下の精度で位置決めすることが求められており、ガイドワイヤの先端に磁石を取り付けて、その磁界を検知して先端の位置決めをすることはほとんど不可能だと考えられていた。 On the other hand, since guidewires have very small diameters of 0.3 mm to 1 mm, no autonomous guidance system has been developed, such as catheters containing magnets. This is because the diameter of the guidewire is very small, and if a smaller magnet is built into it, the magnet will produce a very small magnetic field, which is difficult to detect with a magnetic field sensor mounted outside the patient's body. there were. Furthermore, it is required to position the tip of a small guide wire with an accuracy of ±0.1 mm or less, and it is almost impossible to attach a magnet to the tip of the guide wire and detect the magnetic field to position the tip. was thought to be
また、ガイドワイヤが血管を突き抜いて出血トラブルが発生する場合があり、ガイドワイヤ先端にかかる接触力を求めることも求められている。小型で高感度の歪みゲージが半導体方式や応力インピーダンスセンサ(以下、SIセンサという。)を使って研究開発(非特許文献1)されているが、いまだにその開発に成功していない。 In addition, since the guide wire may pierce the blood vessel and cause bleeding trouble, it is also required to determine the contact force applied to the tip of the guide wire. Small and highly sensitive strain gauges have been researched and developed using semiconductor methods and stress impedance sensors (hereinafter referred to as SI sensors) (Non-Patent Document 1), but have not yet been successfully developed.
さらに、ガイドワイヤ先端は、手元ドライバーに負荷するトルクおよびトルカーの回転量で制御されるが、治療医師の経験と勘に頼って操作しているのが現状である。したがって長年の経験と高度な知識が必要で、治療医師の育成の障害となっている。ドライバー側の制御パラメータの数値化、可視化とそれに対応したワイヤ先端の動きや血管との接触圧の数値化、可視化を進めて、治療医師の手術をより容易なものとすることが求められている。 Furthermore, the tip of the guide wire is controlled by the torque applied to the driver at hand and the amount of rotation of the torquer, but the current situation is that the operation depends on the experience and intuition of the treating doctor. Therefore, many years of experience and advanced knowledge are required, which is an obstacle to the training of treating doctors. There is a need to quantify and visualize the control parameters on the driver side, and to advance the quantification and visualization of the movement of the tip of the wire and the contact pressure with the blood vessel corresponding to it, to make the surgery easier for the treating doctor. .
これらのセンサを使って、すなわちワイヤの先端位置を特定し、さらにワイヤ先端と血管との接触圧、ドライバー側のトルクなど操作データを数値化、可視化をすることによって、治療医師をアシストし、手術操作を容易にして、X線画像への依存度を低め、X線照射時間を短縮することが期待されている。さらに、治療医師がワイヤ先端位置の移動位置を指示し、それに従ってガイドワイヤ先端を自動制御するロボット操作システムを確立することが期待されている。 Using these sensors, that is, specifying the position of the tip of the wire, and furthermore, by quantifying and visualizing operation data such as the contact pressure between the tip of the wire and the blood vessel, torque on the driver side, etc., we assist the treating doctor and perform surgery. It is expected to facilitate operation, reduce dependence on X-ray images, and shorten X-ray irradiation time. Furthermore, it is expected to establish a robot operation system in which the treating physician instructs the movement position of the wire tip position and automatically controls the guide wire tip accordingly.
US6,618,612US 6,618,612 US2004/0068178US2004/0068178
本発明の第1の課題は、
生体内(血管内)に挿入するワイヤ先端部、ドライバー部および両者を連結するワイヤ連結部からなるガイドワイヤとそのガイドワイヤを操作する患者の身体外部のデータ処理装置等からなるスマートガイドワイヤにおいて、
ガイドワイヤのワイヤ先端部に磁石を備えて、身体の外部に磁界センサを取り付けて、磁石の生体内の位置を検出する装置を開発することは特に困難な開発課題である。これは、磁石の大きさと位置精度との間に背反特性が存するためである。本発明では、ワイヤ先端部のCr―Ni系ステンレス部材、それ自体を磁石へと改質することによってこの問題を解決することにした。
さらに、ワイヤ先端部に歪みゲージを備えつけて、先端部にかかる荷重を計測する装置を備え、
ドライバー部にはトルクセンサ、トルカー回転量計測装置およびドライバーの回転角度検出センサ、回転速度検出センサを備え、
患者の身体外部に配置する磁気ベクトルセンサグリッドと磁気ベクトルセンサグリッドのデータを使ってワイヤ先端の位置と方位を計算する位置センサデータ処理装置と、
ワイヤ先端の接触圧と曲げ応力、ドライバー部のトルクと回転量およびドライバーの回転方位と回転速度を計算する応力センサデータ処理装置と、回転(トルク、回転量)センサデータ処理装置と、回転検出(回転方位、回転速度) センサデータ処理装置ならびに計算して求めた計測値を表示する表示装置からなるセンサ内蔵式のスマートガイドワイヤを開発することである。
A first object of the present invention is to
A smart guide wire consisting of a guide wire consisting of a wire tip to be inserted into the living body (inside a blood vessel), a driver part, and a wire connecting part that connects the two, and a data processing device outside the patient's body that operates the guide wire,
It is a particularly difficult development task to develop a device that includes a magnet at the wire tip of a guide wire, attaches a magnetic field sensor to the outside of the body, and detects the in vivo position of the magnet. This is because there is a contradictory characteristic between the size of the magnet and the positional accuracy. In the present invention, this problem is solved by modifying the Cr--Ni stainless steel member at the tip of the wire itself into a magnet.
Furthermore, a strain gauge is attached to the tip of the wire, and a device for measuring the load applied to the tip is provided,
The driver unit is equipped with a torque sensor, torquer rotation measurement device, driver rotation angle detection sensor, and rotation speed detection sensor.
a magnetic vector sensor grid for placement outside the patient's body and a position sensor data processor for calculating the position and orientation of the wire tip using data from the magnetic vector sensor grid;
A stress sensor data processing device that calculates the contact pressure and bending stress of the wire tip, the torque and amount of rotation of the driver part, and the rotation direction and rotation speed of the driver, a rotation (torque, rotation amount) sensor data processing device, and a rotation detection ( The purpose is to develop a sensor-embedded smart guidewire consisting of a sensor data processing device and a display device that displays the calculated measured values.
上記本発明の第1課題を解決するためには、以下の5つの新要素技術開発を必要としている。
新要素技術開発の第1課題は、ガイドワイヤが半硬質磁性材料からなるCr-Ni系ステンレス鋼からなることに着目し、半硬質磁性のうちの硬質磁性特性を改善して、優れた磁石素材に改質した後に、その先端部の一部を着磁してCr-Ni系ステンレス磁石とし、そこから発する磁界を患者の身体外部に配置する磁気ベクトルセンサグリッドで検知し、磁気ベクトルセンサグリッドのデータを使ってワイヤ先端の位置と方位を計算する位置センサデータ処理装置と計算して求めた位置・方位値を表示する表示装置からなるスマートガイドワイヤを開発することである。
In order to solve the first problem of the present invention, it is necessary to develop the following five new elemental technologies.
The first issue in the development of new elemental technology is to focus on the fact that the guide wire is made of Cr-Ni stainless steel, which is a semi-hard magnetic material. After reforming to , part of the tip is magnetized to form a Cr-Ni stainless steel magnet, and the magnetic field emitted therefrom is detected by a magnetic vector sensor grid placed outside the patient's body, and the magnetic vector sensor grid The goal is to develop a smart guidewire consisting of a position sensor data processor that uses data to calculate the position and orientation of the wire tip and a display that displays the calculated position and orientation values.
つまり、ガイドワイヤのワイヤ先端部は、Cr-Ni系ステンレス鋼からなるが、硬質磁性特性を改善し、磁気特性としてはワイヤ全長の半硬質磁性材料と先端部の一部のみを着磁して永久磁石として、両特性が一体となった複合磁性素材の開発が求められていた。 In other words, although the wire tip of the guide wire is made of Cr—Ni stainless steel, the hard magnetic properties are improved, and the magnetic properties are obtained by magnetizing only a part of the tip and the semi-hard magnetic material over the entire length of the wire. As a permanent magnet, there has been a demand for the development of a composite magnetic material that combines both properties.
さらに、先端部とグリッド中心との距離が5cm以下の場合に0.1mm以下、方位の精度は1度以下という目標とする位置決め精度を確保ためには、Cr-Ni系ステンレス磁石は1×10-9Wbmから20×10-9Wbm以上の磁気モーメントを有する磁石の開発と10nT以下の磁気検出力を有する磁気ベクトルセンサの開発が求められていた。
位置精度は厳密には先端部の身体内部深さに大きく依存するので、ガイドワイヤ先端部の治療深さを考慮して、先端磁石の強さや磁気センサの検出力を組み合わせて、1mm以下、好ましくは0.1mm以下の精度を確保することが必要である。
Furthermore, in order to ensure the target positioning accuracy of 0.1 mm or less when the distance between the tip and the center of the grid is 5 cm or less, and the azimuth accuracy of 1 degree or less, the Cr—Ni stainless steel magnet must be 1×10 Development of a magnet with a magnetic moment of -9 Wbm to 20×10 -9 Wbm or more and development of a magnetic vector sensor with a magnetic detection power of 10 nT or less have been desired.
Strictly speaking, the positional accuracy greatly depends on the depth of the tip inside the body. Therefore, considering the treatment depth of the tip of the guidewire, the strength of the tip magnet and the detection power of the magnetic sensor are combined, preferably 1 mm or less. must ensure an accuracy of 0.1 mm or less.
新要素技術開発の第2課題は、サイズが幅0.2mmで長さが3mm程度の超小型サイズで、しかもゲージファクターが1000以上の高感度の歪みゲージを開発し、それをガイドワイヤの先端部に設置して、ワイヤ先端の接触圧および曲げ応力を検知することを可能にすることである。
また、新要素技術開発の第3課題は、上記の開発した歪みゲージを利用したトルクセンサを開発することである。
The second issue in the development of new elemental technology is to develop an ultra-compact strain gauge with a width of 0.2mm and a length of 3mm, and a highly sensitive strain gauge with a gauge factor of 1000 or more. It is possible to detect the contact pressure and bending stress of the tip of the wire by installing it on the part of the wire.
The third issue in the development of new elemental technology is to develop a torque sensor using the strain gauge developed above.
新要素技術開発の第4課題は、ドライバー部のハンドルとトルカーにそれぞれトルクセンサを取り付けて、ハンドル上のトルクセンサでワイヤ先端の回転にかかる力を計測し、トルカーにかかるトルクでワイヤ挿入に負荷する押し付け力を計測し、さらに回転量計測装置でハンドルとトルカーの相対的な回転量を計測し、その回転量からワイヤの送り量を算出することである。そのために、小型で高感度なひねりゲージおよび小型で微小回転角度を検出できる回転量計測装置を開発することである。 The fourth issue in the development of new elemental technology is to attach a torque sensor to the handle and torquer of the driver part, measure the force applied to the wire tip rotation with the torque sensor on the handle, and load the wire insertion with the torque applied to the torquer. The pressing force applied is measured, the amount of relative rotation between the handle and the torquer is measured by a rotation amount measuring device, and the feed amount of the wire is calculated from the amount of rotation. For this purpose, we are developing a small and highly sensitive twist gauge and a small and small rotational amount measuring device capable of detecting minute rotation angles.
新要素技術開発の第5課題は、ドライバー部のハンドルにモーションセンサを取り付けて、ハンドルの回転方位、回転量および回転速度を検知することである。そのために、電子コンパスの方位精度を5度から0.1度程度に改善して、電子コンパス、3軸加速度センサおよびジャイロセンサを融合した複合センサの方位精度を10度程度から1度以下へと改善することである。 The fifth issue in the development of new elemental technology is to attach a motion sensor to the steering wheel of the driver to detect the direction of rotation, the amount of rotation, and the rotation speed of the steering wheel. Therefore, the azimuth accuracy of the electronic compass is improved from 5 degrees to about 0.1 degrees, and the azimuth accuracy of the composite sensor that combines the electronic compass, 3-axis acceleration sensor and gyro sensor is reduced from about 10 degrees to 1 degree or less. It is to improve.
本発明の第2の課題は、
 上記磁石・センサ内臓式のスマートガイドワイヤとX線画像から求めた血管網マップと血管網マップ上に治療患部位置を指定するマーキングシステムと任意の時刻におけるガイドワイヤ先端位置を治療医師に伝達する位置伝達システムと次の時刻における、つまり所定の時間間隔後における次の目標位置へガイドワイヤ先端を誘導するのに必要なトルクとワイヤ押し込み量と回転角よりなる情報を計算して治療医師に伝達する情報伝達システムと、この操作を繰り返して治療医師が最終的にスマートガイドワイヤを治療患部位置まで誘導する治療をアシストするガイドワイヤ操作アシストシステムを開発することである。
The second subject of the present invention is
A smart guide wire with built-in magnets and sensors, a vascular network map obtained from X-ray images, a marking system that designates the treatment affected area position on the vascular network map, and a position that transmits the position of the tip of the guide wire at any time to the treating doctor The transmission system calculates and transmits to the treating physician information consisting of torque, wire push-in amount and rotation angle required to guide the guidewire tip to the next target position at the next time, that is, after a predetermined time interval. It is to develop an information transmission system and a guide wire operation assist system that assists the treatment in which the treating physician repeats this operation and finally guides the smart guide wire to the position of the treatment affected area.
本発明の第3の課題は、
上記ガイドワイヤ操作アシストシステムにおいて、ドライバーの操作を治療医師に代えてロボット操作システムにするガイドワイヤ操作ロボットシステムを開発することである。
 
The third subject of the present invention is
In the above guide wire operation assist system, it is to develop a guide wire operation robot system in which the operation of the driver is replaced by a robot operation system instead of the treating doctor.
本発明の第1課題を解決するために、5つの新要素技術を開発した。
新要素技術開発の第1の課題は、Cr-Ni系ステンレス製ガイドワイヤの半硬質磁性材料のうちの硬質磁性特性を改善し、その先端部を部分着磁して 1×10-9Wbm~20×10-9Wbmの大きさの磁気モーメントを有するCr-Ni系ステンレス磁石とし、そこから発する磁界を外部の磁気ベクトルセンサグリッドで検知し、磁気ベクトルセンサグリッドのデータを使ってガイドワイヤ先端の位置と方位を計算するセンサデータ処理装置と計算して求めた位置・方位の計測値を表示する表示装置(位置・方位表示装置)からなるスマートガイドワイヤを開発した。
ここで、ガイドワイヤの先端部のCr-Ni系ステンレスは、コアワイヤ、スプリングコイルおよび補強コイルからなっている。
In order to solve the first problem of the present invention, we have developed five new elemental technologies.
The first issue in the development of new elemental technology is to improve the hard magnetic properties of the semi-hard magnetic material of the Cr-Ni stainless steel guide wire, and partially magnetize the tip to 1×10 -9 Wbm ~. A Cr—Ni stainless steel magnet having a magnetic moment of 20×10 −9 Wbm is used, and the magnetic field generated therefrom is detected by an external magnetic vector sensor grid. We have developed a smart guidewire consisting of a sensor data processor that calculates position and orientation and a display device that displays the calculated position and orientation measurement values (position and orientation display device).
Here, the Cr--Ni stainless steel at the tip of the guide wire consists of a core wire, a spring coil and a reinforcing coil.
ガイドワイヤの先端部は、Cr-Ni系(オーステナイト系)非磁性ステンレスを50%以上の加工度で強伸線加工して素材の強度を大きくしてばね性を強くしたものである。硬質磁気特性を改善するために、オーステナイト系ステンレス鋼のオーステナイト層の安定度の物差しであるMd点をCr量、Ni量を適切に調整して、加工温度を-50℃~100℃となるように調整して、50~95%のマルテンサイト量を確保する。   
その後、30kg/mm以下の張力にて500~570℃の温度で張力熱処理を施して、硬質磁性特性を8,000~12,000Gの飽和磁化、100~200Oeの保磁力、800G以上の異方性磁界かつ6,000~10,000Gの残留磁気へと改善する。
なお、Md点とは、30%の冷間加工を施した時に50%のマルテンサイト量が生じせしめる温度で、式(1)で示される。
Md30(℃)=413-462(%C+%N)-9.2(%Si)-8.1(%Mn)-13.7(%Cr)-9.5(%Ni)-6(%Cu)-18.5(%Mo)   ・・・(1)
The distal end portion of the guide wire is made of Cr--Ni (austenitic) non-magnetic stainless steel which is subjected to strong wire drawing at a workability of 50% or more to increase the strength of the material and enhance the spring property. In order to improve the hard magnetic properties, the Md point, which is a measure of the stability of the austenitic layer of the austenitic stainless steel, is adjusted appropriately to the amount of Cr and the amount of Ni, and the working temperature is set to -50°C to 100°C. to ensure a martensite content of 50-95%.
After that, it is subjected to tension heat treatment at a temperature of 500 to 570°C under a tension of 30 kg/mm 2 or less, and the hard magnetic properties are changed to saturation magnetization of 8,000 to 12,000 G, coercive force of 100 to 200 Oe, and difference of 800 G or more. It improves to a directional magnetic field and a residual magnetism of 6,000 to 10,000G.
The Md point is the temperature at which 50% of the martensite content is generated when 30% cold working is applied, and is represented by formula (1).
Md30 (°C) = 413 - 462 (% C + % N) - 9.2 (% Si) - 8.1 (% Mn) - 13.7 (% Cr) - 9.5 (% Ni) - 6 (% Cu)-18.5 (% Mo) (1)
磁石特性は磁気モーメントMの大きさで評価できるが、磁気モーメントMは、磁石の残留磁気Brと磁石長さと直径(=体積V)とパーミアンス係数Pに依存する。また残留磁気Brは、磁石の飽和磁化Msと結晶磁気異方性Hkと保磁力Hcに依存する。 Magnet properties can be evaluated by the magnitude of the magnetic moment M, which depends on the residual magnetism Br of the magnet, the magnet length and diameter (=volume V), and the permeance coefficient P. Also, the residual magnetism Br depends on the saturation magnetization Ms, crystal magnetic anisotropy Hk, and coercive force Hc of the magnet.
本発明者らは、まず、Cr-Ni系ステンレス製ガイドワイヤを50%以上の加工度で加工し、マルテンサイト量を60%以上とし、飽和磁化Msが10kG以上で、800G以上の異方性磁界、100Oe以上の保磁力を有する半硬質磁性材料とする。次に、25kg/mmの張力にて550℃で30分間の張力熱処理して、伸線方向、つまり繊維組織方向に着磁すると、図1に示すように、磁石の残留磁気Brが伸線加工のままの状態に比べて、30%以上も上昇し、0.7T以上になるとの新知見を得た。 First, the present inventors processed a Cr—Ni stainless steel guide wire at a workability of 50% or more, made the amount of martensite 60% or more, had a saturation magnetization Ms of 10 kG or more, and an anisotropy of 800 G or more. A semi-hard magnetic material having a magnetic field and a coercive force of 100 Oe or more is used. Next, tension heat treatment is performed at 550° C. for 30 minutes under a tension of 25 kg/mm 2 to magnetize in the drawing direction, that is, in the direction of the fiber structure. A new finding was obtained that the tensile strength increased by 30% or more compared to the as-processed state, reaching 0.7 T or more.
具体的には、ガイドワイヤの磁石特性をマルテンサイト量は60%以上、保磁力を100Oe以上、飽和磁化を1T以上、残留磁気を0.7T以上として、形状をガイドワイヤの直径を0.3mm~1mmとし、飽和着磁した着磁部の長さを5mm~25mmとし、パーミアンス係数を5~80とした時、1×10-9Wbm~20×10-9Wbmの磁気モーメントを持つ磁石を得ることを見つけた。
なお、張力熱処理については、熱処理温度は500~570℃、張力は5~100kg/mmにて残留磁気Brが20%程度改善された。
Specifically, the magnet properties of the guide wire are set such that the amount of martensite is 60% or more, the coercive force is 100 Oe or more, the saturation magnetization is 1 T or more, and the residual magnetism is 0.7 T or more, and the shape of the guide wire is 0.3 mm in diameter. 1 mm, the length of the saturated magnetized portion is 5 mm to 25 mm, and the permeance coefficient is 5 to 80, a magnet having a magnetic moment of 1×10 −9 Wbm to 20×10 −9 Wbm. found to get
Regarding the tension heat treatment, the residual magnetism Br was improved by about 20% at a heat treatment temperature of 500 to 570° C. and a tension of 5 to 100 kg/mm 2 .
Cr-Ni系ステンレス磁石の保磁力は100~200Oe程度であることを確認した。この値はフェライト磁石や希土類磁石の保磁力の4~40kOeと比べてかなり小さいが、磁石形状を細長い形状として、パーミアンス係数を5以上とすることで、50Oe以下の通常の磁界環境を想定する限り、その磁界による減磁を回避できることに思い至った。なお、磁石の動作点はパーミアンス係数P=L/D(L:磁石の長さ、D:磁石の直径)で決定されるものである。 It was confirmed that the coercive force of the Cr--Ni stainless steel magnet is about 100 to 200 Oe. This value is considerably smaller than the coercive force of 4 to 40 kOe for ferrite magnets and rare earth magnets, but assuming a normal magnetic field environment of 50 Oe or less by making the magnet shape elongated and having a permeance coefficient of 5 or more, , the demagnetization due to the magnetic field can be avoided. The operating point of the magnet is determined by the permeance coefficient P=L/D (L: magnet length, D: magnet diameter).
ガイドワイヤのワイヤ先端部の一部のCr-Ni系ステンレス磁石から発する磁界の測定結果の一例を図2に示す。
測定高さ(磁石からの距離)を最大150mmと想定すると、1~10nTという微小磁界を検知することが必要である。そこで、0.1~10nTという微小磁界を検知することができる高感度磁気ベクトルセンサグリッド(以下、センサグリッドという。)を開発した。
FIG. 2 shows an example of measurement results of the magnetic field emitted from a Cr—Ni stainless steel magnet that is part of the wire tip of the guide wire.
Assuming a maximum measurement height (distance from the magnet) of 150 mm, it is necessary to detect a minute magnetic field of 1 to 10 nT. Therefore, we have developed a highly sensitive magnetic vector sensor grid (hereinafter referred to as sensor grid) that can detect minute magnetic fields of 0.1 to 10 nT.
磁界はベクトル量で、任意の点で3つの磁界成分Hx、Hy、Hzを有するので、任意の時間Tiで3つの磁界成分を同一点で同時に測定する必要がある。磁気ベクトルセンサは、任意の時間Tiで、任意の点の3つの磁界成分を同時に測定できる磁気センサである。
これまでの磁石式位置決めシステムでは、3軸の磁気センサが使用されている場合が多い。この場合、磁界成分Hx、Hy、Hzの測定位置が0.5mm~2mm程度ずれ、そのずれがそのまま位置精度の誤差に積み重なってしまって誤差を大きくしていた。
本発明は、小型でnT磁界が検出できる磁気ベクトルセンサを開発して、それを使用することによって位置精度は0.1mm以下に確保されたものである。
本発明は、ガイドワイヤ先端の超小型磁石からの磁界を検出して、その位置を0.1mmの精度で求めるもので、従来の3軸磁界センサのように、Hx,Hy,Hzの測定位置が0.1mm以上ずれていると、必要な精度を確保できない。磁気ベクトルセンサの場合は、三者の測定値がフォトリソグラフィー製作工程で定まるので、5μm以下に抑制することができる。本発明では、0.01mm以下のずれであることが必要である。
Since the magnetic field is a vector quantity and has three magnetic field components Hx, Hy and Hz at any point, it is necessary to simultaneously measure the three magnetic field components at the same point at any time Ti. A magnetic vector sensor is a magnetic sensor that can simultaneously measure three magnetic field components at any point at any time Ti.
Conventional magnetic positioning systems often use three-axis magnetic sensors. In this case, the measurement positions of the magnetic field components Hx, Hy, and Hz deviate by about 0.5 mm to 2 mm, and the deviations are directly added to the errors in the positional accuracy, thereby increasing the errors.
The present invention is based on the development of a small magnetic vector sensor capable of detecting an nT magnetic field, and by using it, a positional accuracy of 0.1 mm or less is ensured.
The present invention detects the magnetic field from the ultra-small magnet at the tip of the guide wire and determines its position with an accuracy of 0.1 mm. If there is a deviation of 0.1 mm or more, the required accuracy cannot be ensured. In the case of the magnetic vector sensor, since the measured values of the three are determined in the photolithography manufacturing process, the thickness can be suppressed to 5 μm or less. In the present invention, the deviation should be 0.01 mm or less.
このセンサグリッドで、任意の位置にある任意の方向に向いた磁石が発する磁界を検知し、そのセンサグリッドのデータを使ってワイヤ先端の位置と方位を計算することができる計算プログラムを作成した。 Using this sensor grid, we created a calculation program that can detect the magnetic field emitted by a magnet at any position and in any direction, and use the sensor grid data to calculate the position and orientation of the tip of the wire.
なお、Cr-Ni系ステンレス磁石から発生する磁界が不十分な場合、補助的に先端部の隙間に薄膜磁石を挿入することにより十分な磁界が得られるように補強することも可能である。 If the magnetic field generated from the Cr--Ni stainless steel magnet is insufficient, it is possible to supplementally insert a thin-film magnet into the gap at the tip so that a sufficient magnetic field can be obtained.
なお、磁石の測定位置X、Y、Zおよび磁石の向きθ、φを求める計算原理は、一般的方法としては、所定の位置で所定の向きに向いた磁石から発する磁界を各磁気ベクトルセンサ位置における磁界理論値と磁界実測値の差をεij誤差として、誤差関数Eij=Σ(εij)を作成し、それを各測定位置Xij、Yij、Zijで偏微分して、誤差関数が最小値を取るとして、連立方程式を求め、それらの式を使って磁石の測定位置X、Y、Zおよび磁石の向きθ、φを計算して求められることが知られている。 The principle of calculating the measurement positions X, Y, and Z of the magnet and the orientations θ and φ of the magnet is that, as a general method, a magnetic field emitted from a magnet oriented in a predetermined direction at a predetermined position is generated at each magnetic vector sensor position. The error function Eij = Σ (εij) 2 is created with the difference between the theoretical value of the magnetic field and the measured value of the magnetic field at εij error, and it is partially differentiated by each measurement position Xij, Yij, Zij, and the error function has the minimum value It is known to obtain simultaneous equations and use those equations to calculate the measured positions X, Y, Z of the magnets and the orientations θ, φ of the magnets.
新要素技術開発の第2の課題を解決するために、歪みゲージとしては、非特許文献1に記載されたSIセンサに着目した。SIセンサの小型化は、非特許文献1のデータを参考にして、鋭意研究した結果、SI素子のアモルファスワイヤの長さ30mmから3mm以下とし、アモルファスワイヤの直径を30μmから10μmへと細径化し、さらに、励磁周波数を20MHzから200MHzへと増加させることによって、長さ2mm程度で、かつ1000以上のひずみゲージ率を有するSIセンサを実現できることを見出した。 In order to solve the second problem of developing new elemental technology, attention was paid to the SI sensor described in Non-Patent Document 1 as a strain gauge. The miniaturization of the SI sensor is based on the data of Non-Patent Document 1, and as a result of intensive research, the length of the amorphous wire of the SI element is reduced from 30 mm to 3 mm or less, and the diameter of the amorphous wire is reduced from 30 μm to 10 μm. Further, by increasing the excitation frequency from 20 MHz to 200 MHz, it was found that an SI sensor having a length of about 2 mm and a strain gauge factor of 1000 or more can be realized.
つぎに、SI素子を被試験体の簡単に取り付けることができる構造を考案した。
本構造の特徴は、フレキシブル基板上に、表面に応力検知体であるアモルファス磁歪ワイヤ(以下、磁歪ワイヤという。)と磁歪ワイヤの両端にある磁歪ワイヤ電極を備えたもので、容易に基板表面を被試験体の表面部に接着剤で固定することができる。
Next, the inventor devised a structure in which the SI element can be easily attached to the device under test.
The feature of this structure is that the amorphous magnetostrictive wire (hereinafter referred to as magnetostrictive wire) as a stress detector and the magnetostrictive wire electrodes at both ends of the magnetostrictive wire are provided on the surface of the flexible substrate. It can be fixed to the surface of the device under test with an adhesive.
さらに、SI素子は、歪みと同時に外部磁界の影響を受けるので、磁歪ワイヤをパーマロイで環状に囲って磁気シールドすることにした。
本知見をもとに、作成したSI素子の形状を図3に示す。典型的なサイズは、幅は0.2mmで、長さは2mmである。電極はワイヤ両端のワイヤ端子と外部接続用の電極端子2個である。外周部はパーマロイ薄膜で囲い磁気シールドする構造となっている。ただし、ガイドワイヤのサイズは多様であるので、取り付け可能なサイズならば上記数値に限定されるものではない。
Furthermore, since the SI element is affected by an external magnetic field at the same time as the strain, the magnetostrictive wire is ring-shaped with permalloy to provide a magnetic shield.
FIG. 3 shows the shape of the SI element produced based on this finding. A typical size is 0.2 mm wide and 2 mm long. The electrodes are wire terminals at both ends of the wire and two electrode terminals for external connection. The outer periphery is surrounded by a permalloy thin film and has a magnetic shielding structure. However, since there are various sizes of guide wires, the above numerical values are not limited as long as the sizes can be attached.
SIセンサの回路としては、図4に示すように、磁歪ワイヤにパルス電流を通電するパルス発振器と、磁歪ワイヤに生じる歪み量に対応したインピーダンス変化を磁歪ワイヤ電圧変化として取り出してサンプルホールドするサンプルホールド回路と、ホールド電圧を増幅して出力する増幅回路とからなっている。なお、磁歪ワイヤ電圧は積分回路方式、インピーダンスアナライザ方式など電子回路でも検出可能である。 As a circuit of the SI sensor, as shown in FIG. 4, there are a pulse oscillator for applying a pulse current to the magnetostrictive wire and a sample hold for sampling and holding the impedance change corresponding to the strain amount generated in the magnetostrictive wire as the magnetostrictive wire voltage change. and an amplifier circuit that amplifies and outputs the hold voltage. The magnetostrictive wire voltage can also be detected by an electronic circuit such as an integrating circuit method or an impedance analyzer method.
ワイヤ先端部は、ばね性の大きな部分と比較的柔らかい最先端部からなっている。最先端部は血管経路誘導の都合から曲がり状態となっており、その曲がり程度は医師や治療部位によって異なっている。このことを考慮してワイヤ最先端部にかかる接触圧及び曲がり程度を計測する必要がある。そこで、上記SI素子を図5に示すようにガイドワイヤ先端部に90度対称に4個取り付け、その出力をフレキシブル配線で外部の電子回路に連結し、4個の値(σx1、σx2、σy1、σy2)の平均値を計算し、その値を接触圧(接触圧力)として求めた。ここで、電子回路は図6に示すように図3に示した電子回路を4個組み合わせたものを使用した。
またσx=1/2(σx1―σx2)、σy=1/2(σy1―σy2)を先端部の曲げ応力(曲げ応力ベクトル)σxy=(σx、σy)として求め、ワイヤ先端部の曲がり方向と曲がり強さ(すなわち曲げ角度)を求めることができるようになった。
The wire tip consists of a highly springy portion and a relatively soft tip. The distal end portion is curved for convenience of blood vessel route guidance, and the degree of curvature varies depending on the doctor and treatment site. In consideration of this, it is necessary to measure the contact pressure applied to the tip of the wire and the degree of bending. Therefore, as shown in FIG. 5, four SI elements are attached to the tip of the guide wire in 90-degree symmetry, and their outputs are connected to an external electronic circuit by flexible wiring, and the four values (σx1, σx2, σy1, The average value of σy2) was calculated, and the value was obtained as the contact pressure (contact pressure). Here, as an electronic circuit, as shown in FIG. 6, a combination of four electronic circuits shown in FIG. 3 was used.
Further, σx=1/2 (σx1−σx2) and σy=1/2 (σy1−σy2) are obtained as the bending stress (bending stress vector) σxy=(σx, σy) of the wire tip. It is now possible to determine the bending strength (ie bending angle).
新要素技術開発の第3の課題を解決するために、図7に示すように、上記SIセンサ4個を90度対称に配置した小型で高感度のトルクセンサ(ひねり応力センサともいう。)を考案した。
被試験体の表面応力を測定するトルクセンサ素子は、フレキシブル基板上に4個のSIセンサ素子(X1、X2、Y1、Y2)が原点(O点)を中心として4回対称に対角線上に配置されて、各々のSIセンサ素子が計測する応力(σx1、σx2、σy1、σy2)について、X軸方向の応力であるσx1およびσx2 を加算し、X軸方向と直交するY軸方向の応力であるσy1およびσy2 を加算し、次にX軸方向の加算値とY軸方向の加算値との差分σxyは、σxy=(σx1+σx2)-(σy1+σy2)なる式で算出して、原点(O点)の位置におけるトルクの測定を可能とする。
In order to solve the third problem of new elemental technology development, as shown in FIG. devised.
Four SI sensor elements (X1, X2, Y1, Y2) are arranged on a flexible substrate diagonally with four-fold symmetry around the origin (point O). Then, the stress in the X-axis direction, σx1 and σx2, is added to the stress (σx1, σx2, σy1, σy2) measured by each SI sensor element, and the stress in the Y-axis direction perpendicular to the X-axis direction is obtained. σy1 and σy2 are added, and then the difference σxy between the added value in the X-axis direction and the added value in the Y-axis direction is calculated by the formula σxy=(σx1+σx2)−(σy1+σy2) to obtain the origin (point O). Allows measurement of torque in position.
上記のトルクセンサ2個を、ドライバー部のハンドルとトルカーにそれぞれ取り付けて、ハンドル上のトルクセンサでワイヤ先端の回転にかかる力を計測し、トルカーにかかるトルクで、ワイヤ挿入送り時にワイヤ先端部にかかる押し付け力を計測した。なお、トルカーにかかる力は、ハンドルを固定してトルカーを回転させて計測した。 The above two torque sensors are attached to the handle of the driver part and the torquer respectively, and the torque sensor on the handle measures the force applied to the rotation of the wire tip. The pressing force was measured. The force applied to the torquer was measured by fixing the handle and rotating the torquer.
トルカーのトルクの強さ、ワイヤの送り量およびワイヤ先端の接触圧の3つの値から、ワイヤ先端部における進路を妨害する障害物の様子および誘導血管経路における抵抗力を推定することが可能になった。 From the three values of the torque strength of the torquer, the amount of wire feed, and the contact pressure of the wire tip, it is possible to estimate the appearance of obstacles obstructing the wire tip and the resistance force in the guided blood vessel path. Ta.
さらに、新要素技術開発の第4の課題を解決するために、トルカーのシャフト表面に磁気スケールメモリを刻み、それをハンドル側に端面に取り付けた磁気センサで回転量を検知する方式の回転量計測装置を考案した。これによりハンドルとトルカーの相対的な回転量を計測し、その回転量からワイヤの送り量を算出することができる。 Furthermore, in order to solve the fourth issue in the development of new elemental technology, a magnetic scale memory is engraved on the surface of the torquer shaft, and the amount of rotation is measured by a magnetic sensor attached to the end face of the handle side to detect the amount of rotation. invented the device. Thereby, the amount of relative rotation between the handle and the torquer can be measured, and the feed amount of the wire can be calculated from the amount of rotation.
トルカーのトルク強さおよびワイヤの送り量とガイドワイヤ先端の接触圧の三つの値から、先端部における進路を妨害する障害物の様子および誘導血管経路における抵抗力を推定することが可能になった。 From the torque strength of the torquer, the amount of wire feed, and the contact pressure at the tip of the guidewire, it became possible to estimate the state of obstacles obstructing the path at the tip and the resistance force in the guiding blood vessel path. .
新要素技術開発の第5の課題を解決するために、回転角度検出センサとして電子コンパスと、回転速度検出センサとして3軸加速度センサとからなるモーションセンサをドライバー部のハンドルに取り付けて、ハンドルの回転方位および回転速度を検知することにした。
ここで、GSRセンサを活用した電子コンパスを採用して、電子コンパスの方位精度を、スマートフォンなどで使用されている汎用的な電子コンパスの方位精度5度から0.1度程度へと大幅に改善した。回転速度は、MEMS式ジャイロセンサを同時に取り付けて計測することもできる。
In order to solve the fifth issue of new elemental technology development, a motion sensor consisting of an electronic compass as a rotation angle detection sensor and a 3-axis acceleration sensor as a rotation speed detection sensor is attached to the steering wheel of the driver. We decided to detect the direction and rotation speed.
Here, by adopting an electronic compass that utilizes a GSR sensor, the azimuth accuracy of the electronic compass has been greatly improved from 5 degrees, which is the azimuth accuracy of a general-purpose electronic compass used in smartphones, etc., to about 0.1 degrees. did. The rotation speed can also be measured by attaching a MEMS type gyro sensor at the same time.
ドライバーの回転量、ワイヤ先端部の方位と曲がった状態のワイヤ最先端部の方位およびその変化から、ドライバーの回転操作で、先端部の向きを適切に操作して効率よく進路経路に沿ってガイドワイヤを誘導することができるようになった。 Based on the amount of rotation of the driver, the orientation of the tip of the wire, the orientation of the tip of the wire in a bent state, and changes in the orientation, the orientation of the tip is appropriately controlled by the rotation of the driver to efficiently guide along the course. Wires can now be guided.
本発明の第2課題を解決するために、ある時刻t(i)におけるガイドワイヤの先端位置に至るまでに時刻t(0)からt(i-1)までに計測した、血管マップの経路情報とワイヤの先端位置の方位・位置と移動量およびドライバー側のトルク値、ハンドル回転量、トルカーのトルクと回転量とワイヤの送り長さの計測値を総合したデータベースを作成し、次の時刻t(i+1)に誘導すべき先端位置までの方位と位置の微小変化量を治療医師に伝えると同時に、X線画像から得た血管の状態から、つまり血管の直径、閉塞度合い、曲がり、距離を考慮して、上記データベースをもとに誘導に必要なドライバーの回転量とトルクおよびトルカーのトルクおよびトルカー回転量を試算して、治療医師に伝え、治療医師はそのデータを参考に経験値と比較しながら治療を行う。
これを繰り返して治療実績をデータベース化して、誘導に必要なトルクとトルカー回転量をより正確なものとすることで、ガイドワイヤ操作アシストシステムプログラムを作成した。
In order to solve the second problem of the present invention, path information of a blood vessel map measured from time t(0) to t(i-1) until reaching the tip position of the guidewire at a certain time t(i) Create a database that integrates the azimuth/position and movement amount of the tip position of the wire, the torque value on the driver side, the amount of rotation of the handle, the torque and amount of rotation of the torquer, and the measurement values of the wire feed length. At the same time as telling the treating doctor the direction and the amount of small change in position to the tip position to be guided to (i+1), considering the blood vessel state obtained from the X-ray image, that is, the diameter, degree of occlusion, curvature, and distance of the blood vessel Then, based on the above database, the driver's rotation amount and torque, torquer's torque, and torquer's rotation amount required for guidance are calculated and reported to the treating doctor, who then compares the data with the empirical value. treatment while
By repeating this process and creating a database of treatment results, we created a guide wire operation assist system program by making the torque and torquer rotation required for guidance more accurate.
本発明の第3課題を解決するために、ガイドワイヤ操作アシストシステムプログラムで得たある任意の時刻t(i)から次の時刻t(i+1)に誘導すべき先端位置までの方位と位置の微小変化量を治療医師に伝え、それを参考に誘導すべき先端位置までの方位と位置の微小移動量を決定し、その値を入力装置で入力して、その入力値が実現できるように、自動的に必要なドライバーの回転量とトルクおよびトルカーのトルクおよびトルカー回転量所定のトルクとトルカー回転量を計算して、ドライバーをコンピュータで操作するロボットシステムを作成した。 In order to solve the third problem of the present invention, the azimuth and position to the tip position to be guided from an arbitrary time t(i) obtained by the guidewire operation assist system program to the next time t(i+1) are minute. Inform the treating doctor of the amount of change, determine the minute movement amount of the direction and position to the tip position to be guided based on it, enter the value with the input device, and automatically perform the input value so that it can be realized. We calculated the required torque and torque of the driver, the torque of the torquer and the amount of rotation of the torquer, and created a robot system that manipulates the driver with a computer.
 本発明は、ガイドワイヤ先端部のCr―Ni系ステンレス鋼を張力熱処理後に、部分着磁して永久磁石として、その位置を0.1mm以下の精度で、磁気ベクトルセンサシステムで計算し、またワイヤ先端と血管との接触圧、治療医師の手元の操作用ドライバー側に、トルクセンサ、回転角センサおよびトルカー回転量計測装置などのセンサを内蔵するガイドワイヤで、治療医師にガイドワイヤ先端の位置や方位およびドライバーの操作情報を数値化して治療医師に伝達し、治療をアシストする点で有効である。
さらに、任意の時刻において、治療医師にドライバーにかけるトルクおよびトルカーの回転量などの操作の仕方をアドバイスすることによって、あるいは自動操作を行うことによって治療医師をアシストし、X線照射時間を少なくすることを可能とする技術である。
In the present invention, the Cr-Ni stainless steel at the tip of the guide wire is partially magnetized after tension heat treatment to form a permanent magnet, and the position thereof is calculated with an accuracy of 0.1 mm or less by a magnetic vector sensor system. The contact pressure between the tip and the blood vessel, and the guidewire with built-in sensors such as a torque sensor, a rotation angle sensor, and a torquer rotation measurement device on the operating driver side at the treating doctor's hand. It is effective in digitizing direction and driver's operation information and transmitting it to the treating doctor to assist the treatment.
Furthermore, at an arbitrary time, the treating doctor is assisted by advising the treating doctor on how to operate, such as the torque to be applied to the driver and the amount of rotation of the torquer, or by performing automatic operation, thereby reducing the X-ray irradiation time. It is a technology that makes it possible.
Cr-Ni系ステンレス磁石の保磁力とマルテンサイト量の関係を示す図である。FIG. 2 is a diagram showing the relationship between the coercive force of a Cr—Ni stainless steel magnet and the amount of martensite. Cr-Ni系ステンレス磁石が発する磁界強度と磁石からの距離の関係を示す図である。FIG. 2 is a diagram showing the relationship between the magnetic field intensity generated by a Cr—Ni stainless steel magnet and the distance from the magnet. 本発明に用いたSI素子の構造を示す図である。It is a figure which shows the structure of the SI element used for this invention. 本発明に用いたSIセンサの電子回路を示す図である。FIG. 4 is a diagram showing an electronic circuit of an SI sensor used in the present invention; 4個のSI素子(接触圧センサ素子)をワイヤ先端に取り付けた様子を示図である。It is a figure which shows a mode that four SI elements (contact pressure sensor element) were attached to the wire front-end|tip. 4個のSI素子による測定値を同時に計測する電子回路を示す図である。FIG. 4 shows an electronic circuit for simultaneously measuring values from four SI elements; 本発明に用いたトルクセンサ素子を示す平面図である。FIG. 4 is a plan view showing a torque sensor element used in the present invention; センサ内臓式のガイドワイヤの構成を示す図である。FIG. 3 is a diagram showing the configuration of a sensor-embedded guidewire;
本発明の第1の実施形態は、生体内のセンサと磁石の内臓式のガイドワイヤと患者の身体外部(生体外)に配置する磁気ベクトルセンサグリッドと各種のセンサデータ等から得られるセンサデータ処理装置およびその表示装置からなるスマートガイドワイヤである。
こで、第1の実施形態を可能ならしめるガイドワイヤ用Cr-Ni系ステンレス磁石の製造方法を最初の実施形態とし、以下説明する。
The first embodiment of the present invention is a sensor data processing obtained from an in vivo sensor, a guide wire with a built-in magnet, a magnetic vector sensor grid placed outside the patient's body (ex vivo), and various sensor data. A smart guidewire consisting of a device and its display.
Here , a method for manufacturing a Cr--Ni stainless steel magnet for a guide wire, which enables the first embodiment, will be described as the first embodiment.
スマートガイドワイヤを構成するガイドワイヤ用Cr-Ni系ステンレス磁石の製造方法は、
 (1)Cr-Ni系非磁性ステンレス鋼のワイヤを50%以上の加工度で伸線加工して、直径0.3mm~1mmとし、50~95%のマルテンサイト量を有する半硬質磁性特性のカテーテル用のガイドワイヤにする工程と、
(2)前記ガイドワイヤを熱処理温度は500~570℃、張力は5~100kg/mmにて張力熱処理して、前記半硬質磁性特性を8,000~12,000Gの飽和磁化、100~200Oeの保磁力、800G以上の異方性磁界かつ6,000~10,000Gの残留磁気を有する半硬質磁性に改質する工程と、
(3)改質処理された前記ガイドワイヤの先端部の一部である5mm~25mmの長さだけ飽和着磁して、1×10-9Wbm~20×10-9Wbmの磁気モーメントを有する磁石にする工程と、
 からなることを特徴とする。
A method for manufacturing a Cr—Ni stainless steel magnet for a guide wire that constitutes a smart guide wire includes:
(1) A wire of Cr—Ni system non-magnetic stainless steel is drawn at a workability of 50% or more to have a diameter of 0.3 mm to 1 mm, and a semi-hard magnetic characteristic having a martensite amount of 50 to 95%. forming a guidewire for a catheter;
(2) The guide wire is subjected to tension heat treatment at a heat treatment temperature of 500 to 570° C. and a tension of 5 to 100 kg/mm 2 to improve the semi-hard magnetic properties to a saturation magnetization of 8,000 to 12,000 G and a saturation magnetization of 100 to 200 Oe. a coercive force of , an anisotropic magnetic field of 800 G or more, and a remanent magnetism of 6,000 to 10,000 G;
(3) It has a magnetic moment of 1×10 −9 Wbm to 20×10 −9 Wbm when saturated magnetized by a length of 5 mm to 25 mm, which is a part of the tip of the modified guide wire. a process of making a magnet;
characterized by consisting of
スマートガイドワイヤは、
ガイドワイヤ、磁気ベクトルセンサグリッド、位置センサデータ処理装置及び表示装置を備え、
 ガイドワイヤは、ワイヤ先端部、ドライバー部および両者を連結するワイヤ連結部とからなり、
ワイヤ先端部は、ガイドワイヤ用Cr-Ni系ステンレス磁石の製造方法により製造された100~200Oeの保磁力、800G以上の異方性磁界、6,000~10,000Gの残留磁気かつ1×10-9Wbm~20×10-9Wbmの磁気モーメントを有する磁石からなり、
磁気ベクトルセンサグリッドは、患者の身体外部に配置された診断機器に備えられ、
磁気ベクトルセンサグリッドを構成する磁気ベクトルセンサは、10nT以下の
磁気検出力を有し、
位置センサデータ処理装置は、前記磁気ベクトルセンサグリッドで計測したデータを使って前記ガイドワイヤの先端の位置と方位を計算し、
表示装置は、前記位置センサデータ処理装置で計算して求めた位置と方位の計測値を表示することを特徴とする。
smart guidewire
Equipped with a guide wire, a magnetic vector sensor grid, a position sensor data processing device and a display device,
The guide wire consists of a wire tip portion, a driver portion, and a wire connecting portion that connects the two,
The wire tip has a coercive force of 100 to 200 Oe, an anisotropic magnetic field of 800 G or more, a residual magnetism of 6,000 to 10,000 G, and a residual magnetism of 1 × 10 -9 Wbm to 20×10 -9 Wbm consisting of a magnet having a magnetic moment,
A magnetic vector sensor grid is provided in a diagnostic device placed outside the patient's body,
The magnetic vector sensor constituting the magnetic vector sensor grid has a magnetic detection power of 10 nT or less,
a position sensor data processor uses the data measured by the magnetic vector sensor grid to calculate the position and orientation of the tip of the guidewire;
The display device displays the measured values of the position and orientation calculated by the position sensor data processing device.
また、上記スマートガイドワイヤは、
ガイドワイヤのドライバー部は、ハンドルおよびトルカーよりなり、
ハンドルは、前記ハンドルに負荷されるトルクを計測するトルクセンサを備え、
トルカーは、前記トルカーの回転量を計測するトルカー回転量計測装置を備えてなり、
ドライバー部のトルクと回転量を計算する回転センサデータ処理装置と、
計算して求めたトルクおよび回転量よりなる計測値を表示する表示装置とからなることを特徴とする。
In addition, the above smart guidewire
The driver part of the guide wire consists of a handle and a torquer,
The handle has a torque sensor that measures the torque applied to the handle,
The torquer comprises a torquer rotation amount measuring device for measuring the amount of rotation of the torquer,
a rotation sensor data processor that calculates the torque and amount of rotation of the driver;
and a display device for displaying the measured values of the calculated torque and rotation amount.
さらに、上記スマートガイドワイヤは、
ガイドワイヤの前記ドライバーを構成する前記ハンドルは、回転方位を検出する回転角度検出センサおよび回転速度を検出する回転速度検出センサを備えてなり、
ドライバー部の回転方位と回転速度を計算する回転検出センサデータ処理装置と、
計算して求めた回転方位および回転速度よりなる計測値を表示する表示装置とからなることを特徴とする。
Furthermore, the above smart guidewire
The handle that constitutes the driver of the guide wire is provided with a rotation angle detection sensor that detects the rotation direction and a rotation speed detection sensor that detects the rotation speed,
a rotation detection sensor data processor that calculates the rotational orientation and rotational speed of the driver section;
and a display device for displaying a measured value consisting of the calculated rotational azimuth and rotational speed.
 以下、スマートガイドワイヤについて説明する。
Cr-Ni系ステンレス製ガイドワイヤの半硬質磁性材料のうちの硬質磁性特性を改善し、その先端部を所定の長さだけ部分着磁して 1×10-9~20×10-9Wbmの大きさの磁気モーメントを有するCr-Ni系ステンレス磁石とし、そこから発する磁界を外部の磁気ベクトルセンサグリッドで検知し、磁気ベクトルセンサグリッドのデータを使ってガイドワイヤ先端の位置と方位を計算するセンサデータ処理装置と計算して求めた位置・方位の計測値を表示する表示装置(位置・方位表示装置)よりなるスマートガイドワイヤである。
The smart guidewire will be described below.
Improving the hard magnetic properties of the semi-hard magnetic material of the Cr--Ni stainless steel guide wire, and partially magnetizing the tip for a predetermined length to achieve 1×10 −9 to 20×10 −9 Wbm. A sensor that uses a Cr-Ni stainless steel magnet with a large magnetic moment, detects the magnetic field emitted from it with an external magnetic vector sensor grid, and uses the data of the magnetic vector sensor grid to calculate the position and orientation of the tip of the guide wire. It is a smart guide wire consisting of a data processing device and a display device (position/orientation display device) that displays the calculated position/orientation measurement values.
また、このスマートガイドワイヤのワイヤ先端部にかかる応力を計測する歪みゲージを備え、
ガイドワイヤのドライバー部にトルクセンサ、トルカー回転量計測装置、回転角度検出センサ、回転速度検出センサを備え、
患者の身体外部に磁気ベクトルセンサグリッドを備え、
磁気ベクトルセンサグリッドのデータを使ってワイヤ先端の位置と方位を計算する位置センサデータ処理装置と、
ワイヤ先端の接触圧と曲げ応力、およびドライバーのトルク、回転量、回転方位、回転速度をそれぞれ計算する応力センサデータ処理装置と、回転センサデータ処理装置と、回転検出センサデータ処理装置とを備え、
計算して求めた計測値を表示する表示装置からなるスマートガイドワイヤである。
以下、図3~8を用いて詳細に説明する。
In addition, it is equipped with a strain gauge that measures the stress applied to the wire tip of this smart guide wire,
The driver part of the guide wire is equipped with a torque sensor, a torquer rotation amount measuring device, a rotation angle detection sensor, and a rotation speed detection sensor,
Equipped with a magnetic vector sensor grid external to the patient's body,
a position sensor data processor that uses data from the magnetic vector sensor grid to calculate the position and orientation of the wire tip;
Equipped with a stress sensor data processing device, a rotation sensor data processing device, and a rotation detection sensor data processing device that calculate the contact pressure and bending stress of the wire tip, and the torque, rotation amount, rotation direction, and rotation speed of the driver, respectively,
A smart guidewire comprising a display for displaying calculated measurements.
A detailed description will be given below with reference to FIGS.
(1)スマートガイドワイヤの基本機能は、生体内に挿入するガイドワイヤ4のワイヤ先端部41の一部に磁石415を備え、患者の身体外部には磁気ベクトルセンサグリッド(図は省略)を配置して磁石から発する磁界を磁気ベクトルセンサグリッドで検知し、検知したデータを使ってガイドワイヤ先端の位置と方位を計算する位置・方位(位置と略す。)センサデータ処理装置を備える。そして、計算して求めた計測値を位置・方位表示装置(表示装置と略す。)により、治療医師にガイドワイヤの先端部の位置と方位を伝達する機能である。
 なお、この機能を達成するために、ワイヤ先端部41はCr-Ni系ステンレス鋼の半硬質磁性材料よりなり、ガイドワイヤ4の先端よりのワイヤ先端部41の一部を着磁してCr-Ni系ステンレス磁石よりなる複合磁性ワイヤを用いている。
(1) The basic function of the smart guidewire is to equip a part of the wire tip 41 of the guidewire 4 to be inserted into the living body with a magnet 415, and place a magnetic vector sensor grid (not shown) outside the patient's body. A position/orientation (abbreviated as position) sensor data processor is provided for detecting the magnetic field emitted from the magnet by the magnetic vector sensor grid and using the detected data to calculate the position and orientation of the tip of the guidewire. Then, the position and orientation of the distal end portion of the guidewire are transmitted to the treating physician based on the calculated measurement values by a position/orientation display device (abbreviated as a display device).
In order to achieve this function, the wire tip portion 41 is made of a semi-hard magnetic material such as Cr—Ni stainless steel, and a portion of the wire tip portion 41 extending from the tip of the guide wire 4 is magnetized to obtain a Cr— Composite magnetic wires made of Ni stainless steel magnets are used.
 ワイヤ先端部の一部の磁石は、Cr-Ni系非磁性ステンレスを50%以上の加工度で強加工して、マルテンサイト相を50%以上誘起せしめたうえで、長手方向に着磁したCr-Ni系ステンレス磁石である。オーステナイト系ステンレス鋼のオーステナイト層の安定度の物差しであるMd点をCr量、Ni量、Mn量、Cu量、Mo量、Si量、C量、N量などを適切に調整して、-50℃~100℃となるように調整する。そして、常温下にて50%~90%の冷間加工を行なうことで、50~95%のマルテンサイト量を確保する。また、低温で加工するとマルテンサイト変態は容易に生じるので、40%程度の低加工度で多くのマルテンサイト相を得る必要がある場合、-40℃程度の低温で加工することが好ましい。
なお、Md点とは、30%の冷間加工を施した時に50%のマルテンサイト量が生じせしめる温度で、式(1)で示される。
Md30(℃)=413-462(%C+%N)-9.2(%Si)-8.1(%Mn)-13.7(%Cr)-9.5(%Ni)-6(%Cu)-18.5(%Mo)   ・・・(1)
Part of the magnet at the tip of the wire is a Cr-Ni system non-magnetic stainless steel that is strongly worked at a workability of 50% or more to induce a martensite phase of 50% or more and then magnetized in the longitudinal direction. - It is a Ni-based stainless magnet. Appropriately adjusting the Cr content, Ni content, Mn content, Cu content, Mo content, Si content, C content, N content, etc., the Md point, which is a measure of the stability of the austenite layer of austenitic stainless steel, is -50. °C to 100°C. Then, cold working of 50% to 90% is performed at room temperature to secure a martensite amount of 50% to 95%. In addition, since martensite transformation occurs easily when working at a low temperature, it is preferable to work at a low temperature of about -40°C when it is necessary to obtain a large amount of martensite phase with a low working ratio of about 40%.
The Md point is the temperature at which 50% of the martensite content is generated when 30% cold working is applied, and is represented by formula (1).
Md30 (°C) = 413 - 462 (% C + % N) - 9.2 (% Si) - 8.1 (% Mn) - 13.7 (% Cr) - 9.5 (% Ni) - 6 (% Cu)-18.5 (% Mo) (1)
Cr-Ni系ステンレス磁石の磁石特性は、マルテンサイト量を50%から95%として、所定の張力熱処理で、8,000~12,000Gの飽和磁化、100~200Oeの保磁力、800G以上の異方性磁界かつ6,000~10,000Gの残留磁気とした。この値はフェライト磁石や希土類磁石の保磁力の4k~40kOeと比べてかなり小さいが、磁石形状を細長い形状とすることにより5以上のパーミアンス係数を確保することで、50Oe程以下の通常の磁界環境における減磁対策とした。ワイヤの先端のCr-Ni系ステンレス磁石から発する磁界は、磁石の磁気モーメントとの強さ依存する。つまり、磁石の直径と長さおよびマルテンサイト量に依存する。測定高さ(磁石からの距離)を最大150mmの位置で、0.1mG以上の磁界強度を得ることができるように、磁石の直径、長さおよびマルテンサイト量を調整して、それらを1×10-9Wbm~20×10-9Wbmの大きさの磁気モーメントが実現できるように組み合わせた。 The magnetic properties of the Cr--Ni stainless steel magnet are such that the amount of martensite is set to 50% to 95%, the saturation magnetization of 8,000 to 12,000 G, the coercive force of 100 to 200 Oe, and the difference of 800 G or more are achieved by a predetermined tension heat treatment. A directional magnetic field and residual magnetism of 6,000 to 10,000G were used. This value is considerably smaller than the coercive force of ferrite magnets and rare earth magnets, which is 4k to 40kOe. as a countermeasure against demagnetization in The magnetic field emitted from the Cr—Ni stainless steel magnet at the tip of the wire depends on the strength of the magnetic moment of the magnet. That is, it depends on the diameter and length of the magnet and the amount of martensite. Adjust the diameter, length and amount of martensite of the magnet so that a magnetic field strength of 0.1 mG or more can be obtained at a maximum measurement height (distance from the magnet) of 150 mm, and set them to 1 × They were combined so as to realize a magnetic moment of magnitude of 10 −9 Wbm to 20×10 −9 Wbm.
磁気ベクトルセンサグリッドは、複数個の磁気ベクトルセンサをグリッド状に配置するものである。
磁気ベクトルセンサとしては、センサの検出感度が1nTのGSRセンサを用いた。長さ2mmのGSRセンサを四角錐台形状の3次元素子台座(底辺長さが6mm、傾斜角度が30℃)に90度対称に4個張り付けて、4つのセンサからのデータを制御用回路に連結して磁気ベクトルを計算して、磁気ベクトルセンサとした。
磁気ベクトルセンサの検出感度は、0.1nT~10nTとする。
A magnetic vector sensor grid arranges a plurality of magnetic vector sensors in a grid.
A GSR sensor with a detection sensitivity of 1 nT was used as the magnetic vector sensor. Four GSR sensors with a length of 2 mm are attached to a three-dimensional element pedestal in the shape of a truncated square pyramid (base length is 6 mm, inclination angle is 30°C) in 90-degree symmetry, and data from the four sensors is sent to the control circuit. A magnetic vector sensor was obtained by connecting them and calculating the magnetic vector.
The detection sensitivity of the magnetic vector sensor is assumed to be 0.1 nT to 10 nT.
磁気ベクトルセンサグリッドは、磁気ベクトルセンサを長さ100mm、幅100mmのセンサボード板に10mm間隔で長さ方向に9行、幅方向に9列のグリッド状に配置した。Hx、Hy、Hzの測定位置の間の設置位置誤差は、10μm以下とした。
このセンサグリッドで、任意の位置にある任意の方向に向いたCr-Ni系ステンレス磁石が発する磁界を検知し、そのセンサグリッドのデータを使ってワイヤ先端の位置と方位を計算することができる計算プログラムを作成し、それを位置センサデータ処理装置に内蔵した。この計測値を表示装置により表示する。
As the magnetic vector sensor grid, the magnetic vector sensors were arranged on a sensor board plate having a length of 100 mm and a width of 100 mm in a grid pattern of 9 rows in the length direction and 9 columns in the width direction at intervals of 10 mm. The installation position error between the measurement positions of Hx, Hy, and Hz was set to 10 μm or less.
This sensor grid can detect the magnetic field generated by a Cr-Ni stainless steel magnet in any position and in any direction, and use the sensor grid data to calculate the position and orientation of the wire tip. A program was created and embedded in the position sensor data processor. This measured value is displayed on the display device.
なお、磁石の測定位置X、Y、Zおよび磁石の向きθ、φを求める計算原理は、一般的方法としては。所定の位置で所定の向きに向いた磁石から発する磁界を各磁気ベクトルセンサ位置における磁界理論値と磁界実測地の差をεij誤差として、誤差関数Eij=Σ(εij)を作成し、それを各測定位置Xij,Yij,Zijで偏微分して、誤差関数が最小値を取るとして、連立方程式を求め、それらの式を使って磁石の測定位置X,Y,Zおよび磁石の向きθ、φを計算して求めることが知られている。 The principle of calculation for determining the magnet measurement positions X, Y, and Z and the magnet orientations θ and φ is a general method. An error function Eij = Σ(εij) 2 is created with the difference between the theoretical magnetic field value at each magnetic vector sensor position and the actual magnetic field field measured at each magnetic vector sensor position generated by a magnet oriented in a predetermined direction at a predetermined position as an εij error. Simultaneous equations are obtained by partially differentiating at each measurement position Xij, Yij, Zij, and assuming that the error function takes the minimum value. It is known to calculate and obtain
 (2)また、スマートガイドワイヤは、ワイヤ先端部41にはワイヤ先端部41にかかる応力を計測する歪みゲージ(接触圧センサ)416を備え、患者の身体外部にはワイヤ先端の接触圧と曲げ応力を計算する応力センサデータ処理装置を備える。そして、計算して求めた計測値を接触圧・曲げ応力表示装置(表示装置と略す。)により表示する。 (2) In addition, the smart guidewire has a strain gauge (contact pressure sensor) 416 that measures the stress applied to the wire tip 41 at the wire tip 41, and the contact pressure and bending force of the wire tip outside the patient's body. A stress sensor data processor is provided for calculating stress. Then, the measured values obtained by calculation are displayed by a contact pressure/bending stress display device (abbreviated as display device).
歪みゲージは、幅0.3mm以下、長さ5mm以下で歪みゲージファクター1000以上でフレキシブル基板をもつ超高感度小型のSI素子である。SI素子10の構造は、図3に示すように、フレキシブル基板11上に、表面に応力検知体であるアモルファス磁歪ワイヤ13(以下、磁歪ワイヤという。)と磁歪ワイヤの両端にある磁歪ワイヤ電極161、162を備えたもので、容易に基板表面を被試験体の表面部に接着剤で固定することができる。
さらに、SI素子10は、歪みと同時に外部磁界の影響を受ける場合には、磁歪ワイヤをパーマロイ11Pで環状に囲い磁気シールドしてもよい。
The strain gauge is an ultra-high-sensitivity compact SI element having a width of 0.3 mm or less, a length of 5 mm or less, a strain gauge factor of 1000 or more, and a flexible substrate. As shown in FIG. 3, the structure of the SI element 10 is such that an amorphous magnetostrictive wire 13 (hereinafter referred to as a magnetostrictive wire), which is a stress detector, and magnetostrictive wire electrodes 161 at both ends of the magnetostrictive wire are placed on the flexible substrate 11 on the surface. , 162, the substrate surface can be easily fixed to the surface portion of the device under test with an adhesive.
Furthermore, when the SI element 10 is affected by an external magnetic field at the same time as being distorted, the magnetostrictive wire may be annularly surrounded by a permalloy 11P for magnetic shielding.
SI素子の構造について、図3を用いてさらに詳細に説明する。
SI素子1は、フレキシブル基板11上に形成されているレジスト層11Rの溝12内にアモルファスの磁歪ワイヤ13を配置し、磁歪ワイヤ13の両端には磁歪ワイヤ端子14をそれぞれ設ける。磁歪ワイヤ端子14から接続配線15を介して磁歪ワイヤ電極16(161、162)と接続されている。レジスト層11Rの周囲には磁歪ワイヤ13の磁気シールドするための環状のパーマロイ11Pが形成されている。
The structure of the SI element will be explained in more detail with reference to FIG.
The SI element 1 has amorphous magnetostrictive wires 13 arranged in grooves 12 of a resist layer 11R formed on a flexible substrate 11, and magnetostrictive wire terminals 14 are provided at both ends of the magnetostrictive wires 13, respectively. The magnetostrictive wire terminals 14 are connected to the magnetostrictive wire electrodes 16 (161, 162) via the connection wiring 15. FIG. A ring-shaped permalloy 11P for magnetically shielding the magnetostrictive wire 13 is formed around the resist layer 11R.
SIセンサの電子回路としては、図4に示す。電子回路2は、磁歪ワイヤ22にパルス電流を通電するパルス発振器21、電子スイッチ22、高速電子スイッチ24およびコンデンサ25からなるサンプルホールド回路26、増幅器27からなる。 An electronic circuit of the SI sensor is shown in FIG. The electronic circuit 2 comprises a pulse oscillator 21 for applying a pulse current to the magnetostrictive wire 22 , an electronic switch 22 , a high-speed electronic switch 24 and a sample hold circuit 26 comprising a capacitor 25 , and an amplifier 27 .
磁歪ワイヤにパルス電流を通電するパルス発振器と磁歪ワイヤに生じる歪み量に対応したインピーダンス変化を磁歪ワイヤ電圧変化として取り出して、サンプルホールドするサンプルホールド回路と、ホールド電圧を増幅して出力する増幅回路とからなっている。励磁周波数は200MHzとした。 A pulse oscillator that applies a pulse current to the magnetostrictive wire, a sample-and-hold circuit that samples and holds the impedance change corresponding to the amount of strain generated in the magnetostrictive wire as a magnetostrictive wire voltage change, and an amplifier circuit that amplifies and outputs the hold voltage. consists of The excitation frequency was set to 200 MHz.
ワイヤ先端部は、ばね性の大きな部分と比較的柔らかい最先端部からなることを考慮して、ワイヤ先端部にかかる接触圧及び曲がり程度を計測する。そのために、上記SI素子31(磁歪ワイヤ311からなる。)を図5に示すようにワイヤ先端のコアワイヤ32に90度対称に4個取り付けた接触圧センサ素子とし、その出力をフレキシブル配線で患者の身体外部の電子回路に連結し、4個の値(σx1、σx2、σy1、σy2)の平均値を計算し、その値を接触圧Pとして求めた。ここで、電子回路は図6に示すように図3に示す電子回路を4個組み合わせたものを使用した。 The contact pressure applied to the wire tip and the degree of bending are measured considering that the wire tip consists of a portion with high springiness and a relatively soft distal end. For this purpose, as shown in FIG. 5, four SI elements 31 (made of magnetostrictive wires 311) are attached to the core wire 32 at the tip of the wire in 90-degree symmetry as contact pressure sensor elements. It was connected to an electronic circuit outside the body, the average value of the four values (σx1, σx2, σy1, σy2) was calculated, and the value was obtained as the contact pressure P. Here, as an electronic circuit, as shown in FIG. 6, a combination of four electronic circuits shown in FIG. 3 was used.
またσx=1/2(σx1―σx2)、σy=1/2(σy1―σy2)を先端部の曲げ応力ベクトルσxy=(σx、σy)として求め、ワイヤ先端部の曲がり方向と曲がり強さ(すなわち曲げ角度)を求めることができるようになった。
患者の身体外部において電子回路から出力されたデータを応力センサデータ処理装置により処理して接触圧および曲げ応力を求めて表示装置により表示する。
Further, σx=1/2 (σx1−σx2) and σy=1/2 (σy1−σy2) are obtained as the bending stress vector σxy=(σx, σy) of the wire tip, and the bending direction and bending strength ( That is, it became possible to obtain the bending angle).
Data output from an electronic circuit outside the patient's body is processed by a stress sensor data processing device to obtain contact pressure and bending stress, which are displayed on a display device.
 (3)また、スマートガイドワイヤは、ドライバー部にはハンドルおよびトルカーにかかるトルクおよび回転量を計測するトルクセンサおよびトルカー回転量計測装置を備え、患者の身体外部にはトルクセンサデータ処理装置および回転センサデータ処理装置を備える。そして、計算して求めた計測値をトルク・回転量表示装置(表示装置と略す。)により表示する。 (3) In addition, the smart guidewire is equipped with a torque sensor and a torquer rotation amount measuring device for measuring the torque and rotation amount applied to the handle and the torquer in the driver part, and a torque sensor data processing device and a rotation amount measuring device outside the patient's body. A sensor data processor is provided. Then, the calculated measured values are displayed by a torque/rotation amount display device (abbreviated as a display device).
本発明の被試験体の表面応力を計測するトルクセンサ素子の構造は、上記SI素子4個を90度対称に配置したものである。被試験体の表面応力を測定するトルクセンサ素子は、フレキシブル基板上に4個のSI素子(X1、X2、Y1、Y2)が原点(O点)を中心として4回対称に対角線上に配置されて、各々のSI素子が計測する応力(σx1、σx2、σy1、σy2)について、X軸方向の応力であるσx1およびσx2 を加算し、X軸方向と直交するY軸方向の応力であるσy1およびσy2 を加算し、次にX軸方向の加算値とY軸方向の加算値との差分σxyは、σxy=(σx1+σx2)-(σy1+σy2)なる式で算出して、原点(O点)の位置におけるトルクの測定を可能とする。 The structure of the torque sensor element for measuring the surface stress of the test object according to the present invention is obtained by arranging the above four SI elements symmetrically at 90 degrees. Four SI elements (X1, X2, Y1, Y2) are arranged on a flexible substrate diagonally with four-fold symmetry around the origin (point O). σx1 and σx2, which are stresses in the X-axis direction, are added to the stresses (σx1, σx2, σy1, σy2) measured by each SI element, and σy1 and σy1, which are stresses in the Y-axis direction orthogonal to the X-axis direction, are added. σy2 is added, and then the difference σxy between the added value in the X-axis direction and the added value in the Y-axis direction is calculated by the formula σxy = (σx1 + σx2) - (σy1 + σy2) at the position of the origin (O point) Allows measurement of torque.
トルクセンサ素子の構造について図7を用いて詳細に説明する。
トルクセンサ素子1Aは、フレキシブル基板11上に、溝12に配置されている磁歪ワイヤ13と磁歪ワイヤ13の一端の磁歪ワイヤ出力端子141および他端の磁歪ワイヤグランド端子142から構成されるSI素子10が4個(X1、X2、Y1、Y2)配置され、原点(O点)に設けられているグランド共通電極160と磁歪ワイヤグランド端子142の4個とが接続されている。4個の磁歪ワイヤ出力端子141は配線15を介して磁歪ワイヤ出力電極161と接続され、リード線(出力電極用)17により外部へ接続される。グランド共通電極160は配線16を介して磁歪ワイヤグランド電極162と接続され、リード線18(グランド電極用)により外部へと接続される。
トルクセンサは、トルクセンサ素子1Aと図6に示電子回路2Aとからなる。
The structure of the torque sensor element will be explained in detail with reference to FIG.
The torque sensor element 1A comprises a magnetostrictive wire 13 arranged in a groove 12 on a flexible substrate 11, a magnetostrictive wire output terminal 141 at one end of the magnetostrictive wire 13, and a magnetostrictive wire ground terminal 142 at the other end. are arranged (X1, X2, Y1, Y2), and the ground common electrode 160 provided at the origin (point O) and the four magnetostrictive wire ground terminals 142 are connected. The four magnetostrictive wire output terminals 141 are connected to the magnetostrictive wire output electrodes 161 through the wires 15 and are connected to the outside by lead wires (for output electrodes) 17 . The ground common electrode 160 is connected to the magnetostrictive wire ground electrode 162 through the wiring 16, and is connected to the outside by the lead wire 18 (for ground electrode).
The torque sensor consists of a torque sensor element 1A and an electronic circuit 2A shown in FIG.
上記のトルクセンサ2個を、ドライバー部のハンドルとトルカーにそれぞれ取り付けて、ハンドルのトルクセンサでワイヤ先端の回転にかかる力を計測し、トルカーにかかるトルクでワイヤ挿入送り時に負荷する押し付け力を計測した。トルカーにかかる力は、ハンドルを固定してトルカーを回転させて計測した。ハンドルにかかるトルクは、ハンドルを回転させてガイドワイヤ先端を回転させる時の抵抗力に対応するものである。 The above two torque sensors are attached to the handle and torquer of the driver, respectively. The torque sensor on the handle measures the force applied to the wire tip rotation, and the torque applied to the torquer measures the pressing force applied when the wire is inserted and fed. did. The force applied to the torquer was measured by fixing the handle and rotating the torquer. The torque on the handle corresponds to the resistance force when rotating the handle to rotate the guidewire tip.
トルカーのトルク強さおよびワイヤの送り量とガイドワイヤ先端の接触圧の三つの値から、先端部における進路を妨害する障害物の様子および誘導血管経路における抵抗力を推定することが可能になった。 From the torque strength of the torquer, the amount of wire feed, and the contact pressure at the tip of the guidewire, it became possible to estimate the state of obstacles obstructing the path at the tip and the resistance force in the guiding blood vessel path. .
トルカーの回転量の計測装置については、トルカー側のシャフト表面に磁気スケールメモリを刻み、それをハンドル側の端面に取り付けた磁気センサで回転量を検知する方式とした。これによりハンドルとトルカーの相対的な回転量を計測することができ、その回転量からワイヤの送り量を算出することができる。 As for the torquer rotation amount measurement device, a magnetic scale memory is engraved on the shaft surface of the torquer side, and a magnetic sensor attached to the end face of the handle side detects the rotation amount. As a result, the amount of relative rotation between the handle and the torquer can be measured, and the amount of wire feeding can be calculated from the amount of rotation.
(4)さらに、ドライバー部には回転方位を検出する回転角度検出センサ、回転速度を検出する回転速度検出センサを備え、患者の身体外部に回転センサデータ処理装置を備え、計算して求めた計測値を表示装置により表示する。 (4) Furthermore, the driver unit is equipped with a rotation angle detection sensor for detecting the rotation direction and a rotation speed detection sensor for detecting the rotation speed, and a rotation sensor data processing device is provided outside the patient's body, and the measurement obtained by calculation The value is displayed by the display device.
ハンドルに電子コンパスと3軸加速度センサからなるモーションセンサを取り付けて、ハンドルの回転方位、回転量および回転速度を計測した。ここで、GSRセンサを活用した電子コンパスを採用して、電子コンパスの方位精度を、スマートフォンなどで使用されている汎用的な電子コンパスの方位精度5度から0.1度程度へと大幅に改善した。 A motion sensor consisting of an electronic compass and a 3-axis acceleration sensor was attached to the steering wheel to measure the rotational azimuth, the amount of rotation, and the rotational speed of the steering wheel. Here, by adopting an electronic compass that utilizes a GSR sensor, the azimuth accuracy of the electronic compass has been greatly improved from 5 degrees, which is the azimuth accuracy of a general-purpose electronic compass used in smartphones, etc., to about 0.1 degrees. did.
ドライバーの回転量、ガイドワイヤの先端部の方位と曲がった状態のワイヤ最先端部の方位およびその変化から、ドライバーの回転操作で、先端部の向きを適切に操作して効率よく進路経路に沿ってガイドワイヤを誘導することができるようになった。 Based on the amount of rotation of the driver, the orientation of the tip of the guide wire and the orientation of the tip of the wire in a bent state, and changes in these, the direction of the tip can be appropriately controlled by rotating the driver to efficiently follow the course. can guide the guidewire.
上記の実施形態によるスマートガイドワイヤにおけるガイドワイヤの構成について、図8により説明する。
ガイドワイヤ4は、ワイヤ先端部41、ドライバー部42およびワイヤ連結部からなる。ワイヤ先端部41は、最先端に先端(プラチナ)411、半硬質磁性材料からなるCr-Ni系ステンレス鋼のコアワイヤ412、補強コイル413およびスプリングコイル414からなり、ガイドワイヤ先端よりのワイヤ先端部の一部は着磁されてCr-Ni系ステンレス磁石415を構成し、コアワイヤ412の外周部に接触圧および曲げ応力を検知するSI素子31からなる接触圧センサ416が配置されている。
The configuration of the guidewire in the smart guidewire according to the above embodiment will be described with reference to FIG.
The guide wire 4 consists of a wire distal end portion 41, a driver portion 42 and a wire connecting portion. The wire tip portion 41 is composed of a tip (platinum) 411 at the distal end, a core wire 412 made of Cr—Ni stainless steel made of a semi-hard magnetic material, a reinforcing coil 413 and a spring coil 414. A portion of the core wire 412 is magnetized to form a Cr—Ni stainless steel magnet 415 , and a contact pressure sensor 416 consisting of an SI element 31 for detecting contact pressure and bending stress is arranged on the outer peripheral portion of the core wire 412 .
ドライバー部42には、ハンドル42Hとトルカー42Tとからなる。ハンドル42Hには、ハンドルのトルクを計測するトルクセンサ421、MCU(マイクロコンピュータユニット)422、ハンドルの回転方位および回転速度を計測する電子コンパス423および加速度センサ424からなるモーションセンサが配置されている。 The driver section 42 includes a handle 42H and a torquer 42T. The steering wheel 42H is provided with motion sensors including a torque sensor 421 for measuring the torque of the steering wheel, an MCU (microcomputer unit) 422, an electronic compass 423 for measuring the rotational azimuth and rotational speed of the steering wheel, and an acceleration sensor 424.
トルカー42Tには、トルカー42Tの回転量を計測するトルカー回転量計測装置である回転量計測センサ425、トルカー42Tのトルクを計測するトルクセンサ426が配置されている。
ワイヤ先端部41の回転を41R、ハンドル42Hの回転を42HR、トルカー42Tの回転を42TRにて図示する。
The torquer 42T is provided with a rotation amount measuring sensor 425, which is a torquer rotation amount measuring device for measuring the amount of rotation of the torquer 42T, and a torque sensor 426 for measuring the torque of the torquer 42T.
Rotation of the wire tip 41 is indicated by 41R, rotation of the handle 42H is indicated by 42HR, and rotation of the torquer 42T is indicated by 42TR.
ガイドワイヤの実施形態から次のことが得られた。
1)ワイヤ先端部41の一部が着磁されたCr-Ni系ステンレス磁石415と外部の磁気ベクトルセンサグリッドおよび位置計算データ処理装置を組み合わせて、ガイドワイヤ先端の位置と方位が求めることができるようになった。
 2)ワイヤ先端部の4個の歪ゲージ(SI素子)によって、ワイヤ先端の接触圧力および先端部の曲がり応力、角度、曲がりの向きが測定できるようになった。
3)ドライバー部42のトルカー42Tに取り付けられたトルクセンサ426で、ワイヤの押し込み圧力およびトルカー回転量計測装置425(回転量計測センサ)で、トルカー42Tによるワイヤの送り長さが計測できるようになった。
4)ドライバー部42に取り付けられたトルクセンサ(421、426)、回転方位計(423)、回転速度計(424)によってガイドワイヤ先端の方位と回転量の操作関係が定量的に把握することができるようになった。
The following has been obtained from the guidewire embodiment.
1) The position and orientation of the tip of the guide wire can be determined by combining the Cr—Ni stainless steel magnet 415 in which part of the wire tip 41 is magnetized, an external magnetic vector sensor grid, and a position calculation data processing device. It became so.
2) Four strain gauges (SI elements) at the tip of the wire made it possible to measure the contact pressure at the tip of the wire, the bending stress at the tip, the angle, and the direction of bending.
3) The torque sensor 426 attached to the torquer 42T of the driver unit 42 can measure the wire pushing pressure and the torquer rotation amount measuring device 425 (rotation amount measuring sensor) can measure the wire feed length by the torquer 42T. Ta.
4) Torque sensors (421, 426), rotational azimuth (423), and tachometer (424) attached to the driver unit 42 allow quantitative understanding of the operational relationship between the orientation of the tip of the guide wire and the amount of rotation. It became possible.
以上、センサと磁石の内臓式センサのスマートガイドワイヤによって、今まで治療医師の経験と勘に頼っていたガイドワイヤ挿入治療が、手元のドライバーによるガイドワイヤの先端部の移動の定量的関係が把握できるようになり、治療医師は両者の数値関係を見ながら治療ができるようになり、治療が早くより正確に行えるようになると期待される。 As described above, the smart guidewire with the built-in sensor and magnet enables guidewire insertion treatment, which until now relied on the experience and intuition of the treating physician, to quantitatively understand the movement of the tip of the guidewire by the driver at hand. It is expected that the treating physician will be able to perform treatment while observing the numerical relationship between the two, and that treatment will be performed more quickly and accurately.
本発明の第2の実施形態は、上記のセンサ内蔵式スマートガイドワイヤを用いたガイドワイヤ操作アシストシステムプログラムからなるものである。
スマートガイドワイヤと、X線画像から求めた血管網マップと、 血管網マップ上に治療患部位置を特定するマーキングシステムと、任意の時刻におけるガイドワイヤ先端位置を治療医師に伝達するシステムと、次の時刻における、つまり所定の時間間隔後における次の目標位置へガイドワイヤ先端を誘導するのに必要なトルクとワイヤ押し込み量と回転角を計算して治療医師に伝達するシステムと、この操作を繰り返して治療医師が最終的にガイドワイヤを治療患部位置まで誘導する治療をアシストするガイドワイヤ操作アシストシステムである。
The second embodiment of the present invention consists of a guidewire manipulation assist system program using the smart guidewire with built-in sensor.
A smart guidewire, a vascular network map obtained from an X-ray image, a marking system that specifies the position of the affected area for treatment on the vascular network map, a system that communicates the guidewire tip position at any time to the treating doctor, and the following: A system that calculates and transmits to the treating doctor the torque, wire pushing amount, and rotation angle required to guide the guidewire tip to the next target position at the time, that is, after a predetermined time interval, and repeats this operation. It is a guide wire manipulation assist system that assists the treatment doctor to finally guide the guide wire to the position of the treatment affected area.
ガイドワイヤ操作アシストシステムプログラムは、ある時刻t(i)におけるガイドワイヤの先端位置に至るまでに時刻t(0)からt(i)までに計測した、血管マップの経路情報とワイヤの先端位置の方位・位置と移動量およびドライバー側のトルク値、ハンドル回転量、トルカーのトルクと回転量とワイヤの送り長さの計測値を総合したデータベースと、次の時刻t(i+1)に誘導すべき先端位置までの方位と位置の微小変化量を計算して治療医師に伝えるプログラムと、X線画像から得た血管の状態から、つまり血管の直径、閉塞度合い、曲がり、距離を考慮して、上記データベースをもとに誘導に必要なドライバーの回転量とトルクおよびトルカーのトルクおよびトルカー回転量を試算して、治療医師に伝えるプログラムと、治療医師はそのデータを参考に経験値と比較しながら治療を行い、これを繰り返して治療実績をデータベース化したプログラムとからなる。
データベースを充実することで、より正確な誘導に必要なトルクとトルカー回転量を治療医師に伝えることができることになると期待される。
The guidewire operation assistance system program is a vascular map path information and a wire tip position measured from time t(0) to t(i) until reaching the tip position of the guidewire at a certain time t(i). A database that integrates the azimuth/position, amount of movement, torque value on the driver side, amount of rotation of the handle, torque and amount of rotation of the torquer, and measurement values of the wire feed length, and the tip to be guided at the next time t(i+1) A program that calculates minute changes in the orientation and position to the position and conveys it to the treating doctor, and from the state of the blood vessel obtained from the X-ray image, that is, considering the diameter, degree of occlusion, curvature, and distance of the blood vessel, the above database Based on this, the amount of rotation and torque of the driver and torque of the torquer and the amount of rotation of the torquer necessary for guidance are estimated, and the program is transmitted to the treating doctor, and the treating doctor refers to the data and compares it with the empirical value while performing treatment. It consists of a program that repeats this and creates a database of treatment results.
By enhancing the database, it is expected that the torque and amount of torquer rotation required for more accurate guidance can be communicated to the treating physician.
本発明の第3の実施形態は、上記センサ内蔵式スマートガイドワイヤとガイドワイヤ操作アシストシステムプログラムをベースにして、ガイドワイヤ操作を自動化、つまりロボット操作にしたものである。
すなわち、上記のガイドワイヤ操作アシストシステムにおいて、ドライバーの操作を治療医師に代えてロボット操作システムにするガイドワイヤ操作ロボットシステムである。
The third embodiment of the present invention is based on the smart guide wire with built-in sensor and the guide wire manipulation assist system program, and automates guide wire manipulation, that is, robot manipulation.
That is, in the above-mentioned guide wire manipulation assist system, the guide wire manipulating robot system replaces the operation of the driver with the robot manipulating system.
ロボット操作は、ガイドワイヤ操作アシストシステムプログラムで得たある任意の時刻t(i)から次の時刻t(i+1)に誘導すべき先端位置までの方位と位置の微小変化量を治療医師に伝え、それを参考に誘導すべき先端位置までの方位と位置の微小移動量を決定し、その値を入力装置で入力して、その入力値が実現できるように、自動的に必要なドライバーの回転量とトルクおよびトルカーのトルクおよびトルカー回転量所定のトルクとトルカー回転量を計算して、ドライバーをコンピュータで操作するロボット操作システムである。 The robot operation conveys to the treating doctor the amount of slight change in the orientation and position from an arbitrary time t (i) to the tip position to be guided to the next time t (i+1) obtained by the guide wire operation assist system program, Based on that, determine the amount of minute movement of the direction and position to the tip position to be guided, enter the value with the input device, and automatically calculate the necessary amount of rotation of the driver so that the input value can be realized. and torque and torque of the torquer and amount of rotation of the torquer A robot operation system that calculates a predetermined torque and amount of rotation of the torquer and operates the driver with a computer.
 [実施例1]
Cr-Ni系ステンレスの複合磁性ワイヤよりなるガイドワイヤ4のワイヤ先端部41の一部にはCr-Ni系ステンレス磁石415とSI素子416を配置し、ドライバー部42にはトルクセンサ421、426、トルカー回転量計測装置425、ドライバーの回転角度検出センサ424、回転速度検出センサ425を配置している。
患者の身体外部に磁気ベクトルセンサグリッド、センサグリッドのデータを使ってワイヤ先端の位置と方位を計算する位置センサデータ処理装置が配置されている。
ワイヤ先端の接触圧と曲げ応力、ドライバー部のトルクと回転量、およびドライバーの回転方位と回転速度を計算する、応力センサデータ処理装置と回転センサデータ処理装置と回転検出センサデータ処理装置と、計算して求めた計測値を表示する表示装置からなる。
[Example 1]
A Cr—Ni stainless steel magnet 415 and an SI element 416 are arranged in a part of the wire tip portion 41 of the guide wire 4 made of a Cr—Ni stainless steel composite magnetic wire, and torque sensors 421, 426, A torquer rotation amount measuring device 425, a driver rotation angle detection sensor 424, and a rotation speed detection sensor 425 are arranged.
A magnetic vector sensor grid is positioned outside the patient's body, and a position sensor data processor that uses data from the sensor grid to calculate the position and orientation of the wire tip.
A stress sensor data processing device, a rotation sensor data processing device, and a rotation detection sensor data processing device for calculating the contact pressure and bending stress of the wire tip, the torque and rotation amount of the driver part, and the rotation direction and rotation speed of the driver, and calculation It consists of a display device that displays the measured values obtained by
ワイヤ先端部の磁石は、Cr-Ni系非磁性ステンレスを80%の加工度で強加工して、マルテンサイト相を90%誘起せしめた上で、20kg/mmの張力をかけた状態で550℃の張力熱処理をした後で、長手方向に着磁し、残留磁気を0.8Tとした磁石である。オーステナイト系ステンレス鋼のオーステナイト層の安定度の物差しであるMd点はCr量を18.5%、Ni量を8.2%、Mn量を1.0%、Cu量を0.2%、Mo量を0.2%、Si量を0.3%、C量を0.02%、N量を0.02%に調整して、55℃とした。そして、常温にて80%の冷間加工を行なうことで、80%のマルテンサイト量を確保した。 The magnet at the tip of the wire is made of Cr-Ni non-magnetic stainless steel with a degree of working of 80% to induce a martensitic phase of 90%. It is a magnet that is magnetized in the longitudinal direction after tension heat treatment at 0.8° C. and has a residual magnetism of 0.8 T. The Md point, which is a measure of the stability of the austenitic layer of austenitic stainless steel, has a Cr content of 18.5%, a Ni content of 8.2%, a Mn content of 1.0%, a Cu content of 0.2%, and a Mo The amount was adjusted to 0.2%, the amount of Si to 0.3%, the amount of C to 0.02%, and the amount of N to 0.02%. Then, by performing 80% cold working at normal temperature, 80% martensite content was ensured.
Cr-Ni系ステンレス磁石性能は12,000Gの飽和磁化、100Oeの保磁力、1000Gの異方性磁界かつ9,000Gの残留磁気であった。磁石形状は直径0.5mm、長さ5mmで、5×10-9Wbmの大きさの磁気モーメントを有していた。またパーミアンス係数は10で、50Oe程以下の通常の磁界環境においては、減磁する危険はないものとなった。ワイヤの先端のCr-Ni系ステンレス磁石から発する磁界は、磁石からの距離150mmの位置で10nTであった。 The performance of the Cr-Ni stainless steel magnet was 12,000G saturation magnetization, 100Oe coercive force, 1000G anisotropic magnetic field and 9,000G residual magnetism. The magnet geometry was 0.5 mm in diameter, 5 mm in length, and had a magnetic moment as large as 5×10 −9 Wbm. Moreover, the permeance coefficient was 10, and there was no risk of demagnetization in a normal magnetic field environment of about 50 Oe or less. The magnetic field emitted from the Cr—Ni stainless steel magnet at the tip of the wire was 10 nT at a position 150 mm away from the magnet.
磁気ベクトルセンサとしては、センサの検出感度が1nTのGSRセンサを用いた。長さ2mmのGSRセンサを四角錐台形状の3次元台座(底辺長さが6mm、傾斜角度が30℃)に90度対称に4個貼り付けて、4個データを1個の制御用電子回路に連結して磁気ベクトルセンサとした。 A GSR sensor with a detection sensitivity of 1 nT was used as the magnetic vector sensor. Four GSR sensors with a length of 2 mm are attached to a three-dimensional pedestal in the shape of a truncated square pyramid (base length is 6 mm, inclination angle is 30°C) in 90-degree symmetry. to form a magnetic vector sensor.
磁気ベクトルセンサグリッドは、このGSRセンサを使った磁気ベクトルセンサを長さ100mm、幅100mmのセンサボード板に、10mm間隔で長さ方向に9行、幅方向に9列のグリッド状に配置した。センサの数は、9×9の81個である。磁気ベクトルセンサ1個は4個の磁気センサを有するので、324個のセンサの測定を一回の測定で行う必要がある。そのためにこのセンサグリッドは、高速切り替えスイッチで測定を走査し、その値をマイクロコンピュータに取り組み、324個のデータを一体化して、50Hzの速度で出力する。
その磁気ベクトルセンサグリッドのデータを使ってワイヤ先端の位置と方位を計算する。
As the magnetic vector sensor grid, magnetic vector sensors using this GSR sensor were arranged on a sensor board plate having a length of 100 mm and a width of 100 mm in a grid of 9 rows in the length direction and 9 columns in the width direction at intervals of 10 mm. The number of sensors is 9×9=81. Since one magnetic vector sensor has four magnetic sensors, it is necessary to measure 324 sensors in one measurement. For this purpose, this sensor grid scans the measurements with a fast changeover switch, feeds the values into a microcomputer, integrates 324 data points and outputs them at a rate of 50 Hz.
The magnetic vector sensor grid data is used to calculate the position and orientation of the wire tip.
ワイヤ先端部41のコアワイヤ412に取り付けるSI素子1は、幅0.2mm、長さ2mmで歪みゲージファクター1500でフレキシブル基板をもつ超高感度小型の歪みゲージである。SI素子1の構造は、図3に示すようなもので、フレキシブル基板11上に、表面に応力検知体であるアモルファス磁歪ワイヤ13(以下、磁歪ワイヤという。)と磁歪ワイヤに磁歪ワイヤ電極161、162を備えたもので、容易に基板表面を被試験体の表面部に接着剤で固定することができる。
さらに、SI素子1は、歪みと同時に外部磁界の影響を受けるので、磁歪ワイヤ13をパーマロイ11Pで環状に囲い磁気シールドすることにした。パーマロイ11Pは、幅0.05mm、厚みは5μmの薄膜である。
SIセンサの電子回路2としては、図4に示すように、SI素子23(磁歪ワイヤ13)にパルス電流を通電するパルス発振器21と磁歪ワイヤ13に生じる歪み量に対応したインピーダンス変化をワイヤ電圧変化として取り出して、サンプルホールドするサンプルホールド回路26と、ホールド電圧を増幅して出力する増幅回路27とからなっている。励磁周波数は200MHzとした。
The SI element 1 attached to the core wire 412 of the wire tip portion 41 is an ultra-high-sensitivity compact strain gauge having a width of 0.2 mm, a length of 2 mm, a strain gauge factor of 1500 and a flexible substrate. The structure of the SI element 1 is as shown in FIG. 162, the substrate surface can be easily fixed to the surface of the device under test with an adhesive.
Furthermore, since the SI element 1 is affected by an external magnetic field at the same time as being distorted, the magnetostrictive wire 13 is annularly surrounded by a permalloy 11P to provide a magnetic shield. Permalloy 11P is a thin film with a width of 0.05 mm and a thickness of 5 μm.
As shown in FIG. 4, the electronic circuit 2 of the SI sensor includes a pulse oscillator 21 that applies a pulse current to the SI element 23 (magnetostrictive wire 13) and a wire voltage change that generates an impedance change corresponding to the amount of strain generated in the magnetostrictive wire 13. It is composed of a sample-and-hold circuit 26 for sampling and holding and an amplifier circuit 27 for amplifying and outputting the hold voltage. The excitation frequency was set to 200 MHz.
上記SI素子1を図5に示すようにワイヤ先端から3mmの位置に、90度対称に4個取り付け、その出力をフレキシブル配線で外部の電子回路に連結し、4個の値(σx1、σx2、σy1、σy2)の平均値を計算し、その値を接触圧として求めた。ここで、電子回路は図6に示すような図3に示した電子回路を4個組み合わせたものを使用した。
またσx=1/2(σx1―σx2)、σy=1/2(σy1―σy2)を先端部の曲げ応力ベクトルσxy=(σx、σy)として求め、ワイヤ先端部の曲がり方向と曲がり強さ(すなわち曲げ角度)を求めることができる。
As shown in FIG. 5, four SI elements 1 are attached at a position 3 mm from the tip of the wire in 90-degree symmetry, and the outputs are connected to an external electronic circuit by flexible wiring. The average value of σy1, σy2) was calculated, and the value was determined as the contact pressure. Here, as an electronic circuit, a combination of four electronic circuits shown in FIG. 3 as shown in FIG. 6 was used.
Further, σx=1/2 (σx1−σx2) and σy=1/2 (σy1−σy2) are obtained as the bending stress vector σxy=(σx, σy) of the wire tip, and the bending direction and bending strength ( That is, the bending angle) can be obtained.
本発明の被試験体の表面応力を計測するトルクセンサ素子の構造は、図7に示すように、長さ2mm、幅0.2mmで、フレキシブル基板を持つ上記SIセンサ4個を90度対称に配置したものである。被試験体の表面応力を測定するトルクセンサ素子は、フレキシブル基板11上に4個のSI素子(X1、X2、Y1、Y2)が原点(O点)を中心として4回対称に対角線上に配置されて、各々のSI素子が計測する応力(σx1、σx2、σy1、σy2)について、X軸方向の応力であるσx1およびσx2 を加算し、X軸方向と直交するY軸方向の応力であるσy1およびσy2 を加算し、次にX軸方向の加算値とY軸方向の加算値との差分σxyは、σxy=(σx1+σx2)-(σy1+σy2)なる式で算出して、原点(O点)の位置におけるひねり応力の測定を可能とする。 The structure of the torque sensor element for measuring the surface stress of the test object of the present invention is, as shown in FIG. It is arranged. Four SI elements (X1, X2, Y1, Y2) are arranged diagonally on a flexible substrate 11 with four-fold symmetry around the origin (point O). Then, the stresses in the X-axis direction, σx1 and σx2, are added to the stresses (σx1, σx2, σy1, σy2) measured by each SI element, and the stress in the Y-axis direction perpendicular to the X-axis direction, σy1 and σy2 are added, and then the difference σxy between the added value in the X-axis direction and the added value in the Y-axis direction is calculated by the formula σxy = (σx1 + σx2) - (σy1 + σy2), and the position of the origin (O point) Allows measurement of torsional stress in
上記トルクセンサ2個(421、426)を、ドライバー部42のハンドル42Hとトルカー42Tにそれぞれ取り付けて、ハンドル上のトルクセンサでワイヤ先端の回転にかかる力を計測し、トルカー42Tにかかるトルクでワイヤ挿入時に負荷する押し付け力を計測した。トルカー42Tにかかる力は、ハンドル42Hを固定してトルカー42Tを回転させて計測した。ハンドル42Hにかかるトルクは、ハンドル42Hを回転させてガイドワイヤ先端を回転させる時の抵抗力に対応するものである。 The two torque sensors (421, 426) are attached to the handle 42H and the torquer 42T of the driver unit 42, respectively. The pressing force applied during insertion was measured. The force applied to the torquer 42T was measured by fixing the handle 42H and rotating the torquer 42T. The torque applied to the handle 42H corresponds to the resistance force when the handle 42H is rotated to rotate the guidewire tip.
トルカー42Tのトルク強さおよびワイヤの送り量とガイドワイヤ先端の接触圧の三つの値から、先端部における進路を妨害する障害物の様子および誘導血管経路における抵抗力を推定することが可能になった。 From the three values of the torque strength of the torquer 42T, the amount of wire feed, and the contact pressure at the tip of the guide wire, it is possible to estimate the state of obstacles obstructing the path at the tip and the resistance force in the guiding blood vessel path. Ta.
トルカー42Tの回転量の計測装置については、トルカー側のシャフト表面に磁気スケールメモリを刻み、それをハンドル側に端面に取り付けた磁気センサで回転量を検知する方式のものとした。これによりハンドルとトルカーの相対的な回転量を計測することにより、その回転量からワイヤの送り量を算出することができる。 As for the measuring device for the amount of rotation of the torquer 42T, a magnetic scale memory is engraved on the surface of the shaft on the side of the torquer, and the amount of rotation is detected by a magnetic sensor attached to the end face on the side of the handle. By measuring the amount of relative rotation between the handle and the torquer, it is possible to calculate the feed amount of the wire from the amount of rotation.
トルカーのトルク強さおよびワイヤの送り量とワイヤ先端部の接触圧の三つの値から、ワイヤ先端部における進路を妨害する障害物の様子および誘導血管経路における抵抗力を推定することが可能になった。 From the torque strength of the torquer, the amount of wire feed, and the contact pressure at the tip of the wire, it is possible to estimate the state of obstacles obstructing the path at the tip of the wire and the resistance force in the guiding blood vessel path. Ta.
ハンドル42Hに電子コンパス423(サイズは2mm×2mm×厚み1mm)と3軸加速度センサ424(サイズは2mm×2mm×厚み1mm)からなるモーションセンサを取り付けて、ハンドルの回転方位、回転量および回転速度を計測した。ここで、GSRセンサを活用した電子コンパスを採用して、電子コンパスの方位精度を、0.1度とした。 A motion sensor consisting of an electronic compass 423 (size: 2 mm × 2 mm × thickness 1 mm) and a triaxial acceleration sensor 424 (size: 2 mm × 2 mm × thickness 1 mm) is attached to the steering wheel 42H to measure the rotational azimuth, amount of rotation, and rotational speed of the steering wheel. was measured. Here, an electronic compass utilizing a GSR sensor was adopted, and the azimuth accuracy of the electronic compass was set to 0.1 degree.
ドライバーの回転量、ガイドワイヤの先端部41の方位と曲がった状態のワイヤ最先端部の方位およびその変化から、ドライバーの回転操作で、先端部の向きを適切に操作して効率よく進路経路に沿ってガイドワイヤを誘導することができた。 Based on the amount of rotation of the driver, the orientation of the distal end portion 41 of the guide wire and the orientation of the distal end portion of the wire in a bent state, and their changes, the direction of the distal end portion is appropriately controlled by the rotational operation of the driver to efficiently set the course. A guide wire could be guided along.
以上のセンサを内蔵したガイドワイヤ4を図8に示す。
ワイヤ先端部41のCr-Ni系ステンレス磁石415と外部の磁気ベクトルセンサグリッドおよび位置計算データ処理装置を組み合わせて、ガイドワイヤ4の先端の位置と方位を求めることができた。
FIG. 8 shows a guide wire 4 incorporating the above sensor.
The position and orientation of the tip of the guide wire 4 could be determined by combining the Cr--Ni stainless steel magnet 415 of the wire tip 41 with an external magnetic vector sensor grid and position calculation data processing device.
ワイヤ先端部の4個の接触圧センサ416によって、ワイヤ先端の接触圧および先端部の曲がり応力、角度、曲がりの向きが測定できた。 The four contact pressure sensors 416 at the tip of the wire were able to measure the contact pressure of the tip of the wire, the bending stress of the tip, the angle, and the direction of bending.
ドライバー部42のトルカー42Tに取り付けられたトルクセンサ426で、ワイヤの押し込み圧力およびトルカー回転量計測装置425で、トルカー42Tによるワイヤの送り長さが計測できた。 The torque sensor 426 attached to the torquer 42T of the driver unit 42 could measure the wire pushing pressure and the torquer rotation amount measuring device 425 could measure the length of the wire fed by the torquer 42T.
ドライバー部42に取り付けられたトルクセンサ(421)、電子コンパス423と3軸加速度センサ424とからなる回転方位計および回転方位計の時間変化から計算で回転速度を求める回転速度計によってガイド先端の方位と回転量の操作関係が定量的に把握することができた。 A torque sensor (421) attached to the driver unit 42, a rotating compass consisting of an electronic compass 423 and a three-axis acceleration sensor 424, and a rotational speed calculated from changes in the rotating compass over time. and the amount of rotation can be quantitatively grasped.
以上、スマートガイドワイヤによって、今まで治療医師の経験と勘に頼っていたガイドワイヤ挿入治療が、手元のドライバー部42によるガイドワイヤの先端部41の移動の定量的関係が把握できるようになり、治療医師は両者の数値関係を見ながら治療ができるようになり、治療が早くより正確に行えるようになると期待される。 As described above, the smart guidewire makes it possible to grasp the quantitative relationship of the movement of the distal end portion 41 of the guidewire by the driver portion 42 at hand, instead of relying on the experience and intuition of the treating doctor until now. It is expected that the treating physician will be able to perform treatment while observing the numerical relationship between the two, and treatment will be performed more quickly and accurately.
[実施例2]
上記実施例1に記載したスマートガイドワイヤとガイドワイヤ操作アシストシステムプログラムからなるものである。
ガイドワイヤ操作アシストシステムプログラムは、
ある時刻t(i)におけるガイドワイヤの先端位置に至るまでに時刻t(0)からt(i)までに計測した、血管マップの経路情報とワイヤの先端位置の方位・位置と移動量およびドライバー側のトルク値、ハンドル回転量、トルカーのトルクと回転量とワイヤの送り長さの計測値を総合したデータベースと、次の時刻t(i+1)に誘導すべき先端位置までの方位と位置の微小変化量を計算して治療医師に伝えるプログラムと、
X線画像から得た血管の状態から、つまり血管の直径、閉塞度合い、曲がり、距離を考慮して、上記データベースをもとに誘導に必要なドライバーの回転量とトルクおよびトルカーのトルクおよびトルカー回転量を試算して、治療医師に伝えるプログラムと
および治療医師はそのデータを参考に経験値と比較しながら治療を行い、これを繰り返して治療実績をデータベース化したプログラムとからなる。
データベースを充実することで、より正確な誘導に必要なトルクとトルカー回転量を医師に伝えることができるようになると期待される。
[Example 2]
It consists of the smart guide wire described in the first embodiment and the guide wire manipulation assist system program.
The guide wire manipulation assist system program is
The route information of the blood vessel map, the orientation/position of the tip position of the wire, the amount of movement, and the driver measured from time t(0) to t(i) until reaching the tip position of the guidewire at a certain time t(i) side torque value, handle rotation amount, torque and rotation amount of the torquer, and measured values of wire feed length, and the minute azimuth and position to the tip position to be guided at the next time t (i+1) A program that calculates the amount of change and notifies the treating doctor,
Based on the state of the blood vessel obtained from the X-ray image, that is, the diameter, degree of occlusion, curvature, and distance of the blood vessel, the amount of rotation and torque of the driver required for guidance and the torque and rotation of the torquer are determined based on the above database. It consists of a program that estimates the amount and notifies it to the treating doctor, and a program that the treating doctor performs treatment while comparing the data with the empirical value as a reference, and repeats this to create a database of treatment results.
By enhancing the database, it is expected that doctors will be able to communicate the torque and amount of torquer rotation required for more accurate guidance.
[実施例3]
上記実施例2をベースに、そのガイドワイヤ操作を自動化、つまりロボット操作にしたものである。
ロボット操作は、ガイドワイヤ操作アシストシステムプログラムで得たある任意の時刻t(i)から次の時刻t(i+1)に誘導すべき先端位置までの方位と位置の微小変化量を治療医師に伝え、それを参考に誘導すべき先端位置までの方位と位置の微小移動量を決定し、その値を入力装置で入力して、その入力値が実現できるように、自動的に必要なドライバーの回転量とトルクおよびトルカーのトルクおよびトルカー回転量所定のトルクとトルカー回転量を計算して、ドライバーをコンピュータで操作するロボット操作システムである。
[Example 3]
Based on the second embodiment, the guide wire operation is automated, that is, a robot operation is used.
The robot operation conveys to the treating doctor the amount of slight change in the orientation and position from an arbitrary time t (i) to the tip position to be guided to the next time t (i+1) obtained by the guide wire operation assist system program, Based on that, determine the amount of minute movement of the direction and position to the tip position to be guided, enter the value with the input device, and automatically calculate the necessary amount of rotation of the driver so that the input value can be realized. and torque and torque of the torquer and amount of rotation of the torquer A robot operation system that calculates a predetermined torque and amount of rotation of the torquer and operates the driver with a computer.
本発明は、ガイドワイヤにセンサを内蔵してロボット操作を可能にするもので、治療操作を容易にし、かつX線照射時間を少なくすることを可能とする技術として広く普及するものと期待されるである。 The present invention enables robot manipulation by incorporating a sensor into the guide wire, and is expected to be widely used as a technology that facilitates treatment manipulation and reduces the X-ray irradiation time. is.
1:SI素子(応力インピーダンスセンサ素子)
11:フレキシブル基板(基板)、11R:レジスト層、11P:パーマロイ、12:溝、13:磁歪ワイヤ、14:磁歪ワイヤ端子、15:配線、16(161、162):磁歪ワイヤ電極
1A:トルクセンサ素子
10:SI素子(X1、X2、Y1、Y2)、11:フレキシブル基板、12:溝、13:磁歪ワイヤ、141:磁歪ワイヤ出力端子、142:磁歪ワイヤグランド端子、15:配線、160:グランド共通電極、161:出力電極、162:グランド電極、17:リード線(出力電極用)、18:リード線(グランド電極用)
2:電子回路
21:パルス発振器、22:電子スイッチ、23:SI素子、24:高速電子スイッチ、25:コンデンサ、26:サンプルホールド回路、27:増幅器
2A:電子回路
21:パルス発振器、22(22A、22B、22C、22D):電子スイッチ、23(23A、23B、23C、23D):SI素子、24(24A、24B、24C、24D):高速電子スイッチ、25(25A、25B、25C、25D):コンデンサ、26(26A、26B、26C、26D):サンプルホールド回路、27(27A、27B、27C、27D):増幅器、28(28A、28B、28C、28D):電子スイッチ
3:接触圧センサ素子
31:SI素子、311:磁歪ワイヤ、32:コアワイヤ、33:レジンコート
4:ガイドワイヤ
41:ワイヤ先端部、411:先端(プラチナ)、412:コアワイヤ、413:補強コイル、414:スプリングコイル、415:Cr-Ni系ステンレス磁石、416:接触圧センサ(SI素子)、41R:ワイヤ先端部の回転、42:ドライバー部、42H:ハンドル、42T:トルカー、421:トルクセンサ、422:MCU(マイクロコンピュータユニット)、423:電子コンパス、424:3軸加速度センサ、425:回転量計測センサ(回転量計測装置)、426:トルクセンサ、42HR:ハンドルの回転、42TR:トルカーの回転
 
1: SI element (stress impedance sensor element)
11: flexible substrate (substrate), 11R: resist layer, 11P: permalloy, 12: groove, 13: magnetostrictive wire, 14: magnetostrictive wire terminal, 15: wiring, 16 (161, 162): magnetostrictive wire electrode 1A: torque sensor Element 10: SI element (X1, X2, Y1, Y2), 11: flexible substrate, 12: groove, 13: magnetostrictive wire, 141: magnetostrictive wire output terminal, 142: magnetostrictive wire ground terminal, 15: wiring, 160: ground Common electrode 161: Output electrode 162: Ground electrode 17: Lead wire (for output electrode) 18: Lead wire (for ground electrode)
2: electronic circuit 21: pulse oscillator, 22: electronic switch, 23: SI element, 24: high-speed electronic switch, 25: capacitor, 26: sample and hold circuit, 27: amplifier 2A: electronic circuit 21: pulse oscillator, 22 (22A , 22B, 22C, 22D): electronic switch, 23 (23A, 23B, 23C, 23D): SI element, 24 (24A, 24B, 24C, 24D): high-speed electronic switch, 25 (25A, 25B, 25C, 25D) : Capacitor 26 (26A, 26B, 26C, 26D): Sample and hold circuit 27 (27A, 27B, 27C, 27D): Amplifier 28 (28A, 28B, 28C, 28D): Electronic switch 3: Contact pressure sensor element 31: SI element, 311: magnetostrictive wire, 32: core wire, 33: resin coat 4: guide wire 41: wire tip, 411: tip (platinum), 412: core wire, 413: reinforcing coil, 414: spring coil, 415 : Cr--Ni stainless steel magnet, 416: contact pressure sensor (SI element), 41R: wire tip rotation, 42: driver unit, 42H: handle, 42T: torquer, 421: torque sensor, 422: MCU (microcomputer unit), 423: electronic compass, 424: 3-axis acceleration sensor, 425: rotation amount measurement sensor (rotation amount measurement device), 426: torque sensor, 42HR: rotation of handle, 42TR: rotation of torquer

Claims (6)

  1. ガイドワイヤ用Cr-Ni系ステンレス磁石の製造方法において、
    (1)Cr-Ni系非磁性ステンレス鋼のワイヤを50%以上の加工度で伸線加工して、直径0.3mm~1mmとし、50~95%のマルテンサイト量を有する半硬質磁性特性のカテーテル用のガイドワイヤにする工程と、
    (2)前記ガイドワイヤを熱処理温度は500~570℃、張力は5~100kg/mmにて張力熱処理して、前記半硬質磁性特性を8,000~12,000Gの飽和磁化、100~200Oeの保磁力、800G以上の異方性磁界かつ6,000~10,000Gの残留磁気を有する半硬質磁性に改質する工程と、
    (3)改質処理された前記ガイドワイヤの先端部の一部である5mm~25mmの長さだけ飽和着磁して、1×10-9Wbm~20×10-9Wbmの磁気モーメントを有する磁石にする工程と、
     からなることを特徴とするガイドワイヤ用Cr-Ni系ステンレス磁石の製造方法。
    In a method for manufacturing a Cr—Ni stainless steel magnet for a guide wire,
    (1) A wire of Cr—Ni system non-magnetic stainless steel is drawn at a workability of 50% or more to have a diameter of 0.3 mm to 1 mm, and a semi-hard magnetic characteristic having a martensite amount of 50 to 95%. forming a guidewire for a catheter;
    (2) The guide wire is subjected to tension heat treatment at a heat treatment temperature of 500 to 570° C. and a tension of 5 to 100 kg/mm 2 to improve the semi-hard magnetic properties to a saturation magnetization of 8,000 to 12,000 G and a saturation magnetization of 100 to 200 Oe. a coercive force of , an anisotropic magnetic field of 800 G or more, and a remanent magnetism of 6,000 to 10,000 G;
    (3) It has a magnetic moment of 1×10 −9 Wbm to 20×10 −9 Wbm when saturated magnetized by a length of 5 mm to 25 mm, which is a part of the tip of the modified guide wire. a process of making a magnet;
    A method for producing a Cr—Ni stainless steel magnet for a guide wire, comprising:
  2.  ガイドワイヤ、磁気ベクトルセンサグリッド、位置センサデータ処理装置及び表示装置を備えるスマートガイドワイヤにおいて、
     前記ガイドワイヤは、ワイヤ先端部、ドライバー部および両者を連結するワイヤ連結部とからなり、
    前記ワイヤ先端部は、請求項1に記載されたガイドワイヤ用Cr-Ni系ステンレス磁石の製造方法により製造された100~200Oeの保磁力、800G以上の異方性磁界、6,000~10,000Gの残留磁気かつ1×10-9Wbm~20×10-9Wbmの磁気モーメントを有する磁石からなり、
    前記磁気ベクトルセンサグリッドは、患者の身体外部に配置された診断機器に備えられ、
    前記磁気ベクトルセンサグリッドを構成する磁気ベクトルセンサは、10nT以下の磁気検出力を
    有し、
    前記位置センサデータ処理装置は、前記磁気ベクトルセンサグリッドで計測したデータを使って前記ガイドワイヤの先端の位置と方位を計算し、
    前記表示装置は、前記位置センサデータ処理装置で計算して求めた位置と方位の計測値を表示することを特徴とするスマートガイドワイヤ。
    In a smart guidewire comprising a guidewire, a magnetic vector sensor grid, a position sensor data processor and a display,
    The guide wire comprises a wire tip portion, a driver portion, and a wire connecting portion that connects the two,
    The wire tip has a coercive force of 100 to 200 Oe, an anisotropic magnetic field of 800 G or more, an anisotropic magnetic field of 6,000 to 10, A magnet having a remanent magnetism of 000 G and a magnetic moment of 1×10 −9 Wbm to 20×10 −9 Wbm,
    wherein the magnetic vector sensor grid is provided in a diagnostic instrument positioned outside the patient's body;
    the magnetic vector sensor constituting the magnetic vector sensor grid has a magnetic detection power of 10 nT or less,
    the position sensor data processor uses the data measured by the magnetic vector sensor grid to calculate the position and orientation of the tip of the guidewire;
    The smart guide wire, wherein the display device displays the measured values of the position and orientation calculated by the position sensor data processing device.
  3. 請求項2に記載のスマートガイドワイヤは、
    前記ガイドワイヤのドライバー部は、ハンドルおよびトルカーよりなり、
    前記ハンドルは、前記ハンドルに負荷されるトルクを計測するトルクセンサを備え、
    前記トルカーは、前記トルカーの回転量を計測するトルカー回転量計測装置を備えてなり、
    前記ドライバー部のトルクと回転量を計算する回転センサデータ処理装置と、
    計算して求めたトルクおよび回転量よりなる計測値を表示する表示装置とからなることを特徴とするスマートガイドワイヤ。
    The smart guidewire according to claim 2,
    the guidewire driver portion comprises a handle and a torquer;
    The handle comprises a torque sensor that measures the torque applied to the handle,
    The torquer comprises a torquer rotation amount measuring device for measuring the amount of rotation of the torquer,
    a rotation sensor data processing device for calculating the torque and amount of rotation of the driver;
    and a display device for displaying measured values of calculated torque and amount of rotation.
  4. 請求項2~3のいずれか一項に記載のスマートガイドワイヤは、
    前記ガイドワイヤの前記ドライバーを構成する前記ハンドルは、回転方位を検出する回転角度検出センサおよび回転速度を検出する回転速度検出センサを備えてなり、
    前記ドライバー部の回転方位と回転速度を計算する回転検出センサデータ処理装置と、
    計算して求めた回転方位および回転速度よりなる計測値を表示する表示装置とからなることを特徴とするスマートガイドワイヤ。
    The smart guidewire according to any one of claims 2 and 3,
    The handle that constitutes the driver of the guide wire is provided with a rotation angle detection sensor that detects a rotation direction and a rotation speed detection sensor that detects a rotation speed,
    a rotation detection sensor data processor for calculating the rotational orientation and rotational speed of the driver section;
    A smart guide wire, comprising: a display device for displaying a measured value consisting of a calculated rotational azimuth and rotational speed.
  5.  ガイドワイヤ操作アシストシステムは、請求項2~4に記載されているスマートガイドワイヤのいずれかと、
    X線画像から求めた血管網マップと、
     血管網マップ上に治療患部位置を特定するマーキングシステムと、
    任意の時刻におけるガイドワイヤ先端位置を治療医師に伝達する位置伝達システムと、
    次の時刻における、つまり所定の時間間隔後における次の目標位置へガイドワイヤ先端を誘導するのに必要なトルクとワイヤ押し込み量と回転角よりなる情報を計算して治療医師に伝達する情報伝達システムとからなり、
    この操作を繰り返して治療医師が最終的にガイドワイヤを治療患部位置まで誘導する治療をアシストすることを特徴とするガイドワイヤ操作アシストシステム。
    The guidewire operation assist system includes any of the smart guidewires described in claims 2 to 4,
    a vascular network map obtained from an X-ray image;
    a marking system that identifies the location of the affected area to be treated on the vascular network map;
    a position transmission system that transmits the guidewire tip position at any time to the treating doctor;
    An information transmission system that calculates information consisting of the torque, wire pushing amount, and rotation angle required to guide the tip of the guidewire to the next target position at the next time, that is, after a predetermined time interval, and transmits the information to the treating doctor. Consists of
    A guide wire operation assisting system, characterized in that this operation is repeated to assist a treatment doctor to finally guide a guide wire to the position of an affected area for treatment.
  6. 請求項5に記載のガイドワイヤ操作アシストシステムにおいて、
    ドライバーの操作を治療医師に代えてロボット操作システムにすることを特徴とするガイドワイヤ操作ロボットシステム。
     
    In the guidewire manipulation assist system according to claim 5,
    A guide wire operating robot system characterized in that the operation of a driver is replaced by a robot operating system instead of that of a treating doctor.
PCT/JP2023/006159 2022-03-01 2023-02-21 METHOD FOR PRODUCING Cr-Ni-BASED STAINLESS MAGNET FOR GUIDE WIRES, SMART GUIDE WIRE, GUIDE WIRE OPERATION SYSTEM, AND GUIDE WIRE OPERATION ROBOT SYSTEM WO2023167051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022030527A JP7173506B1 (en) 2022-03-01 2022-03-01 Method for manufacturing Cr-Ni stainless steel magnet for guide wire, smart guide wire, guide wire manipulating system, and guide wire manipulating robot system
JP2022-030527 2022-03-01

Publications (1)

Publication Number Publication Date
WO2023167051A1 true WO2023167051A1 (en) 2023-09-07

Family

ID=84082876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006159 WO2023167051A1 (en) 2022-03-01 2023-02-21 METHOD FOR PRODUCING Cr-Ni-BASED STAINLESS MAGNET FOR GUIDE WIRES, SMART GUIDE WIRE, GUIDE WIRE OPERATION SYSTEM, AND GUIDE WIRE OPERATION ROBOT SYSTEM

Country Status (2)

Country Link
JP (1) JP7173506B1 (en)
WO (1) WO2023167051A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003370A (en) * 2018-06-28 2020-01-09 マグネデザイン株式会社 Small three-dimensional magnetic field detector
US20200330730A1 (en) * 2019-04-18 2020-10-22 UNandUP, LLC. Magnetically controlled medical devices for interventional medical procedures and methods of making and controlling the same
JP2021081223A (en) * 2019-11-15 2021-05-27 ナノコイル株式会社 Smart guide wire and guide wire operation system
JP2021132175A (en) * 2020-02-21 2021-09-09 マグネデザイン株式会社 Magnetization device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7078832B1 (en) 2021-09-03 2022-06-01 マグネデザイン株式会社 Magnetizing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003370A (en) * 2018-06-28 2020-01-09 マグネデザイン株式会社 Small three-dimensional magnetic field detector
US20200330730A1 (en) * 2019-04-18 2020-10-22 UNandUP, LLC. Magnetically controlled medical devices for interventional medical procedures and methods of making and controlling the same
JP2021081223A (en) * 2019-11-15 2021-05-27 ナノコイル株式会社 Smart guide wire and guide wire operation system
JP2021132175A (en) * 2020-02-21 2021-09-09 マグネデザイン株式会社 Magnetization device

Also Published As

Publication number Publication date
JP7173506B1 (en) 2022-11-16
JP2023127017A (en) 2023-09-13

Similar Documents

Publication Publication Date Title
Hu et al. A cubic 3-axis magnetic sensor array for wirelessly tracking magnet position and orientation
JP5570691B2 (en) Method and apparatus for guiding a locking screw distally into an intramedullary nail
US6374134B1 (en) Simultaneous display during surgical navigation
US6757557B1 (en) Position location system
EP0655138B1 (en) Position location system
US7769428B2 (en) Navigation of remotely actuable medical device using control variable and length
US8249689B2 (en) Coil arrangement for electromagnetic tracking method and system
JP5666091B2 (en) Magnetic tracking system for imaging system
Gosselin et al. Characterization of the deflections of a catheter steered using a magnetic resonance imaging system
US20040143183A1 (en) Device for detecting a position and an orientation of a medical insertion tool inside a body cavity, and detecting method therefor
CN101416874A (en) Catheter with pressure sensing
US20080174304A1 (en) Coil arrangement for electromagnetic tracker method and system
CN101897585A (en) Surgical navigation system with magnetoresistance sensors
EP1112025B1 (en) Method and apparatus to estimate location and orientation of objects during magnetic resonance imaging
JP2015119971A (en) Low-profile location pad for magnetic field-based intra-body probe tracking system
US20180168482A1 (en) Current driven sensor for magnetic navigation
JP2021081223A (en) Smart guide wire and guide wire operation system
JP7173506B1 (en) Method for manufacturing Cr-Ni stainless steel magnet for guide wire, smart guide wire, guide wire manipulating system, and guide wire manipulating robot system
Hu et al. A new 6D magnetic localization technique for wireless capsule endoscope based on a rectangle magnet
EP3620127A1 (en) Single axis sensor (sas) with hall sensor using external magnet
Quirin et al. Towards tracking of deep brain stimulation electrodes using an integrated magnetometer
CN110430813A (en) Sensor accessory for electromagnetic navigation system
Hawsawi et al. Flexible magnetoresistive sensors for guiding cardiac catheters
WO2019193565A1 (en) Cylindrical body having a three-axis magnetic sensor
Vonthron et al. A MRI-based platform for catheter navigation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763310

Country of ref document: EP

Kind code of ref document: A1