JP3752334B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3752334B2
JP3752334B2 JP33385496A JP33385496A JP3752334B2 JP 3752334 B2 JP3752334 B2 JP 3752334B2 JP 33385496 A JP33385496 A JP 33385496A JP 33385496 A JP33385496 A JP 33385496A JP 3752334 B2 JP3752334 B2 JP 3752334B2
Authority
JP
Japan
Prior art keywords
refrigerant
accumulator
compressor
liquid
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33385496A
Other languages
Japanese (ja)
Other versions
JPH10176875A (en
Inventor
達生 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP33385496A priority Critical patent/JP3752334B2/en
Publication of JPH10176875A publication Critical patent/JPH10176875A/en
Application granted granted Critical
Publication of JP3752334B2 publication Critical patent/JP3752334B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の圧縮機を備えた空気調和装置に関するものである。
【0002】
【従来の技術】
従来の空気調和装置には、例えば特開平4−358778号公報に記載のような横向き略円筒状のアキュムレータと、このアキュムレータと圧縮機とを連通する複数の冷媒流出管とを備えたものがあった。この空気調和装置にあっては、複数の冷媒流出管はアキュムレータの底部にアキュムレータの長手方向に所定間隔をおいて接続されるとともに、各冷媒流出管は接続位置から上方に延設され、それぞれの先端の冷媒流出口がアキュムレータ内の所定の高さに開口するようになっていた。また、各冷媒流出管にはアキュムレータ内の底部近傍に位置する油戻し穴が形成されていた。さらに、アキュムレータの内部を流入室と流出室とに区画する仕切板を備え、この仕切板に連通孔が形成されていた。
【0003】
【発明が解決しようとする課題】
前記従来技術では、空気調和装置が横形多気筒圧縮機を備えたものである場合には、アキュムレータへの各冷媒流出管の接続位置を横形多気筒圧縮機への各冷媒流出管の接続位置を基準に決定できて、空気調和装置をよりコンパクトに形成できる効果が奏される。しかしながら、空気調和装置が別個独立した複数の圧縮機を備えたものである場合には、複数の圧縮機の形状が必ずしも同一でなく、また、各圧縮機のアキュムレータからの距離も必ずしも同一でなく、さらに、各圧縮機がアキュムレータに対して同一方向に位置していない場合も多いため、複数の冷媒流出管を横長のアキュムレータの長手方向に並べると、かえって配管設計の自由度が小さくなることがあった。
【0004】
特に、各冷媒流出管に形成された油戻し穴を通じて充分な量の潤滑油を圧縮機へ戻すにはアキュムレータの底部近傍に油戻し穴を開口させる必要があり、このため冷媒流出管をアキュムレータの底部に接続せざるを得なかったので、アキュムレータの下方にはアキュムレータ内から取り出した冷媒流出管を圧縮機の方向に曲げるなどするための空間が必要となり、アキュムレータそのものの配設位置が高くなって、延いては空気調和装置の全高が高くなるという問題が生じるおそれがあった。
【0005】
また、油戻し穴はアキュムレータの底部近傍に位置するように冷媒流出管に形成されているため、圧縮機の停止中にアキュムレータ内に液冷媒が溜まると、この液冷媒が油戻し穴から冷媒流出管内に流入して、冷媒流出管の中もアキュムレータの液面と同じ高さまで液冷媒を満たされることになった。したがって、次に圧縮機が起動した場合には、冷媒流出管内に溜まった液冷媒をそのまま圧縮機に吸い込んで液圧縮をおこし、圧縮機が損傷するおそれがあった。
【0006】
また、アキュムレータ内に冷媒とともに流入した潤滑油は、その液面が仕切板に形成された連通孔に達するまでは流入室のみに溜まって流出室には出ていかないため、流出室にある油戻し穴から圧縮機へ潤滑油が戻りにくく、潤滑油の枯渇により圧縮機が損傷するおそれもあった。
【0007】
また、それぞれの末端に圧縮機が接続された複数の冷媒流出管が、横長のアキュムレータの長手方向に並んだ状態でアキュムレータに接続されている場合、アキュムレータ内への冷媒流入口から近いほうの冷媒流出管に接続された圧縮機が停止し、冷媒流入口から遠いほうの冷媒流出管に接続された圧縮機が運転しているような状況では、冷媒流入口からアキュムレータ内に流入した冷媒が停止中の圧縮機に係る冷媒流出管の冷媒流出口を飛び越えるようにして、運転中の圧縮機に係る冷媒流出管の冷媒流出口へと流れることになる。このため、液冷媒の飛沫の一部が停止中の圧縮機に係る冷媒流出管に入り込んで、その内部に溜まり、停止していた圧縮機が起動するときに液バック運転となる結果、起動した圧縮機が液圧縮により損傷するおそれもあった。
【0008】
さらに、流入室と流出室とは連通孔を有する仕切板で区画されているものの、連通孔が冷媒流入管の冷媒流入口と冷媒流出管の冷媒流出口とを結ぶ直線上に位置している場合には冷媒流入口からの液冷媒が直接冷媒流出口に流れる可能性が高く、延いては圧縮機に液冷媒が多量に戻って液圧縮による圧縮機損傷につながるおそれもあった。
【0009】
本発明は以上のような問題点を解消するためになされたものであって、複数の圧縮機を備えた空気調和装置であって、液圧縮や潤滑油枯渇に起因する圧縮機の損傷を防止できる空気調和装置の提供を目的とするものである。また、前記目的に加えて、配管設計の自由度を大きくすることにより小型化を図ることができる空気調和装置の提供を目的とするものである。
【0010】
【課題を解決するための手段】
前記目的を達成するため、本発明の空気調和装置は、冷媒流入管及び複数の冷媒流出管が接続されたアキュムレータと、前記冷媒流出管を介して前記アキュムレータにそれぞれ接続された複数の圧縮機とを備え、一端が前記アキュムレータの底部に接続され他端が前記アキュムレータの底部よりも高い位置で前記複数の冷媒流出管に接続された複数の返油管を設け、複数の圧縮機の運転台数を変化させる制御を行なう制御手段を備えるとともに、前記制御手段が一部の圧縮機のみを運転する制御を行なう場合に停止する圧縮機に接続された冷媒流出管の冷媒流出口を、他の冷媒流出管の冷媒流出口よりも、冷媒流入口から水平方向に離れた位置に配した構成としたものである。
【0018】
【発明の実施の形態】
発明の実施の形態1.
図1は本発明の実施の形態1に係る空気調和装置のアキュムレータ及び圧縮機を示したものである。図中、1a,1bは圧縮機、2は横向きの略円筒形状に形成されたアキュムレータ、3は熱源側熱交換器及び利用側熱交換器などを備えた冷媒回路(不図示)内の冷媒をアキュムレータ2内に流入させるための冷媒流入管、4a,4bはアキュムレータ2内から冷媒を流出させて圧縮機1a、1bにそれぞれ戻すための冷媒流出管、5a,5bは一端がアキュムレータ2の底部に接続され他端が冷媒流出管4a,4bにそれぞれ接続された返油管、6a,6bは圧縮機1a,1bのそれぞれの吐出管である。
【0019】
また、h1,h2は返油管5a,5bがそれぞれ冷媒流出管4a,4bに接続される位置とアキュムレータ2の底部との高低差を示しており、このように返油管5a,5bはそれぞれがアキュムレータ2の底部よりも高い位置で冷媒流出管4a,4bに接続されている。また、h6は冷媒流出管4a,4b先端の冷媒流出口41a,41bとアキュムレータ2の底部との高低差を示している。さらに、図中の太線矢印はガス冷媒、もしくは液冷媒と潤滑油との混合液が流れる方向を示している。なお、返油管5a,5bとしては、冷媒流出管4a,4bよりも管径の細いものが用いられている。
【0020】
また、図2はアキュムレータ2の筒心方向と直角な断面を示したもので、このように冷媒流出管4a,4bはアキュムレータ2の底部に接続されるとともに、この接続位置から垂直に上向きに延びてアキュムレータ2内に突出している。また、返油管5a,5bもアキュムレータ2の底部に接続されている。
【0021】
以上のように構成されているので、圧縮機1a,1bの運転中には冷媒流出管4a,4bで発生する圧力損失によって返油管5a,5bの一端側と他端側とに圧力差が生じ、アキュムレータ2内の底部に溜まった潤滑油は返油管5a,5bを経て冷媒流出管4a,4bの途中に合流し、圧縮機1a,1bに吸入される。また、例えば圧縮機1aのみが運転され圧縮機1bが停止している状態で、かつ、アキュムレータ2内に液冷媒と潤滑油との混合液が溜まった状態であっても、その液面の高さがh2未満である場合には、アキュムレータ2内の混合液が返油管5bを通じて冷媒流出管4b内に流入することがない。したがって、冷媒流出管4b内に混合液が溜まり込むことがなく、次に圧縮機1bが起動する際の液バックの発生を防止できて、圧縮機1bの損傷を回避できる。
【0022】
このように、返油管5a,5bのいずれにも流出管4a,4bとの合流高さとしてh1,h2なる所定の高さが確保されているので、圧縮機1aのみ停止している場合や、圧縮機1a,1bがともに停止している場合でも、停止中の圧縮機につながる流出管4a,4b内に混合液が滞留することなく、起動に際して液バックに起因する不具合を回避できる。
【0023】
なお、一般的に、圧縮機1a,1bが縦形略円筒形状の圧縮機である場合、横形略円筒形状の圧縮機に比べて高さが高いので、冷媒流出管4a,4bと圧縮機1a,1bとの接続位置も高くなる。そのため、図1のような構造を持つ空気調和装置においては図1中のh1,h2の高低差を大きくすることが可能となり、アキュムレータ2内の液面が高くなってもそれに対応した高低差h1,h2を確保した設計が可能となり、空気調和装置の信頼性がさらに向上する。特にアキュムレータ2が、その胴径よりも、略円筒形状をした圧縮機1a,1bの筒心方向の長さ(すなわち高さ)が長いものである場合は、h1,h2の高低差をアキュムレータ2内の考えられる液面高さより高くできる可能性が大きくなる。このことから、縦形円筒形状の圧縮機と横形円筒形状のアキュムレータとを組みあわせた場合に、圧縮機の損傷を防止する効果が特に大きくなるといえる。
【0024】
発明の実施の形態2.
図3は本発明の実施の形態2に係るアキュムレータを筒心方向と直角な断面で示したものであり、この実施の形態では、冷媒流出管4a,4bは横向き略円筒状のアキュムレータ2の底部(すなわち最も低い位置)から周方向にずれた位置の周壁に接続されている。ただし、アキュムレータ2内における冷媒流出管4a,4b先端の冷媒流出口41a,41bの開口位置は発明の実施の形態1における図2と同様である。また、返油管5a,5bは図2と同様にアキュムレータ2底部の周壁が最も低くなる位置に接続されている。
【0025】
このように、冷媒流出管4a,4bと返油管5a,5bとをアキュムレータ2の底部に別々に接続し、冷媒流出管4a,4bと返油管5a,5bとをアキュムレータ2よりも冷媒流れ方向下流側で合流させる構成とすれば、冷媒流出管4a,4bを必ずしもアキュムレータ2の底部から取り出す必要はなくなる。したがって、アキュムレータ2の底部には冷媒流出管4a,4bより細い返油管5a,5bのみを接続するように構成すれば、太い冷媒流出管4a,4bを圧縮機の方向に曲げるための空間がアキュムレータ2の下方に必要なくなって、アキュムレータ2の設置位置を下げることも可能である。また、冷媒流出管4a,4bを下方以外にも取り出せることで配管設計の自由度が大きくなり、アキュムレータ2底部に溜まった潤滑油を充分に戻しながら空気調和装置の小型化が図れる。
【0026】
さらに、必要に応じ、図4のように冷媒流出管4aと冷媒流出管4bとをアキュムレータ2周壁の周方向に異なった位置に接続することも可能である。
【0027】
発明の実施の形態3.
図6は本発明の実施の形態3に係る空気調和装置の冷媒回路を示したものであり、1a,1b,・・・・5a,5bまでは図1に同一符号で示したものと同じ構成要素である。また、7は冷房運転と暖房運転とを切り替える四方切換弁、8は熱源側熱交換器、9a,9bは流量制御装置、10a,10bは利用側熱交換器である。そして、11は圧縮機1aもしくは1bから出た吐出冷媒を圧力を検出する高圧圧力センサ、12はアキュムレータ2入口の冷媒の圧力を検出する低圧圧力センサである。図中の実線の太線矢印は冷房時の冷媒の流れを、破線の太線矢印は暖房時の冷媒の流れを示している。なお、ここでは圧縮機1aは容量制御可能な圧縮機であり、圧縮機1bは必要に応じて運転/停止を行わせる固定容量圧縮機である。また、図5に示したように、アキュムレータ2から圧縮機1a,1bに至る部分の構成は図1と同様であり、冷媒流入管3の先端の冷媒流入口31と、冷媒流出管4a,4bの先端の冷媒流出口41a,41bとは、アキュムレータ2の筒心方向に沿った直線上に並べられるとともに、冷媒流出口41bは冷媒流出口41aよりも冷媒流入口31から水平方向に離れた位置に配されている。
【0028】
図7は圧縮機の制御のための制御ブロック図であり、高圧圧力センサ11及び低圧圧力センサ12の出力を受けて、制御装置13が所定の制御フローに基づきインバータ14を介して圧縮機1aの運転周波数を変化させるとともに、開閉器15を介して圧縮機1bの運転/停止を制御する。
【0029】
図8は制御装置13が行なう圧縮機1a,1bの制御内容を示したフローチャートである。先ずステップS1において、現在の運転状態が冷房であるのか暖房であるのかを判定する。冷房の場合にはステップS2において低圧圧力センサ12の出力値(Ps)が予め設定されている目標値Psmより所定値sだけ高いかどうかを判定する。そして、PsがPsm+sよりも高ければ、ステップS3で圧縮機1aの運転周波数の変化幅ΔFを+b(ただしb>0)とする。ステップS2でPsがPsm+sよりも低い場合には、次のステップS4で今度はPsがPsm−sよりも低いかどうかを判定する。もし低ければステップS5で圧縮機1aの周波数の変化幅ΔFを−bとする。ステップS4でPsがPsm−sよりも高い場合にはステップS6でΔF=0とする。
【0030】
他方、ステップS1において、運転状態が暖房であると判定された場合には、ステップS7において高圧圧力センサ11の出力値(Pd)が予め設定されている目標値Pdmより所定値dだけ高いかどうかを判定する。そして、PdがPdm+dよりも高ければ、ステップS8で圧縮機1aの運転周波数の変化幅ΔFを−a(ただしa>0)とする。ステップS7でPdがPdm+dよりも低い場合には、次のステップS9で今度はPdがPsm−dよりも低いかどうか判定する。もし低ければステップS10で圧縮機1aの運転周波数の変化幅ΔFを+aとする。ステップS9でPdがPsm−dよりも高い場合にはステップS6でΔF=0とする。
【0031】
ステップS11では、現在運転中の圧縮機1aの運転周波数F*に、これまでに決定されたΔFを加えた値を運転周波数Fとして設定する。S12ではFが予め設定された最大値Fmax以上かどうかを判定する。そして、F≧Fmaxならば、ステップS13で圧縮機1bが停止中かどうか判定し、停止中であればステップS14で圧縮機1bを起動させるとともに、圧縮機1aの周波数を所定値Faまで低下させる。ステップS13ですでに圧縮機1bが運転中であると判定すれば周波数制御は現状のままとしてステップS1に戻る。
【0032】
ステップS12でF<Fmaxである場合、今度はステップS15でFが予め設定された最小値Fmin以下かどうかを判定する。F≦FminであればステップS17で圧縮機1bが運転中であるかどうか判定し、運転中であればステップS18で圧縮機1bを停止させるとともに、圧縮機1aの周波数を所定値Faまで上昇させる。ステップS15でF>Fminと判定された場合はステップS16でFを出力する。
【0033】
以上のようにして、この実施形態の空気調和装置では、圧縮機1aを常時運転するとともに、その運転周波数制御により高圧圧力及び低圧圧力を目標値付近に安定させるとともに、もし圧縮機1aの運転周波数制御のみで目標となる高圧値及び低圧値付近にならない場合には圧縮機1bを運転もしくは停止させるという制御を行なう。このため圧縮機1aが運転していても圧縮機1bは選択的に停止状態となっていることがある。
【0034】
このように、停止状態になることがあり得る圧縮機1bに接続された冷媒流出管4bの冷媒流出口41bを、常に運転される圧縮機1aに接続された冷媒流出管4aの冷媒流出口41aよりも流入管2から遠い位置に配することにより、圧縮機1aが運転中で圧縮機1bが停止中のときは、冷媒流入管3からアキュムレータ2内に入った冷媒は常に冷媒流出口41aにのみ流れ、冷媒流出口41bには届かない。このため、圧縮機1bの停止中に冷媒流出管4b内に冷媒の飛沫等が入って中に液冷媒が溜まることがないため、次に圧縮機1bが起動するときに多量の液を吸い込んで圧縮機損傷になるといた不具合が回避できる。
【0035】
発明の実施の形態4.
図9は本発明の実施の形態4に係るアキュムレータをその筒心方向に沿った縦断面で示したものであり、図10は図9のアキュムレータを筒心方向と直角な断面で示したものである。図中の構成要素は前記実施の形態1の図1に同一符号で示したものと同様であるが、仕切板16が追加となっているために、これについて説明する。仕切板16は、アキュムレータ2の内部を、冷媒流入口31を有する流入室2aと冷媒流出口41a,41bを有する流出室2bとに区画するように設けられている。また、仕切板16はアキュムレータ2の上部に位置し、仕切板16の下部には第1の連通孔17が形成されている。図9に示したように、仕切板16の下端は、冷媒流入口31と冷媒流出口41a,41bとを結んだ直線L1,L2よりも下まで延びており、したがって第1の連通孔17は、前記直線L1,L2よりも低い位置で流入室2aと流出室2bとを連通することになっている。
【0036】
以上のように構成されているので、例えば冷媒流入口31から流入した冷媒が幾何学的に冷媒流入口31と冷媒流出口41aとを結ぶ最も近い経路(L1)に沿って流れるのは不可能であり、第1の連通孔17を通過するために必ず曲がった経路を辿って流れることになる。したがって、冷媒流入口31からの冷媒に液冷媒が混じっている場合にも、その液冷媒が直接冷媒流出口41a,41bに飛び込んで冷媒流出管4a,4b内に吸い込まれる可能性が低くなって、アキュムレータ2の気液分離機能を向上させることができて、空気調和装置の信頼性を高めることができる。
【0037】
発明の実施の形態5.
図11は本発明の実施の形態5に係るアキュムレータを筒心方向に沿った縦断面で示したものであり、図12は図11のアキュムレータを筒心方向と直角な断面で示したものである。図中の構成要素は前記実施の形態4の図9に同一符号で示したものと同様であるが、仕切板16及び返油管5a,5bが異なっているため、これについて説明する。すなわち、仕切板16には、第1の連通孔17に代えて第3の連通孔18が形成されている。第3の連通孔18の下端はアキュムレータ2内の底部から所定の高さh3にあり、したがって、第3の連通孔18はアキュムレータ2の底部よりも高い位置で流入室2aと流出室2bとを連通している。なお、第3の連通孔18の上端は冷媒流入口31と冷媒流出口41aとを結んだ直線L1よりも下方に位置している。そして、返油管5a,5bの一端は仕切板16で区画された流入室2a側の底部に接続されている。
【0038】
以上のように構成されているので、冷媒流入口31から流入した液冷媒と潤滑油との混合液は、その液面がh3の高さに達するまでは流入室2a側に溜まり、返油管5a,5bから冷媒流出管4a,4bを通じて圧縮機1a,1bに戻る。したがって、複数の圧縮機に対応すべく大型化したアキュムレータ2であっても、潤滑油の混ざった混合液を流入室2aに集中して貯めることで、アキュムレータ2内の全体に平均して溜める場合よりも、その液面を高くすることができ、このような液面高さの上昇で液柱圧が上昇することによる返油量の増加が図れて、潤滑油枯渇に起因する圧縮機故障を回避できる。また、液面の高さがh3を超えると混合液は第3の連通孔18を通じて流出室2b側に流れるため、液面は必要以上に上昇せず、過度の返液量には至らないことから圧縮機に好ましくない液バックは回避できる。
【0039】
また、第3の連通孔18の上端が冷媒流入口31と冷媒流出口41aとを結ぶ直線L1よりも下方に位置しており、アキュムレータ2内の冷媒の流れが幾何学的に冷媒流入口31と冷媒流出口41aとを結ぶ最も近い経路(L1)を辿ることを阻止できるために、冷媒流入口31からのガス冷媒に液冷媒が混じっている場合にも液冷媒が直接冷媒流出管4a,4bに吸い込まれる可能性は低くなって、アキュムレータ2の気液分離機能を向上させることができ、空気調和装置の信頼性を高めることができる。
【0040】
発明の実施の形態6.
図13(a)は本発明の実施の形態6に係るアキュムレータを筒心方向と直角な断面で示したものであり、図13(b)は図13(a)のアキュムレータを水平な断面で示したものである。図中の構成要素は前記実施の形態5の図11に同一符号で示したものとほぼ同様であるが、仕切板16には、第3の連通孔18に代えて第2の連通孔19が形成されている。そして、冷媒流入管3の中心線Xと仕切板16上の第2の連通孔19の中心線Yと冷媒流出管4a,4bの中心線Zとは、互いに水平方向にすれた位置に配されており、したがって、第2の連通孔19は冷媒流入口31と冷媒流出口41a,41bとを結ぶ直線から仕切板16と平行な水平方向にずれた位置で流入室2aと流出室2bとを連通することになっている。
【0041】
以上のように構成されているので、冷媒流入管3からの液冷媒が直接冷媒流出管4a,4bへ流入する直線的な経路がなくなり、冷媒の流れが曲がり気液分離効果が向上し、圧縮機の損傷も回避されるため、空気調和装置の信頼性も充分に向上する。
【0042】
発明の実施の形態7.
図14は本発明の実施の形態7に係るアキュムレータを筒心方向に沿った縦断面で示したものであり、その概略構成は実施の形態5における図11と同様であるが、それに追加して、一端がアキュムレータ2内に開口し他端がアキュムレータ2外で冷媒流出管4aに接続された液面検出管21と、アキュムレータ2外で液面検出管21を加熱するヒータ22と、ヒータ22の下流側で冷媒流出管4aとの合流部に至るまでの液面検出管21の配管温度を検出する温度センサ23とが設けられている。20は仕切板16に形成された第4の連通孔20である。なお、液面検出管21は仕切板16よりも冷媒流出口41a,41b側(すなわち流出室2b内)に開口している。そして、以上の液面検出管21,ヒータ22,及び温度センサ23からなる構成が本発明にいう液面検出手段の一例となっている。
【0043】
次いで、動作を説明する。アキュムレータ2内の液面の高さが液面検出管21の上端開口までの高さh4未満であるときには、液面検出管21内を流れるのはほとんどガス冷媒である。この状態でヒータ22により液面検出管21を加熱すると、液面検出管21内のガス冷媒はすぐに過熱状態となり、温度センサ23は高温(飽和温度より過熱された冷媒の温度)を検出することになる。他方、アキュムレータ2内の液面がh4よりも高くなると、液面検出管21には液冷媒が流れるようになる。液冷媒の場合、その潜熱の影響で液面検出管21内の冷媒は全ては気化されず、温度センサ23の位置では低圧の二相状態となる。このため、温度センサ23は低圧飽和温度という低温を検出することになる。
【0044】
このようにアキュムレータ2内の液面の高さによって温度センサ23の検出温度が異なるため、その検出温度に基づいてアキュムレータ2内の液面が所定の高さに達しているか否かを検出することが可能となる。したがって、この検出結果に基づいて圧縮機を運転/停止する制御装置(不図示)を設ければ、例えばアキュムレータ2内の液面が過剰に上昇し、ついには冷媒流出管4a,4bに液が吸い込まれる前に圧縮機を停止させて、液圧縮に起因する圧縮機の損傷を回避するようなことが可能となる。
【0045】
また、以上において、冷媒流入口31からの冷媒の急激な流れが仕切板16によって緩和されるので、流出室2b内の液面は流入室2a内の液面に比べて、波立ちの少ない安定した状態となる。したがって、仕切板16が無い場合に比べて液面の検出精度が向上し、冷媒流入管3から流入する液冷媒による液面の波立ちで検出誤差が生じて不必要に圧縮機の運転を停止するような事態を回避でき、空気調和装置の性能が安定して発揮できる。
【0046】
発明の実施の形態8.
図15は本発明の実施の形態8に係る空気調和装置の冷媒回路図、図16は図15の空気調和装置におけるアキュムレータを筒心方向に沿った縦断面で示した図である。図15において、1a,1bは圧縮機、2はアキュムレータ、3はアキュムレータ2への冷媒流入管、4a,4bはアキュムレータ2から圧縮機1a,1bに冷媒を戻すための冷媒流出管、5a,5bはアキュムレータ2から冷媒流出管4a,4bに潤滑油を戻すための返油管、7は四方切換弁、8は熱源側熱交換器、9a,9bは流量制御装置、10a,10bは利用側熱交換器、11は高圧圧力センサ、12は低圧圧力センサ、24a,24bはアキュムレータ2内から冷媒流出管4a,4bに潤滑油を戻すための副返油管、25は圧縮機から吐出された潤滑油を回収する油分離器、26は油分離器で回収した潤滑油をアキュムレータ2へ戻す油戻し管である。
【0047】
また、図16において16はアキュムレータ2内を流入室2aと流出室2bとに区画する仕切板、21は液面検出管、22はヒータ、23は温度センサ、27は副返油管24a,24b及び油戻し管26が開口した空間2cを流出室2bから区画する副仕切板、28は副仕切板に形成されて流出室2bと空間2cとを連通する副連通孔である。
【0048】
なお、図17に示すように、仕切板16には、その水平方向の中心線を上下にまたがる位置に、第5の連通孔29が2個設けられている。
【0049】
次いで、図15に基づいて冷房時の冷媒の動きを説明する。圧縮機1a,1bから吐出された高温高圧のガス冷媒は油分離器25、四方切換弁7を経て熱源側熱交換器8に至る。ここで冷媒は凝縮し高圧の液冷媒となる。その後流量制御装置9a,9bにより減圧され、利用側熱交換器10a,10b内で蒸発する。こうして低圧となった冷媒は再び四方切換弁7を経て冷媒流入管3よりアキュムレータ2内に入り、仕切板16の第5の連通孔29を通って冷媒流出管4a,4bを流れて圧縮機1a,1bに戻る。
【0050】
次に暖房時の冷媒の動きを説明する。暖房時には圧縮機1a,1bから出た高温高圧のガス冷媒は油分離器25、四方切換弁7を経て利用側熱交換器10a,10bへ流れる。ここで凝縮して液冷媒となったのち、流量制御装置9a,9bで減圧されて気液二相冷媒となる。その後熱源側熱交換器8で蒸発し、四方切換弁7を経てアキュムレータ2に戻り、冷房時と同様に圧縮機1a,1bに戻る。
【0051】
以上のように、冷房時は利用側熱交換器10a,10bが、暖房時は熱源側熱交換器8が蒸発器として作用するが、冷媒の一部は完全に蒸発せずに液の状態でアキュムレータ2に至る。冷媒流入管3からアキュムレータ2内に流入した冷媒は冷媒流出管4a,4bから流れ出るまでの間に仕切板16によってその流れが曲げられようとするが、特に密度の大きい液冷媒は容易に進路が曲がらずそのままアキュムレータ2内面や仕切板16に衝突して滴下し、結果として流出管4a、4bに流れ込むのはガス冷媒がほとんどとなり、アキュムレータ2内の底部には液冷媒が滞留することとなる。こうしてアキュムレータ2で気液分離が行われ、圧縮機1a,1bに直接液冷媒が戻って液圧縮という不具合が発生することが防止される。
【0052】
次に潤滑油の流れについて説明する。圧縮機1a,1bからは常に若干の潤滑油が冷媒とともに吐出される。この潤滑油は油分離器25によりその大部分が捕捉される。油分離器25で捕捉された潤滑油は油戻し管26を通ってアキュムレータ2の空間2cに流れる。空間2cは副仕切板27によって流出室2bと隔離されていることから、流入室2a及び流出室2bに溜まった液冷媒と混ざることがないため、ここに溜まっている潤滑油は濃度が高くなっている。そして、空間2cに溜まった潤滑油は、その底部に設けられた副返油管24a,24bを経て圧縮機1a,1bに戻る。
【0053】
油分離器25は大部分の潤滑油を分離するが、それでも分離できなかった潤滑油は冷媒と一緒に四方切換弁7へと流れる。そして冷房/暖房に関わらず、最終的にはアキュムレータ2内に戻り、そこで気液分離されて液冷媒とともにアキュムレータ2の流入室2a及び流入室2bの底部に滞留する。液冷媒が存在することから、流入室2a及び流出室2b内の潤滑油濃度は空間2c内の潤滑油よりも低くなる。こうして流入室2a,流出室2bに滞留する潤滑油は液冷媒とともに返油管5a,5bを経て圧縮機1a,1bへと戻る。
【0054】
また、図17に示したように、第5の連通孔29の下端をアキュムレータ2の底部から所定の高さh5だけ離れた位置に配することにより、アキュムレータ2内の液面が低い場合には流入室2aに冷媒と潤滑油との混合液を滞留させ、その液面を上昇させることにより液柱圧を上げて返油管5a,5bに流れる混合液量すなわち返油量を増加させることができ、さらに液面が上昇してきた場合には第5の連通孔29を通じて流出室2cへ液冷媒を流すことで液面の上昇を抑えることにより液柱圧を必要以上に高くせず、返油管5a,5bを潤滑油とともに流れる液冷媒の量も抑制できるため圧縮機1a,1bに液バックが発生して圧縮機損傷に至ることを回避できる。
【0055】
なお、図17のように第5の連通孔29が仕切板16の水平方向の中心線を含むのではなく、図18に示したように、仕切板16の水平方向の中心線の上下及び垂直方向の中心線の左右にそれぞれ配されるように、4個の第5の連通孔29を仕切板16に形成しても、その下部に位置する孔の下端がアキュムレータ2の底部からh5の高さにあるようにすれば、図17とほぼ同様の効果が得られる。
【0056】
また、気液分離効果を大きくするために、図19のように図18で示した仕切図16に庇部30(冷媒方向変化手段の一例)を設けることも考えられる。すなわち、庇部30は、4個の第5の連通孔29の流出室2b側をそれぞれ覆うとともに、その開口の方向(図中nで示す)が、第5の連通孔29と冷媒流出管4a,4bの冷媒流出口41a,41bとを結ぶ直線(図中D1で示す)と異なる方向を向くように形成されている。したがって、流入室2aから流出室2bに向かって流れる冷媒は、第5の連通孔29を通過する際に庇部30によって方向を大きく変えることになって、液冷媒が冷媒流出量4a,4bに吸い込まれにくくなり、アキュムレータ2の気液分離性能が向上して空気調和装置の信頼性を高めることができる。
【0057】
なお、庇部30は仕切板16と別の部材を取り付けて構成してもよく、また、仕切板16に第5の連通孔29を打ち抜き形成する際に完全に打ち抜かず、一部が仕切板16とつながったままとして、庇形状としてもよい。また、本発明の冷媒方向変化手段は以上のような庇部に限定されず、第5の連通孔29を通過する冷媒の方向を変えることができれば、例えば各第5の連通孔29の流出室2b側の出口に下向き又は横向きに湾曲した管を取り付けたような構成としても構わない。
【0058】
【発明の効果】
本発明に係る空気調和装置によれば、アキュムレータの底部に溜まった潤滑油を返油管及び冷媒流出管を通じて運転中の圧縮機に供給できる。また、複数の圧縮機の一部又は全部が停止している時でも、停止中の圧縮機に接続された冷媒流出管内がアキュムレータ内の液冷媒で満たされることがないので、圧縮機起動時の液圧縮に起因する圧縮機の損傷を防止できる。
【0059】
また、一部の圧縮機のみを運転している場合、冷媒流入口からアキュムレータ内に流入した冷媒が、停止中の圧縮機に接続された冷媒流出管の冷媒流出口を飛び越えるようにして運転中の圧縮機に接続された冷媒流出管の冷媒流出口へ流れることはない。したがって、冷媒流入口からの液冷媒の飛沫の一部が停止中の圧縮機に接続された冷媒流出管内に入り込んで溜まることがなくなるので、圧縮機起動時の液圧縮に起因する圧縮機の損傷を防止できる。
【0060】
また、冷媒流出管をアキュムレータの底部に接続した場合のように太い冷媒流出管を圧縮機の方向に曲げる必要がなくなるので、アキュムレータ下方の空間は小さくて済み、アキュムレータの設置位置を下げることも可能となり、かつ、配管設計の自由度も大きくなるために空気調和装置の小型化が図れる。
【0061】
また、冷媒流入口から冷媒流出口までの冷媒は第1の連通孔を通過するために必ず曲がった経路を辿ることになり、冷媒流入口からのガス冷媒に液冷媒が混じっている場合にも、その液冷媒が直接冷媒流出口に飛び込んで冷媒流出管内に吸い込まれる可能性が低くなる。したがって、アキュムレータの気液分離性能を向上させて、液圧縮に起因する圧縮機の損傷を防止できる。
【0062】
また、冷媒流入口から冷媒流出口までの冷媒は第2の連通孔を通過するために必ず曲がった経路を辿ることになり、冷媒流入口からのガス冷媒に液冷媒が混じっている場合にも、その液冷媒が直接冷媒流出口に飛び込んで冷媒流出管内に吸い込まれる可能性が低くなる。したがって、アキュムレータの気液分離性能を向上させて、液圧縮に起因する圧縮機の損傷を防止できる。
【0063】
また、第3の連通孔がアキュムレータの底部よりも高い位置にあるので、ガス冷媒に混じって冷媒流入口から流入室に流入した液冷媒及び潤滑油は、その液面が第3の連通孔に達するまでは流入室内に集中的に溜まる。したがって、流入室内の液面が流出室の液面よりも高くなり、液柱圧が上昇することにより、流入室の底部に接続されている返油管を通じた圧縮機への返油量が増加する。よって、例えば複数の圧縮機に対応すべくアキュムレータを大型化しているような場合であっても、潤滑油枯渇に起因する圧縮機の損傷を防止できる。また、流入室内の液面が第3の連通孔に達すると、液は第3の連通孔を通じて流出室側に流れるため、流入室内の液面が過度に高くなって液柱圧が必要以上に上昇するようなことがなく、圧縮機に好ましくない液バック状態は回避できる。
【0064】
また、冷媒流入口からの冷媒の急激な流れが仕切板によって緩和され、流出室内の液面は波立ちの少ない安定した状態となるので、流出室内に設けた液面検出手段によってアキュムレータ内の液面を高精度に検出することが可能となって、検出誤差により圧縮機を不必要に停止させるとうな事態を回避できる。
【0065】
また、冷媒流入口から冷媒流出口までの冷媒は第5の連通孔を通過する際に、冷媒方向変化手段によってその流れ方向を変化させられるので、冷媒流入口からのガス冷媒に液冷媒が混じっている場合にも、その液冷媒が直接冷媒流出口に飛び込んで冷媒流出管内に吸い込まれる可能性が低くなる。したがって、アキュムレータの気液分離性能を向上させて、液圧縮に起因する圧縮機の損傷を防止できる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係る空気調和装置の要部を一部を断面で示した側面図である。
【図2】 本発明の実施の形態1に係るアキュムレータをその筒心方向と直角な断面で示した断面図である。
【図3】 本発明の実施の形態2に係るアキュムレータをその筒心方向と直角な断面で示した断面図である。
【図4】 本発明の実施の形態2に係る別のアキュムレータをその筒心方向と直角な断面で示した断面図である。
【図5】 本発明の実施の形態3に係る空気調和装置の要部を一部を断面で示した側面図である。
【図6】 本発明の実施の形態3に係る空気調和装置の冷媒回路図である。
【図7】 図6の空気調和装置の制御ブロック図である。
【図8】 図6の空気調和装置の制御フローチャートである。
【図9】 本発明の実施の形態4に係るアキュムレータをその筒心方向に沿った縦断面で示した断面図である。
【図10】 図9のアキュムレータをその筒心方向と直角な断面で示した断面図である。
【図11】 本発明の実施の形態5に係るアキュムレータをその筒心方向に沿った縦断面で示した断面図である。
【図12】 図11のアキュムレータをその筒心方向と直角な断面で示した断面図である。
【図13】 (a)は本発明の実施の形態6に係るアキュムレータをその筒心方向と直角な断面で示した断面図である。(b)は図13(a)のアキュムレータを水平な断面で示した断面図である。
【図14】 本発明の実施の形態7に係るアキュムレータをその筒心方向に沿った縦断面で示した断面図である。
【図15】 本発明の実施の形態8に係る本発明に係る空気調和装置の冷媒回路図である。
【図16】 本発明の実施の形態8に係るアキュムレータをその筒心方向に沿った縦断面で示した断面図である。
【図17】 図16のアキュムレータをその筒心方向と直角な断面で示した断面図である。
【図18】 本発明の実施の形態8に係る別のアキュムレータをその筒心方向と直角な断面で示した断面図である。
【図19】 本発明の実施の形態8に係るさらに別のアキュムレータにおける、仕切板,庇部,冷媒流出管の形状及び相互の位置関係を示す概略説明図である。
【符号の説明】
1a 圧縮機、1b 圧縮機、2 アキュムレータ、3 冷媒流入管、31 冷媒流入口、4a 冷媒流出管、4b 冷媒流出管、41a 冷媒流出口、41b 冷媒流出口、5a 返油管、5b 返油管、16 仕切板、17 第1の連通孔、18 第3の連通孔、19 第2の連通孔、20 第4の連通孔、21 液面検出管、22 ヒータ、23 温度センサ、29 第5の連通孔、30 庇部(冷媒方向変化手段)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner including a plurality of compressors.
[0002]
[Prior art]
A conventional air conditioner includes, for example, a horizontally-oriented substantially cylindrical accumulator as described in JP-A-4-358778, and a plurality of refrigerant outflow pipes that communicate the accumulator and the compressor. It was. In this air conditioner, the plurality of refrigerant outflow pipes are connected to the bottom of the accumulator at a predetermined interval in the longitudinal direction of the accumulator, and each refrigerant outflow pipe extends upward from the connection position. The refrigerant outlet at the front end opens at a predetermined height in the accumulator. Each refrigerant outlet pipe is formed with an oil return hole located near the bottom in the accumulator. Furthermore, a partition plate that divides the interior of the accumulator into an inflow chamber and an outflow chamber is provided, and a communication hole is formed in the partition plate.
[0003]
[Problems to be solved by the invention]
In the prior art, when the air conditioner includes a horizontal multi-cylinder compressor, the connection position of each refrigerant outflow pipe to the accumulator is set as the connection position of each refrigerant outflow pipe to the horizontal multi-cylinder compressor. An effect that can be determined as a reference and the air-conditioning apparatus can be formed more compactly is achieved. However, when the air conditioner is provided with a plurality of independent and independent compressors, the shapes of the plurality of compressors are not necessarily the same, and the distances from the accumulators of the compressors are not necessarily the same. Furthermore, since the compressors are often not positioned in the same direction with respect to the accumulator, arranging a plurality of refrigerant outflow pipes in the longitudinal direction of the horizontally long accumulator may reduce the degree of freedom in piping design. there were.
[0004]
In particular, in order to return a sufficient amount of lubricating oil to the compressor through the oil return hole formed in each refrigerant outflow pipe, it is necessary to open the oil return hole in the vicinity of the bottom of the accumulator. For this reason, the refrigerant outflow pipe is connected to the accumulator. Since it had to be connected to the bottom, a space for bending the refrigerant outflow pipe taken out from the accumulator in the direction of the compressor is required below the accumulator, and the location of the accumulator itself is increased. As a result, there is a possibility that a problem that the overall height of the air conditioner becomes high may occur.
[0005]
Also, since the oil return hole is formed in the refrigerant outflow pipe so as to be located near the bottom of the accumulator, if liquid refrigerant accumulates in the accumulator while the compressor is stopped, this liquid refrigerant flows out of the oil return hole. The refrigerant flowed into the pipe, and the refrigerant outflow pipe was filled with the liquid refrigerant to the same height as the liquid level of the accumulator. Therefore, when the compressor is started next time, the liquid refrigerant accumulated in the refrigerant outflow pipe is sucked into the compressor as it is to cause liquid compression, and the compressor may be damaged.
[0006]
In addition, the lubricating oil that has flowed into the accumulator together with the refrigerant accumulates only in the inflow chamber and does not come out to the outflow chamber until the liquid level reaches the communication hole formed in the partition plate. Lubricating oil hardly returned from the hole to the compressor, and the compressor could be damaged by exhaustion of lubricating oil.
[0007]
In addition, when a plurality of refrigerant outlet pipes each having a compressor connected to each end are connected to the accumulator in a state where they are aligned in the longitudinal direction of the horizontally long accumulator, the refrigerant closer to the refrigerant inlet into the accumulator In a situation where the compressor connected to the outflow pipe stops and the compressor connected to the refrigerant outflow pipe far from the refrigerant inlet is in operation, the refrigerant flowing into the accumulator from the refrigerant inlet stops The refrigerant flows out of the refrigerant outlet of the refrigerant outlet pipe related to the compressor in the middle to the refrigerant outlet of the refrigerant outlet pipe related to the compressor in operation. For this reason, some of the droplets of liquid refrigerant entered the refrigerant outflow pipe associated with the stopped compressor, accumulated in the refrigerant, and started as a result of the liquid back operation when the stopped compressor was started. There was also a risk of the compressor being damaged by liquid compression.
[0008]
Furthermore, although the inflow chamber and the outflow chamber are partitioned by a partition plate having a communication hole, the communication hole is located on a straight line connecting the refrigerant inlet of the refrigerant inlet pipe and the refrigerant outlet of the refrigerant outlet pipe. In such a case, there is a high possibility that the liquid refrigerant from the refrigerant inlet directly flows to the refrigerant outlet, and as a result, a large amount of liquid refrigerant returns to the compressor, which may cause damage to the compressor due to liquid compression.
[0009]
The present invention has been made to solve the above-described problems, and is an air conditioner including a plurality of compressors, and prevents damage to the compressors caused by liquid compression or depletion of lubricating oil. An object of the present invention is to provide an air conditioner that can be used. Moreover, in addition to the said objective, it aims at provision of the air conditioning apparatus which can achieve size reduction by enlarging the freedom degree of piping design.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an air conditioner of the present invention includes an accumulator to which a refrigerant inflow pipe and a plurality of refrigerant outflow pipes are connected, and a plurality of compressors respectively connected to the accumulator through the refrigerant outflow pipe. With Provide a plurality of oil return pipes having one end connected to the bottom of the accumulator and the other end connected to the plurality of refrigerant outflow pipes at a position higher than the bottom of the accumulator, and control to change the number of operating compressors. A refrigerant outlet of a refrigerant outlet pipe connected to a compressor that is stopped when the control means performs control to operate only some of the compressors. Arranged at a position horizontally away from the refrigerant inlet than the outlet It is a configuration.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 of the Invention
FIG. 1 shows an accumulator and a compressor of an air-conditioning apparatus according to Embodiment 1 of the present invention. In the figure, 1a and 1b are compressors, 2 is an accumulator formed in a substantially cylindrical shape facing sideways, 3 is a refrigerant in a refrigerant circuit (not shown) having a heat source side heat exchanger, a use side heat exchanger, and the like. Refrigerant inflow pipes 4a and 4b for allowing the refrigerant to flow into the accumulator 2 are flown out of the accumulator 2 and returned to the compressors 1a and 1b, respectively, and one ends of the refrigerant inflow pipes 5a and 5b are at the bottom of the accumulator 2. Oil return pipes 6a and 6b are connected and connected at the other ends to the refrigerant outflow pipes 4a and 4b, respectively, and discharge pipes of the compressors 1a and 1b.
[0019]
Further, h1 and h2 indicate the height difference between the position where the oil return pipes 5a and 5b are connected to the refrigerant outflow pipes 4a and 4b, respectively, and the bottom of the accumulator 2, and thus the oil return pipes 5a and 5b are respectively accumulators. 2 is connected to the refrigerant outflow pipes 4a and 4b at a position higher than the bottom of 2. H6 indicates the difference in height between the refrigerant outlets 41a and 41b at the tips of the refrigerant outlet pipes 4a and 4b and the bottom of the accumulator 2. Furthermore, the bold arrow in the figure indicates the direction in which the gas refrigerant or the liquid mixture of the liquid refrigerant and the lubricating oil flows. As the oil return pipes 5a and 5b, pipes having a smaller diameter than the refrigerant outflow pipes 4a and 4b are used.
[0020]
FIG. 2 shows a cross section perpendicular to the cylinder center direction of the accumulator 2. In this way, the refrigerant outflow pipes 4a and 4b are connected to the bottom of the accumulator 2 and extend vertically upward from this connection position. Projecting into the accumulator 2. Oil return pipes 5 a and 5 b are also connected to the bottom of the accumulator 2.
[0021]
Since it is configured as described above, a pressure difference occurs between one end side and the other end side of the oil return pipes 5a and 5b due to pressure loss generated in the refrigerant outflow pipes 4a and 4b during the operation of the compressors 1a and 1b. The lubricating oil accumulated at the bottom of the accumulator 2 joins the refrigerant outlet pipes 4a and 4b through the oil return pipes 5a and 5b, and is sucked into the compressors 1a and 1b. Further, for example, even when only the compressor 1a is operated and the compressor 1b is stopped, and the liquid mixture of the liquid refrigerant and the lubricating oil is accumulated in the accumulator 2, the liquid level is high. When the length is less than h2, the mixed liquid in the accumulator 2 does not flow into the refrigerant outflow pipe 4b through the oil return pipe 5b. Therefore, the mixed liquid does not accumulate in the refrigerant outflow pipe 4b, and the occurrence of liquid back when the compressor 1b is started next time can be prevented, and damage to the compressor 1b can be avoided.
[0022]
Thus, since the predetermined heights h1 and h2 are secured as the merging height with the outflow pipes 4a and 4b in both the oil return pipes 5a and 5b, when only the compressor 1a is stopped, Even when both the compressors 1a and 1b are stopped, the mixed liquid does not stay in the outflow pipes 4a and 4b connected to the stopped compressor, so that it is possible to avoid problems caused by the liquid back at the start-up.
[0023]
In general, when the compressors 1a and 1b are vertical and substantially cylindrical compressors, the height is higher than that of a horizontal and substantially cylindrical compressor, so that the refrigerant outflow pipes 4a and 4b and the compressor 1a and The connection position with 1b also becomes high. Therefore, in the air conditioner having the structure as shown in FIG. 1, the height difference between h1 and h2 in FIG. 1 can be increased, and the height difference h1 corresponding to the height of the liquid level in the accumulator 2 becomes high. , H2 can be designed, and the reliability of the air conditioner is further improved. In particular, when the accumulator 2 has a length (that is, a height) in the cylinder center direction of the substantially cylindrical compressors 1a and 1b which is larger than the barrel diameter, the difference in height between h1 and h2 is determined in the accumulator 2. There is a greater possibility that it can be made higher than the possible liquid level. From this fact, it can be said that the effect of preventing damage to the compressor is particularly great when the vertical cylindrical compressor and the horizontal cylindrical accumulator are combined.
[0024]
Embodiment 2 of the Invention
FIG. 3 shows an accumulator according to Embodiment 2 of the present invention in a cross section perpendicular to the cylinder center direction. In this embodiment, the refrigerant outflow pipes 4a and 4b are the bottom portions of the laterally substantially cylindrical accumulator 2. It is connected to the peripheral wall at a position shifted in the circumferential direction from (that is, the lowest position). However, the opening positions of the refrigerant outlets 41a and 41b at the tips of the refrigerant outlet pipes 4a and 4b in the accumulator 2 are the same as those in FIG. 2 in the first embodiment of the invention. Further, the oil return pipes 5a and 5b are connected to a position where the peripheral wall at the bottom of the accumulator 2 is lowest as in FIG.
[0025]
Thus, the refrigerant outflow pipes 4a and 4b and the return oil pipes 5a and 5b are separately connected to the bottom of the accumulator 2, and the refrigerant outflow pipes 4a and 4b and the return oil pipes 5a and 5b are downstream of the accumulator 2 in the refrigerant flow direction. If it is made the structure made to merge by the side, it will become unnecessary to take out the refrigerant | coolant outflow pipes 4a and 4b from the bottom part of the accumulator 2. FIG. Therefore, if only the oil return pipes 5a and 5b thinner than the refrigerant outflow pipes 4a and 4b are connected to the bottom of the accumulator 2, the space for bending the thick refrigerant outflow pipes 4a and 4b in the direction of the compressor becomes an accumulator. It is also possible to lower the installation position of the accumulator 2 because it is no longer necessary below 2. Further, since the refrigerant outflow pipes 4a and 4b can be taken out other than below, the degree of freedom in piping design is increased, and the air conditioner can be miniaturized while sufficiently returning the lubricating oil accumulated at the bottom of the accumulator 2.
[0026]
Furthermore, if necessary, the refrigerant outflow pipe 4a and the refrigerant outflow pipe 4b can be connected to different positions in the circumferential direction of the circumferential wall of the accumulator 2, as shown in FIG.
[0027]
Embodiment 3 of the Invention
FIG. 6 shows a refrigerant circuit of an air-conditioning apparatus according to Embodiment 3 of the present invention, and 1a, 1b,..., 5a, 5b are the same as those shown in FIG. Is an element. Further, 7 is a four-way switching valve for switching between cooling operation and heating operation, 8 is a heat source side heat exchanger, 9a and 9b are flow control devices, and 10a and 10b are utilization side heat exchangers. Reference numeral 11 denotes a high pressure sensor for detecting the pressure of the refrigerant discharged from the compressor 1a or 1b, and reference numeral 12 denotes a low pressure sensor for detecting the pressure of the refrigerant at the inlet of the accumulator 2. In the figure, a solid thick arrow indicates a refrigerant flow during cooling, and a broken thick arrow indicates a refrigerant flow during heating. Here, the compressor 1a is a compressor whose capacity can be controlled, and the compressor 1b is a fixed capacity compressor that is operated / stopped as necessary. Further, as shown in FIG. 5, the configuration from the accumulator 2 to the compressors 1a and 1b is the same as that in FIG. 1, and the refrigerant inlet 31 at the tip of the refrigerant inlet pipe 3 and the refrigerant outlet pipes 4a and 4b. The refrigerant outlets 41a and 41b at the tips of the accumulators 2 are arranged on a straight line along the cylinder center direction of the accumulator 2, and the refrigerant outlet 41b is located farther in the horizontal direction from the refrigerant inlet 31 than the refrigerant outlet 41a. It is arranged in.
[0028]
FIG. 7 is a control block diagram for controlling the compressor. Upon receiving the outputs of the high pressure sensor 11 and the low pressure sensor 12, the controller 13 controls the compressor 1a via the inverter 14 based on a predetermined control flow. While changing the operating frequency, the operation / stop of the compressor 1b is controlled via the switch 15.
[0029]
FIG. 8 is a flowchart showing the control contents of the compressors 1a and 1b performed by the control device 13. First, in step S1, it is determined whether the current operation state is cooling or heating. In the case of cooling, it is determined in step S2 whether or not the output value (Ps) of the low pressure sensor 12 is higher by a predetermined value s than a preset target value Psm. If Ps is higher than Psm + s, the operating frequency variation ΔF of the compressor 1a is set to + b (where b> 0) in step S3. If Ps is lower than Psm + s in step S2, it is next determined in step S4 whether Ps is lower than Psm-s. If lower, in step S5, the frequency change width ΔF of the compressor 1a is set to −b. If Ps is higher than Psm-s in step S4, ΔF = 0 is set in step S6.
[0030]
On the other hand, if it is determined in step S1 that the operating state is heating, whether or not the output value (Pd) of the high pressure sensor 11 is higher than the preset target value Pdm by a predetermined value d in step S7. Determine. If Pd is higher than Pdm + d, the change width ΔF of the operating frequency of the compressor 1a is set to −a (where a> 0) in step S8. If Pd is lower than Pdm + d in step S7, it is next determined in step S9 whether Pd is lower than Psm-d. If it is lower, the change width ΔF of the operating frequency of the compressor 1a is set to + a in step S10. If Pd is higher than Psm-d in step S9, ΔF = 0 is set in step S6.
[0031]
In step S11, a value obtained by adding ΔF determined so far to the operating frequency F * of the currently operating compressor 1a is set as the operating frequency F. In S12, it is determined whether F is equal to or larger than a preset maximum value Fmax. If F ≧ Fmax, it is determined in step S13 whether or not the compressor 1b is stopped. If it is stopped, the compressor 1b is started in step S14 and the frequency of the compressor 1a is reduced to a predetermined value Fa. . If it is determined in step S13 that the compressor 1b is already in operation, the frequency control remains as it is and the process returns to step S1.
[0032]
If F <Fmax in step S12, it is determined in step S15 whether F is equal to or smaller than a preset minimum value Fmin. If F ≦ Fmin, it is determined in step S17 whether or not the compressor 1b is in operation. If in operation, the compressor 1b is stopped in step S18 and the frequency of the compressor 1a is increased to a predetermined value Fa. . If it is determined in step S15 that F> Fmin, F is output in step S16.
[0033]
As described above, in the air conditioner of this embodiment, the compressor 1a is always operated, and the high and low pressures are stabilized near the target values by the operation frequency control, and the operation frequency of the compressor 1a is controlled. When the control does not reach the target high pressure value and low pressure value, control is performed such that the compressor 1b is operated or stopped. For this reason, even if the compressor 1a is operating, the compressor 1b may be selectively stopped.
[0034]
In this way, the refrigerant outlet 41b of the refrigerant outlet pipe 4b connected to the compressor 1b that can be stopped is replaced with the refrigerant outlet 41a of the refrigerant outlet pipe 4a connected to the compressor 1a that is always operated. When the compressor 1a is operating and the compressor 1b is stopped, the refrigerant that has entered the accumulator 2 from the refrigerant inflow pipe 3 always flows to the refrigerant outlet 41a. Only flows and does not reach the refrigerant outlet 41b. For this reason, liquid refrigerant does not accumulate in the refrigerant outflow pipe 4b while the compressor 1b is stopped, so that a large amount of liquid is sucked in when the compressor 1b is started next time. If the compressor is damaged, you can avoid problems.
[0035]
Embodiment 4 of the Invention
FIG. 9 shows an accumulator according to Embodiment 4 of the present invention in a longitudinal section along the cylinder center direction, and FIG. 10 shows the accumulator of FIG. 9 in a section perpendicular to the cylinder center direction. is there. The constituent elements in the figure are the same as those shown by the same reference numerals in FIG. 1 of the first embodiment. However, since a partition plate 16 is added, this will be described. The partition plate 16 is provided so as to partition the inside of the accumulator 2 into an inflow chamber 2a having a refrigerant inlet 31 and an outflow chamber 2b having refrigerant outlets 41a and 41b. Further, the partition plate 16 is located in the upper portion of the accumulator 2, and a first communication hole 17 is formed in the lower portion of the partition plate 16. As shown in FIG. 9, the lower end of the partition plate 16 extends below the straight lines L1 and L2 connecting the refrigerant inlet 31 and the refrigerant outlets 41a and 41b, and therefore the first communication hole 17 is The inflow chamber 2a and the outflow chamber 2b communicate with each other at a position lower than the straight lines L1 and L2.
[0036]
Since it is configured as described above, for example, it is impossible for the refrigerant flowing in from the refrigerant inlet 31 to flow along the closest path (L1) that geometrically connects the refrigerant inlet 31 and the refrigerant outlet 41a. Therefore, in order to pass through the first communication hole 17, the flow always follows a curved path. Therefore, even when liquid refrigerant is mixed with the refrigerant from the refrigerant inlet 31, the possibility that the liquid refrigerant jumps directly into the refrigerant outlets 41 a and 41 b and is sucked into the refrigerant outlet pipes 4 a and 4 b is reduced. And the gas-liquid separation function of the accumulator 2 can be improved, and the reliability of an air conditioning apparatus can be improved.
[0037]
Embodiment 5 of the Invention
11 shows an accumulator according to Embodiment 5 of the present invention in a longitudinal section along the cylinder center direction, and FIG. 12 shows the accumulator of FIG. 11 in a section perpendicular to the cylinder center direction. . The constituent elements in the figure are the same as those shown in FIG. 9 of the fourth embodiment, but the partition plate 16 and the oil return pipes 5a and 5b are different. That is, the partition plate 16 has a third communication hole 18 instead of the first communication hole 17. The lower end of the third communication hole 18 is at a predetermined height h3 from the bottom in the accumulator 2, and therefore the third communication hole 18 is connected to the inflow chamber 2a and the outflow chamber 2b at a position higher than the bottom of the accumulator 2. Communicate. Note that the upper end of the third communication hole 18 is positioned below a straight line L1 connecting the refrigerant inlet 31 and the refrigerant outlet 41a. One end of the oil return pipes 5a and 5b is connected to the bottom of the inflow chamber 2a divided by the partition plate 16.
[0038]
Since it is configured as described above, the mixed liquid of the liquid refrigerant and the lubricating oil flowing in from the refrigerant inlet 31 is accumulated on the inflow chamber 2a side until the liquid level reaches the height of h3, and the oil return pipe 5a. , 5b returns to the compressors 1a, 1b through the refrigerant outflow pipes 4a, 4b. Therefore, even when the accumulator 2 is increased in size to accommodate a plurality of compressors, the mixed liquid mixed with the lubricating oil is concentrated and stored in the inflow chamber 2a so as to be stored on the whole in the accumulator 2 on average. The liquid level can be made higher than this, and the increase in the liquid column pressure due to such an increase in the liquid level can increase the amount of oil returned, resulting in a compressor failure caused by the depletion of lubricating oil. Can be avoided. If the liquid level exceeds h3, the liquid mixture flows to the outflow chamber 2b through the third communication hole 18, so that the liquid level does not rise more than necessary and does not reach an excessive amount of liquid return. Therefore, the liquid back which is not preferable for the compressor can be avoided.
[0039]
Further, the upper end of the third communication hole 18 is positioned below a straight line L1 connecting the refrigerant inlet 31 and the refrigerant outlet 41a, and the refrigerant flow in the accumulator 2 is geometrically connected to the refrigerant inlet 31. Since the liquid refrigerant is mixed with the gas refrigerant from the refrigerant inlet 31, the liquid refrigerant is directly connected to the refrigerant outlet pipe 4 a, so that it can be prevented from following the closest path (L 1) connecting the refrigerant outlet 41 a and the refrigerant outlet 41 a. The possibility of being sucked into 4b is reduced, the gas-liquid separation function of the accumulator 2 can be improved, and the reliability of the air conditioner can be increased.
[0040]
Embodiment 6 of the Invention
13A shows an accumulator according to Embodiment 6 of the present invention in a cross section perpendicular to the cylinder center direction, and FIG. 13B shows the accumulator in FIG. 13A in a horizontal cross section. It is a thing. The components in the figure are substantially the same as those shown in FIG. 11 of the fifth embodiment, but the partition plate 16 has a second communication hole 19 instead of the third communication hole 18. Is formed. The center line X of the refrigerant inflow pipe 3, the center line Y of the second communication hole 19 on the partition plate 16, and the center line Z of the refrigerant outflow pipes 4 a and 4 b are arranged at positions that are horizontally displaced from each other. Therefore, the second communication hole 19 connects the inflow chamber 2a and the outflow chamber 2b at a position shifted in a horizontal direction parallel to the partition plate 16 from a straight line connecting the refrigerant inlet 31 and the refrigerant outlets 41a and 41b. It is supposed to communicate.
[0041]
Since it is configured as described above, there is no linear path through which the liquid refrigerant from the refrigerant inflow pipe 3 directly flows into the refrigerant outflow pipes 4a and 4b, the refrigerant flow is bent, and the gas-liquid separation effect is improved, and the compression is performed. Since damage to the machine is also avoided, the reliability of the air conditioner is sufficiently improved.
[0042]
Embodiment 7 of the Invention
FIG. 14 shows an accumulator according to the seventh embodiment of the present invention in a longitudinal section along the cylinder center direction, and the schematic configuration is the same as that of FIG. 11 in the fifth embodiment. A liquid level detecting pipe 21 having one end opened in the accumulator 2 and the other end connected to the refrigerant outflow pipe 4a outside the accumulator 2, a heater 22 for heating the liquid level detecting pipe 21 outside the accumulator 2, A temperature sensor 23 is provided that detects the pipe temperature of the liquid level detection pipe 21 up to the junction with the refrigerant outflow pipe 4a on the downstream side. Reference numeral 20 denotes a fourth communication hole 20 formed in the partition plate 16. The liquid level detection tube 21 is opened to the refrigerant outlets 41a and 41b side (that is, in the outflow chamber 2b) with respect to the partition plate 16. And the structure which consists of the above liquid level detection pipe | tube 21, the heater 22, and the temperature sensor 23 is an example of the liquid level detection means said to this invention.
[0043]
Next, the operation will be described. When the height of the liquid level in the accumulator 2 is less than the height h4 to the upper end opening of the liquid level detection tube 21, it is almost gas refrigerant that flows in the liquid level detection tube 21. When the liquid level detection tube 21 is heated by the heater 22 in this state, the gas refrigerant in the liquid level detection tube 21 is immediately overheated, and the temperature sensor 23 detects a high temperature (the temperature of the refrigerant superheated from the saturation temperature). It will be. On the other hand, when the liquid level in the accumulator 2 becomes higher than h4, the liquid refrigerant flows through the liquid level detection tube 21. In the case of liquid refrigerant, all of the refrigerant in the liquid level detection tube 21 is not vaporized due to the influence of the latent heat, and a low-pressure two-phase state is obtained at the position of the temperature sensor 23. For this reason, the temperature sensor 23 detects a low temperature called a low pressure saturation temperature.
[0044]
As described above, since the detection temperature of the temperature sensor 23 differs depending on the height of the liquid level in the accumulator 2, it is detected whether or not the liquid level in the accumulator 2 has reached a predetermined height based on the detected temperature. Is possible. Therefore, if a control device (not shown) for operating / stopping the compressor based on the detection result is provided, for example, the liquid level in the accumulator 2 rises excessively, and finally the liquid flows into the refrigerant outflow pipes 4a and 4b. It is possible to stop the compressor before it is sucked to avoid damage to the compressor due to liquid compression.
[0045]
Further, in the above, since the rapid flow of the refrigerant from the refrigerant inlet 31 is alleviated by the partition plate 16, the liquid level in the outflow chamber 2b is less stable than the liquid level in the inflow chamber 2a. It becomes a state. Therefore, the detection accuracy of the liquid level is improved as compared with the case where the partition plate 16 is not provided, and a detection error occurs due to the ripple of the liquid level due to the liquid refrigerant flowing in from the refrigerant inflow pipe 3, and the compressor operation is stopped unnecessarily. Such a situation can be avoided and the performance of the air conditioner can be exhibited stably.
[0046]
Embodiment 8 of the Invention
FIG. 15 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 8 of the present invention, and FIG. 16 is a view showing the accumulator in the air-conditioning apparatus of FIG. 15 in a longitudinal section along the cylinder center direction. In FIG. 15, 1a and 1b are compressors, 2 is an accumulator, 3 is a refrigerant inflow pipe to the accumulator 2, 4a and 4b are refrigerant outflow pipes for returning the refrigerant from the accumulator 2 to the compressors 1a and 1b, and 5a and 5b. Is a return oil pipe for returning lubricating oil from the accumulator 2 to the refrigerant outflow pipes 4a and 4b, 7 is a four-way switching valve, 8 is a heat source side heat exchanger, 9a and 9b are flow control devices, and 10a and 10b are user side heat exchanges. , 11 is a high pressure sensor, 12 is a low pressure sensor, 24a and 24b are auxiliary oil return pipes for returning the lubricating oil from the accumulator 2 to the refrigerant outflow pipes 4a and 4b, and 25 is the lubricating oil discharged from the compressor. An oil separator 26 to be recovered is an oil return pipe for returning the lubricating oil recovered by the oil separator to the accumulator 2.
[0047]
In FIG. 16, 16 is a partition plate that divides the accumulator 2 into an inflow chamber 2a and an outflow chamber 2b, 21 is a liquid level detection pipe, 22 is a heater, 23 is a temperature sensor, 27 is auxiliary oil return pipes 24a and 24b, and A sub-partition plate 28 divides the space 2c in which the oil return pipe 26 is opened from the outflow chamber 2b, and 28 is a sub-communication hole that is formed in the sub-partition plate and communicates the outflow chamber 2b and the space 2c.
[0048]
As shown in FIG. 17, the partition plate 16 is provided with two fifth communication holes 29 at positions where the horizontal center line extends vertically.
[0049]
Next, the movement of the refrigerant during cooling will be described based on FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressors 1a and 1b reaches the heat source side heat exchanger 8 through the oil separator 25 and the four-way switching valve 7. Here, the refrigerant condenses and becomes a high-pressure liquid refrigerant. Thereafter, the pressure is reduced by the flow rate control devices 9a and 9b and evaporated in the use side heat exchangers 10a and 10b. The low-pressure refrigerant passes through the four-way switching valve 7 and enters the accumulator 2 through the refrigerant inflow pipe 3, flows through the refrigerant communication pipes 4a and 4b through the fifth communication hole 29 of the partition plate 16, and flows through the compressor 1a. , 1b.
[0050]
Next, the movement of the refrigerant during heating will be described. During heating, the high-temperature and high-pressure gas refrigerant from the compressors 1a and 1b flows through the oil separator 25 and the four-way switching valve 7 to the use side heat exchangers 10a and 10b. Here, after condensing into a liquid refrigerant, the pressure is reduced by the flow rate control devices 9a and 9b to become a gas-liquid two-phase refrigerant. Thereafter, it evaporates in the heat source side heat exchanger 8, returns to the accumulator 2 through the four-way switching valve 7, and returns to the compressors 1a and 1b in the same manner as during cooling.
[0051]
As described above, the use side heat exchangers 10a and 10b function as an evaporator during cooling, and the heat source side heat exchanger 8 functions as an evaporator during heating. However, a part of the refrigerant does not completely evaporate and is in a liquid state. The accumulator 2 is reached. The flow of the refrigerant flowing into the accumulator 2 from the refrigerant inflow pipe 3 tends to be bent by the partition plate 16 until it flows out of the refrigerant outflow pipes 4a and 4b. As it is not bent, it collides with the inner surface of the accumulator 2 and the partition plate 16 and drops, and as a result, most of the gas refrigerant flows into the outflow pipes 4 a and 4 b, and the liquid refrigerant stays at the bottom of the accumulator 2. In this way, gas-liquid separation is performed by the accumulator 2, and it is prevented that the liquid refrigerant returns directly to the compressors 1a and 1b to cause a problem of liquid compression.
[0052]
Next, the flow of the lubricating oil will be described. A small amount of lubricating oil is always discharged together with the refrigerant from the compressors 1a and 1b. Most of this lubricating oil is captured by the oil separator 25. The lubricating oil captured by the oil separator 25 flows through the oil return pipe 26 into the space 2 c of the accumulator 2. Since the space 2c is separated from the outflow chamber 2b by the sub partition plate 27, it does not mix with the liquid refrigerant accumulated in the inflow chamber 2a and the outflow chamber 2b. ing. The lubricating oil accumulated in the space 2c returns to the compressors 1a and 1b through the auxiliary oil return pipes 24a and 24b provided at the bottoms.
[0053]
The oil separator 25 separates most of the lubricating oil, but the lubricating oil that could not be separated still flows to the four-way switching valve 7 together with the refrigerant. Regardless of cooling / heating, it finally returns to the accumulator 2, where it is gas-liquid separated and stays at the bottom of the inflow chamber 2a and the inflow chamber 2b of the accumulator 2 together with the liquid refrigerant. Since the liquid refrigerant exists, the lubricating oil concentration in the inflow chamber 2a and the outflow chamber 2b is lower than the lubricating oil in the space 2c. Thus, the lubricating oil staying in the inflow chamber 2a and the outflow chamber 2b returns to the compressors 1a and 1b through the oil return pipes 5a and 5b together with the liquid refrigerant.
[0054]
In addition, as shown in FIG. 17, by arranging the lower end of the fifth communication hole 29 at a position separated from the bottom of the accumulator 2 by a predetermined height h5, the liquid level in the accumulator 2 is low. The liquid mixture of refrigerant and lubricating oil is retained in the inflow chamber 2a, and the liquid level is raised to increase the liquid column pressure, thereby increasing the amount of liquid mixture flowing through the oil return pipes 5a and 5b, that is, the amount of oil return. If the liquid level further rises, the liquid refrigerant is flowed to the outflow chamber 2c through the fifth communication hole 29 to suppress the rise in the liquid level, so that the liquid column pressure is not increased more than necessary, and the oil return pipe 5a. , 5b can be suppressed, and the amount of liquid refrigerant flowing along with the lubricating oil can be suppressed, so that it is possible to avoid the occurrence of liquid back in the compressors 1a and 1b and damage to the compressor.
[0055]
Note that the fifth communication hole 29 does not include the horizontal center line of the partition plate 16 as shown in FIG. 17, but is vertically above and below the horizontal center line of the partition plate 16 as shown in FIG. 18. Even if the four fifth communication holes 29 are formed in the partition plate 16 so as to be arranged on the left and right of the center line in the direction, the lower end of the hole located in the lower part thereof is located at a height of h5 from the bottom of the accumulator 2. If so, the same effect as in FIG. 17 can be obtained.
[0056]
In order to increase the gas-liquid separation effect, it is also conceivable to provide a collar 30 (an example of the refrigerant direction changing means) in the partition diagram 16 shown in FIG. 18 as shown in FIG. That is, the flange portion 30 covers the outflow chamber 2b side of each of the four fifth communication holes 29, and the direction of the opening (indicated by n in the drawing) is the fifth communication hole 29 and the refrigerant outflow pipe 4a. , 4b are formed to face in a different direction from a straight line (indicated by D1 in the figure) connecting the refrigerant outlets 41a and 41b. Therefore, when the refrigerant flowing from the inflow chamber 2a toward the outflow chamber 2b passes through the fifth communication hole 29, the direction of the refrigerant is greatly changed by the flange portion 30, so that the liquid refrigerant is changed into the refrigerant outflow amounts 4a and 4b. It becomes difficult to be sucked in, and the gas-liquid separation performance of the accumulator 2 is improved, so that the reliability of the air conditioner can be improved.
[0057]
The flange portion 30 may be configured by attaching another member to the partition plate 16, and when the fifth communication hole 29 is punched and formed in the partition plate 16, part of the partition plate 16 is not punched out. It is good also as a bowl shape as it is connected with 16. Further, the refrigerant direction changing means of the present invention is not limited to the above-described flange portion, and if the direction of the refrigerant passing through the fifth communication hole 29 can be changed, for example, the outflow chamber of each fifth communication hole 29 A configuration may be adopted in which a tube curved downward or laterally is attached to the outlet on the 2b side.
[0058]
【The invention's effect】
According to the air conditioner of the present invention, the lubricating oil accumulated at the bottom of the accumulator can be supplied to the compressor in operation through the oil return pipe and the refrigerant outflow pipe. Even when some or all of the compressors are stopped, the refrigerant outflow pipe connected to the stopped compressor is not filled with the liquid refrigerant in the accumulator. Damage to the compressor due to liquid compression can be prevented.
[0059]
Also, when operating only some of the compressors, the refrigerant that has flowed into the accumulator from the refrigerant inlet is operating so that it jumps over the refrigerant outlet of the refrigerant outlet pipe connected to the stopped compressor. The refrigerant does not flow to the refrigerant outlet of the refrigerant outlet pipe connected to the compressor. Therefore, a part of the droplets of liquid refrigerant from the refrigerant inlet does not enter and accumulate in the refrigerant outflow pipe connected to the stopped compressor, so that the compressor is damaged due to liquid compression at the time of starting the compressor. Can be prevented.
[0060]
In addition, there is no need to bend the thick refrigerant outflow pipe in the direction of the compressor as when the refrigerant outflow pipe is connected to the bottom of the accumulator, so the space below the accumulator can be small and the installation position of the accumulator can be lowered In addition, since the degree of freedom in piping design is increased, the air conditioner can be downsized.
[0061]
In addition, the refrigerant from the refrigerant inlet to the refrigerant outlet always follows a curved path to pass through the first communication hole, and even when liquid refrigerant is mixed with the gas refrigerant from the refrigerant inlet. The possibility that the liquid refrigerant jumps directly into the refrigerant outlet and is sucked into the refrigerant outlet pipe is reduced. Therefore, the gas-liquid separation performance of the accumulator can be improved, and damage to the compressor due to liquid compression can be prevented.
[0062]
In addition, the refrigerant from the refrigerant inlet to the refrigerant outlet always follows a curved path in order to pass through the second communication hole, and the liquid refrigerant is mixed with the gas refrigerant from the refrigerant inlet. The possibility that the liquid refrigerant jumps directly into the refrigerant outlet and is sucked into the refrigerant outlet pipe is reduced. Therefore, the gas-liquid separation performance of the accumulator can be improved, and damage to the compressor due to liquid compression can be prevented.
[0063]
In addition, since the third communication hole is located higher than the bottom of the accumulator, the liquid refrigerant and the lubricating oil mixed with the gas refrigerant and flowing into the inflow chamber from the refrigerant inlet enter the third communication hole. Until it reaches, it collects intensively in the inflow chamber. Accordingly, the liquid level in the inflow chamber becomes higher than the liquid level in the outflow chamber, and the liquid column pressure increases, so that the amount of oil returned to the compressor through the oil return pipe connected to the bottom of the inflow chamber increases. . Therefore, for example, even when the accumulator is enlarged to accommodate a plurality of compressors, it is possible to prevent the compressor from being damaged due to the exhaustion of the lubricating oil. When the liquid level in the inflow chamber reaches the third communication hole, the liquid flows to the outflow chamber side through the third communication hole, so that the liquid level in the inflow chamber becomes excessively high and the liquid column pressure becomes higher than necessary. A liquid back state that does not rise and is undesirable for the compressor can be avoided.
[0064]
In addition, since the rapid flow of the refrigerant from the refrigerant inlet is relaxed by the partition plate, the liquid level in the outflow chamber becomes a stable state with few undulations, so the liquid level in the accumulator is provided by the liquid level detection means provided in the outflow chamber. Can be detected with high accuracy, and a situation in which the compressor is unnecessarily stopped due to a detection error can be avoided.
[0065]
In addition, since the refrigerant from the refrigerant inlet to the refrigerant outlet passes through the fifth communication hole, its flow direction can be changed by the refrigerant direction changing means, so that the liquid refrigerant is mixed with the gas refrigerant from the refrigerant inlet. In this case, the possibility that the liquid refrigerant jumps directly into the refrigerant outlet and is sucked into the refrigerant outflow pipe is reduced. Therefore, the gas-liquid separation performance of the accumulator can be improved, and damage to the compressor due to liquid compression can be prevented.
[Brief description of the drawings]
FIG. 1 is a side view showing a part of a cross section of a main part of an air-conditioning apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional view showing the accumulator according to Embodiment 1 of the present invention in a cross section perpendicular to the cylinder center direction;
FIG. 3 is a cross-sectional view showing an accumulator according to Embodiment 2 of the present invention in a cross section perpendicular to the cylinder center direction;
FIG. 4 is a cross-sectional view showing another accumulator according to Embodiment 2 of the present invention in a cross section perpendicular to the cylinder center direction;
FIG. 5 is a side view showing a part of a cross section of a main part of an air-conditioning apparatus according to Embodiment 3 of the present invention.
FIG. 6 is a refrigerant circuit diagram of an air-conditioning apparatus according to Embodiment 3 of the present invention.
FIG. 7 is a control block diagram of the air conditioner of FIG.
FIG. 8 is a control flowchart of the air conditioner of FIG.
FIG. 9 is a cross-sectional view showing an accumulator according to a fourth embodiment of the present invention in a vertical cross section along its cylindrical direction.
10 is a cross-sectional view showing the accumulator of FIG. 9 in a cross section perpendicular to the cylinder center direction.
FIG. 11 is a cross-sectional view showing an accumulator according to a fifth embodiment of the present invention in a vertical cross section along its cylinder center direction.
12 is a cross-sectional view showing the accumulator of FIG. 11 in a cross section perpendicular to the cylinder center direction.
FIG. 13 (a) is a cross-sectional view showing an accumulator according to Embodiment 6 of the present invention in a cross section perpendicular to the cylinder center direction. FIG. 14B is a cross-sectional view showing the accumulator of FIG.
FIG. 14 is a cross-sectional view showing an accumulator according to a seventh embodiment of the present invention in a vertical cross section along its cylindrical direction.
FIG. 15 is a refrigerant circuit diagram of an air-conditioning apparatus according to the present invention related to Embodiment 8 of the present invention.
FIG. 16 is a cross-sectional view showing an accumulator according to an eighth embodiment of the present invention in a vertical cross section along the cylinder center direction thereof.
17 is a cross-sectional view showing the accumulator of FIG. 16 in a cross section perpendicular to the cylinder center direction.
FIG. 18 is a cross-sectional view showing another accumulator according to Embodiment 8 of the present invention in a cross section perpendicular to the cylinder center direction;
FIG. 19 is a schematic explanatory view showing the shapes of partition plates, flanges, refrigerant outflow pipes and their positional relationship in still another accumulator according to Embodiment 8 of the present invention.
[Explanation of symbols]
1a Compressor, 1b Compressor, 2 Accumulator, 3 Refrigerant Inlet Pipe, 31 Refrigerant Inlet, 4a Refrigerant Outlet, 4b Refrigerant Outlet, 41a Refrigerant Outlet, 41b Refrigerant Outlet, 5a Oil Return Pipe, 5b Oil Return Pipe, 16 Partition plate, 17 1st communication hole, 18 3rd communication hole, 19 2nd communication hole, 20 4th communication hole, 21 Liquid level detection pipe, 22 Heater, 23 Temperature sensor, 29 5th communication hole , 30 collar (refrigerant direction changing means).

Claims (1)

冷媒流入管及び複数の冷媒流出管が接続されたアキュムレータと、前記冷媒流出管を介して前記アキュムレータにそれぞれ接続された複数の圧縮機とを備え、一端が前記アキュムレータの底部に接続され他端が前記アキュムレータの底部よりも高い位置で前記複数の冷媒流出管に接続された複数の返油管を設け、複数の圧縮機の運転台数を変化させる制御を行なう制御手段を備えるとともに、前記制御手段が一部の圧縮機のみを運転する制御を行なう場合に停止する圧縮機に接続された冷媒流出管の冷媒流出口を、他の冷媒流出管の冷媒流出口よりも、冷媒流入口から水平方向に離れた位置に配したことを特徴とする空気調和装置。An accumulator to which a refrigerant inflow pipe and a plurality of refrigerant outflow pipes are connected; and a plurality of compressors respectively connected to the accumulator through the refrigerant outflow pipe; one end connected to the bottom of the accumulator and the other end A plurality of oil return pipes connected to the plurality of refrigerant outflow pipes at a position higher than the bottom of the accumulator; and control means for performing control to change the number of operating compressors. The refrigerant outlet of the refrigerant outlet pipe connected to the compressor that is stopped when performing control for operating only the compressor of the part is further away from the refrigerant inlet than the refrigerant outlet of the other refrigerant outlet pipes in the horizontal direction. An air conditioner characterized by being arranged at a different position .
JP33385496A 1996-12-13 1996-12-13 Air conditioner Expired - Lifetime JP3752334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33385496A JP3752334B2 (en) 1996-12-13 1996-12-13 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33385496A JP3752334B2 (en) 1996-12-13 1996-12-13 Air conditioner

Publications (2)

Publication Number Publication Date
JPH10176875A JPH10176875A (en) 1998-06-30
JP3752334B2 true JP3752334B2 (en) 2006-03-08

Family

ID=18270692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33385496A Expired - Lifetime JP3752334B2 (en) 1996-12-13 1996-12-13 Air conditioner

Country Status (1)

Country Link
JP (1) JP3752334B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140107821A (en) * 2013-02-28 2014-09-05 엘지전자 주식회사 An accumulator and an air conditioner using thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187370B2 (en) * 2006-07-13 2012-05-29 Shi-Apd Cryogenics, Inc. Horizontal bulk oil separator
CN101737331B (en) * 2008-11-10 2013-08-28 上海日立电器有限公司 Integral structure of liquid reservoir and oil separator of compressor
JP2017116219A (en) * 2015-12-25 2017-06-29 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140107821A (en) * 2013-02-28 2014-09-05 엘지전자 주식회사 An accumulator and an air conditioner using thereof

Also Published As

Publication number Publication date
JPH10176875A (en) 1998-06-30

Similar Documents

Publication Publication Date Title
EP3427001B1 (en) Heat exchanger
EP1740894B1 (en) Flash tank for economizer refrigeration systems
JP4295530B2 (en) Air conditioner
JP6091399B2 (en) Air conditioner
JP5632963B2 (en) Refrigeration compressor suction mechanism
EP1884725A2 (en) Two-stage expansion refrigerating device
EP3736513B1 (en) Circulation system for air conditioner and air conditioner
WO2006101569A2 (en) Accumulator integration with exchanger header
JP3752334B2 (en) Air conditioner
US10337778B2 (en) Economizer component and refrigeration system thereof
JP3583266B2 (en) Accumulator for cooling and heating cycle
JP2022177312A (en) Outdoor unit and refrigeration cycle device
JP3780834B2 (en) Air conditioner
JP4182148B2 (en) accumulator
EP3722700B1 (en) Refrigeration cycle device
KR100920819B1 (en) Accumulator for air-conditioning apparatus and air-conditioning apparatus comprising the same
JPH10170188A (en) Heat exchanger
WO2023281653A1 (en) Accumulator and refrigeration cycle device
JP7172265B2 (en) heat pump equipment
JP2018119710A (en) Liquid storage vessel
JP2018146153A (en) Condenser
JP3611417B2 (en) Capacitor
KR20240036780A (en) An air conditioner and a control method the same
JP2001147059A (en) Electric refrigerator
JP2015148194A (en) Refrigerating circuit

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050415

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term