WO2023281653A1 - Accumulator and refrigeration cycle device - Google Patents

Accumulator and refrigeration cycle device Download PDF

Info

Publication number
WO2023281653A1
WO2023281653A1 PCT/JP2021/025601 JP2021025601W WO2023281653A1 WO 2023281653 A1 WO2023281653 A1 WO 2023281653A1 JP 2021025601 W JP2021025601 W JP 2021025601W WO 2023281653 A1 WO2023281653 A1 WO 2023281653A1
Authority
WO
WIPO (PCT)
Prior art keywords
accumulator
expansion valve
refrigerant
heat exchanger
compressor
Prior art date
Application number
PCT/JP2021/025601
Other languages
French (fr)
Japanese (ja)
Inventor
宗希 石山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180100033.1A priority Critical patent/CN117581070A/en
Priority to PCT/JP2021/025601 priority patent/WO2023281653A1/en
Priority to JP2023532944A priority patent/JPWO2023281653A1/ja
Priority to EP21949287.3A priority patent/EP4368920A1/en
Publication of WO2023281653A1 publication Critical patent/WO2023281653A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the present disclosure relates to accumulators and refrigeration cycle devices.
  • a refrigeration cycle device equipped with an accumulator is conventionally known.
  • the accumulator is installed between the evaporator and the compressor. Refrigerant that has flowed out of the evaporator flows into the accumulator.
  • the refrigerant flowing into the accumulator is composed of a gaseous refrigerant and a liquid mixture.
  • the liquid mixture contains liquid refrigerant and oil for lubricating the compressor.
  • the accumulator prevents liquid backflow, in which the liquid refrigerant flows into the compressor, by storing excess liquid refrigerant.
  • the accumulator prevents oil depletion caused by an increase in the amount of oil discharged from the compressor by returning oil from the oil return portion.
  • Patent Document 1 discloses a gas-liquid separation device as an accumulator, by adjusting the opening of a liquid return hole as an oil return section, thereby adjusting the inflow ratio of the mixed liquid. A rate adjuster is provided.
  • the hole opening degree adjustment valve provided in the mixture ratio adjustment device is operated by driving the electric motor in order to suppress the overheating state of the refrigerant.
  • the refrigeration cycle device of Patent Document 1 can adjust the flow rate of the mixed liquid flowing into the compressor from the accumulator, it cannot return an appropriate amount of oil because it does not consider the amount of oil in the mixed liquid, and the mixing ratio can be adjusted.
  • the device was a large one with an electric motor.
  • An object of the present disclosure is to provide a compact accumulator and refrigeration cycle device that can flow an appropriate amount of oil into the compressor.
  • the present disclosure relates to an accumulator installed between an evaporator of a refrigeration cycle device and a refrigerant suction side of a compressor.
  • the accumulator includes a container for storing the refrigerant, an inflow pipe for inflowing the refrigerant into the container, an outflow pipe for flowing the refrigerant out of the container, and an oil return portion provided with an opening for sucking the oil. and a decompression device that decompresses the refrigerant.
  • the accumulator has a pressure reducing device and an oil return on the outflow line.
  • a small accumulator allows an appropriate amount of oil to flow into the compressor.
  • FIG. 1 is a diagram showing a circuit configuration of a refrigeration cycle device according to Embodiment 1;
  • FIG. FIG. 2 is a diagram for explaining an accumulator according to Embodiment 1;
  • FIG. FIG. 3 is a view showing the III-III cross section of FIG. 2;
  • FIG. 11 is a diagram for explaining an accumulator according to Embodiment 2;
  • FIG. FIG. 5 is a view showing a VV cross section of FIG. 4;
  • FIG. 10 is a diagram showing a circuit configuration of a refrigeration cycle apparatus according to Embodiment 3;
  • FIG. 11 is a diagram for explaining an accumulator according to Embodiment 3;
  • FIG. 10 is a flow chart showing control of a second expansion valve in Embodiment 3.
  • FIG. 10 is a diagram showing a circuit configuration of a refrigeration cycle apparatus according to Embodiment 4; 14 is a flow chart showing control of a second expansion valve in Embodiment 4.
  • FIG. 10 is a diagram showing a circuit configuration of a refrigeration cycle apparatus according to Embodiment 5; 14 is a flow chart showing control of a first expansion valve and a second expansion valve in Embodiment 5.
  • FIG. FIG. 11 is a diagram showing a circuit configuration of a refrigeration cycle apparatus according to Embodiment 6;
  • FIG. 1 is a diagram showing a circuit configuration of a refrigeration cycle apparatus 100 according to Embodiment 1.
  • FIG. A refrigeration cycle device 100 includes a compressor 1 , a first heat exchanger 2 , a second heat exchanger 4 , a first expansion valve 3 , an accumulator 5 , and a control device 10 .
  • the refrigeration cycle device 100 circulates the refrigerant in the order of the compressor 1, the first heat exchanger 2, the first expansion valve 3, the second heat exchanger 4, and the accumulator 5 during the heating operation.
  • the compressor 1 sucks, compresses, and discharges the refrigerant.
  • the first heat exchanger 2 functions as a condenser.
  • the first heat exchanger 2 uses a fan (not shown) to exchange heat between the air and the refrigerant to condense the refrigerant.
  • the first expansion valve 3 is arranged between the first heat exchanger 2 and the second heat exchanger 4 and expands or decompresses the refrigerant.
  • the first expansion valve 3 is a device capable of arbitrarily controlling the degree of opening, such as an electronic expansion valve. The degree of opening of the first expansion valve 3 is controlled by the controller 10 .
  • the second heat exchanger 4 functions as an evaporator.
  • the second heat exchanger 4 evaporates the low-pressure liquid refrigerant decompressed by the first expansion valve 3 .
  • the gas-liquid two-phase refrigerant evaporated in the second heat exchanger 4 flows into the accumulator 5 .
  • a refrigerant circuit of the refrigerating cycle device 100 is filled with refrigerating machine oil (hereinafter also simply referred to as oil).
  • An accumulator 5 installed between the compressor 1 and the second heat exchanger 4 separates a gas-liquid two-phase refrigerant composed of a gas refrigerant and a mixture of oil and liquid refrigerant. After passing through the accumulator 5 , the gas refrigerant and the mixed liquid whose oil amount has been adjusted return to the compressor 1 .
  • the control device 10 includes a CPU (Central Processing Unit) 11, a memory 12 (ROM (Read Only Memory) and RAM (Random Access Memory)), and an input/output device (not shown) for inputting various signals. be done.
  • the CPU 11 expands a program stored in the ROM into the RAM or the like and executes it.
  • the program stored in the ROM is a program in which processing procedures of the control device 10 are described.
  • the control device 10 controls each device in the refrigeration cycle device 100 according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
  • FIG. 2 is a diagram for explaining the accumulator 5 according to the first embodiment.
  • the accumulator 5 includes a container 51, an inflow pipe 52, an outflow pipe 53, an oil return portion 54, and a pressure reducing pipe 56 as a pressure reducing device.
  • the container 51 stores a mixed liquid of liquid refrigerant and oil.
  • the inflow pipe 52 is used to flow the gas refrigerant and the liquid mixture into the container 51 .
  • the inflow pipe 52 has a shape in which the tip is bent toward the wall surface inside the container 51 .
  • the outflow pipe 53 is bent in a U shape, and the gas refrigerant flows in from the inlet of the outflow pipe 53, out of the gas refrigerant and the liquid mixture. From the outlet of the outflow pipe 53, the gas refrigerant and the mixed liquid in which the amount of oil is adjusted flow out.
  • the outflow pipe 53 has a shape in which the inflow end of the gas refrigerant is positioned higher than the oil return portion 54 and the decompression pipe 56 in the container 51 , and the outflow end of the gas refrigerant protrudes outside the container 51 . be.
  • the oil return portion 54 is an opening for sucking oil formed in the arc portion of the outflow pipe 53 .
  • the accumulator 5 returns the oil (refrigerating machine oil) to the compressor 1 as a mixed liquid together with a small amount of liquid refrigerant by returning the oil from the oil return portion 54, thereby preventing the liquid backflow that lowers the performance and reliability of the compressor 1. .
  • the gas refrigerant and oil flow out from the outlet of the outflow pipe 53 .
  • the opening of the oil return portion 54 is provided with a mesh-like cover for removing dust, but the illustration is omitted for the sake of explanation.
  • the decompression pipe 56 is provided between the inlet of the outflow pipe 53 and the oil return portion 54 and has a diameter smaller than that of the outflow pipe 53 .
  • the decompression pipe 56 decompresses the gas refrigerant. If the decompression pipe 56 is provided at the tip of the outflow pipe 53, the flow velocity at the tip increases and the efficiency of gas-liquid separation deteriorates. can be done.
  • FIG. 3 is a diagram showing the III-III cross section of FIG.
  • the outflow pipe 53 is provided with an oil return portion 54 formed with a hole having a smaller diameter than the diameter of the outflow pipe 53 .
  • the pressure inside the outflow pipe 53 is P1
  • the pressure outside the outflow pipe 53 is P2
  • the pressure in the oil return portion 54 is ⁇ P
  • P2>P1 there is a relationship of P2>P1.
  • the mixed liquid accumulated in the container 51 flows into the outflow pipe 53 from the oil return portion 54 .
  • the oil in the lower part of the mixture flows from the oil return portion 54, Merges with gas refrigerant.
  • the combined gas refrigerant and oil flow out of the accumulator 5 through the outflow pipe 53 and into the compressor 1 .
  • the accumulator 5 of the present embodiment is arranged in the middle of the outflow pipe 53 in the order of the decompression pipe 56 and the oil return portion 54 with respect to the flow direction of the refrigerant. Therefore, the differential pressure can be increased without increasing the size of the accumulator 5 , and an appropriate amount of oil can flow into the compressor 1 .
  • FIG. 4 is a diagram for explaining the accumulator 5A of the second embodiment.
  • the accumulator 5A of Embodiment 2 has two oil return portions, namely, a first oil return portion 54A and a second oil return portion 54B. It is different in that it is arranged between the oil return parts.
  • Other configurations are the same as those of the accumulator 5 of the first embodiment. In the following description, points different from the first embodiment are mainly described.
  • the first oil return portion 54A and the second oil return portion 54B are openings formed in the arc portion of the outflow pipe 53 for sucking oil.
  • the accumulator 5A returns oil to the compressor 1 by returning oil from the first oil return portion 54A and the second oil return portion 54B, and prevents liquid backflow that causes deterioration in performance and reliability of the compressor 1.
  • the gas refrigerant and oil flow out from the outlet of the outflow pipe 53 .
  • the decompression pipe 56 is provided between the first oil return portion 54A and the second oil return portion 54B, and has a smaller diameter than the outflow pipe 53.
  • the decompression pipe 56 decompresses the gas refrigerant and the liquid mixture.
  • FIG. 5 is a diagram showing a VV cross section in FIG.
  • the outflow pipe 53 is formed with a second oil return portion 54B having a diameter smaller than that of the outflow pipe 53 .
  • the pressure inside the outflow pipe 53 is P1'
  • the pressure outside the outflow pipe 53 is P2'
  • the pressure in the second oil return portion 54B is ⁇ P'
  • P2'>P1' there is a relationship of P2'>P1'.
  • the liquid mixture accumulated in the container 51 flows into the outflow pipe 53 from the first oil return portion 54A.
  • the oil in the lower part of the mixture is discharged from the first oil return portion 54A. flows in and joins the gas refrigerant.
  • the merged gas refrigerant and oil flow while the pressure decreases when passing through the decompression pipe 56 .
  • the mixed liquid accumulated in the container 51 flows into the outflow pipe 53 from the second oil return portion 54B.
  • the liquid mixture flows from the second oil return section 54B to the bottom of the liquid mixture according to the pressure difference ⁇ P' between the pressure P2' which is the inlet pressure of the second oil return section 54B in the container 51 and the pressure P1' inside the outflow pipe 53.
  • Some oil will flow in.
  • the combined gas refrigerant and oil flow out of the accumulator 5 through the outflow pipe 53 and into the compressor 1 .
  • the accumulator 5A is arranged in the middle of the outflow pipe 53 in the order of the first oil return portion 54A, the decompression pipe 56, and the second oil return portion 54B with respect to the flow direction of the refrigerant. Therefore, when the refrigerant flow rate in the refrigerant circuit is small, the inflow flow rate to the first oil return portion 54A is reduced, liquid backflow is suppressed, and performance can be improved. When the flow rate of refrigerant in the refrigerant circuit is large, oil can be returned by the first oil return portion 54A and the second oil return portion 54B, thereby improving reliability. Thus, an appropriate amount of oil can flow into the compressor 1 without enlarging the accumulator 5A.
  • FIG. 6 is a diagram showing a circuit configuration of a refrigeration cycle apparatus 100A according to Embodiment 3.
  • the refrigerating cycle device 100A of the third embodiment has an accumulator 5B instead of the accumulator 5, and a discharge superheat sensor 61 serving as a detection sensor performs first heat exchange with the compressor 1.
  • the point provided between the vessel 2 is different.
  • Other configurations are the same as those of the refrigeration cycle apparatus 100 of the first embodiment. In the following description, points different from the first embodiment are mainly described.
  • the discharge superheat sensor 61 is a sensor for detecting the degree of superheat of the refrigerant discharged from the compressor 1 .
  • the discharge superheat is the temperature difference between the temperature of the refrigerant discharged by the compressor 1 (hereinafter also referred to as discharge temperature) and the saturated gas temperature corresponding to the pressure of the refrigerant discharged by the compressor (hereinafter also referred to as discharge pressure).
  • discharge temperature the temperature of the refrigerant discharged by the compressor
  • discharge pressure saturated gas temperature corresponding to the pressure of the refrigerant discharged by the compressor
  • a discharge superheat sensor 61 measures the discharge temperature and the discharge pressure.
  • the measured signal is transmitted to the control device 10 .
  • the controller 10 obtains the degree of discharge superheat as a detection value from the detected signal value.
  • a differential pressure gauge may be used as the discharge superheat sensor 61 .
  • FIG. 7 is a diagram for explaining the accumulator 5B of the third embodiment.
  • the accumulator 5B of the third embodiment differs from the accumulator 5 of the first embodiment in that the position of the oil return portion 54 and that a second expansion valve 57 is arranged instead of the pressure reducing pipe 56 as a pressure reducing device. ing.
  • Other configurations are the same as those of the accumulator 5 of the first embodiment. In the following description, points different from the first embodiment are mainly described.
  • the oil return portion 54 is an opening for sucking oil formed near the center of the arc portion of the outflow pipe 53 .
  • the second expansion valve 57 is provided between the inlet of the outflow pipe 53 and the oil return portion 54 and reduces the pressure of the gas refrigerant flowing in from the outflow pipe 53 .
  • the second expansion valve 57 can adjust the degree of opening in accordance with the flow rate flowing through the refrigerant circuit. As shown in FIG. 6, the control device 10 controls the degree of opening of the second expansion valve 57 based on the detected value of the degree of discharge superheat.
  • FIG. 8 is a flow chart showing control of the second expansion valve 57 in the third embodiment.
  • the control device 10 determines whether or not the compressor 1 is in operation in step S1. When the controller 10 determines that the compressor 1 is not in operation (NO in step S1), the process ends. When the controller 10 determines that the compressor 1 is in operation (YES in step S1), the process proceeds to step S2.
  • the controller 10 acquires the detected value of the discharge superheat from the value of the discharge superheat sensor 61 in step S2.
  • control device 10 compares a predetermined reference value with the detected value (step S3).
  • the control device 10 determines that the detected value is smaller than the reference value (YES in step S3), it reduces the degree of opening of the second expansion valve 57 from the current degree of opening (step S4), and proceeds to the process of step S1. do.
  • the control device 10 determines that the detected value is equal to or greater than the reference value (NO in step S3), it increases the degree of opening of the second expansion valve 57 from the current degree of opening (step S5), and performs the processing of step S1.
  • the control device 10 may increase or decrease the degree of opening of the second expansion valve 57 in predetermined steps.
  • the control device 10 may end the opening degree adjustment process when the opening degree of the second expansion valve 57 reaches a predetermined minimum opening degree or a predetermined maximum opening degree.
  • the mixed liquid accumulated in the container 51 flows into the outflow pipe 53 from the oil return portion 54 .
  • the oil in the lower part of the mixture flows from the oil return portion 54, Merges with gas refrigerant.
  • the combined gas refrigerant and oil flow out of the accumulator 5 through the outflow pipe 53 and into the compressor 1 .
  • the detected value becomes smaller than the reference value during unstable operation such as when the compressor 1 is started.
  • the degree of opening of the second expansion valve 57 is decreased from the current degree of opening.
  • the pressure drop at the second expansion valve 57 increases.
  • the pressure difference between the inlet and outlet of the outflow pipe 53 can be increased without enlarging the accumulator 5B, and the flow rate of oil flowing into the oil return portion 54 is increased.
  • the refrigeration cycle device 100A can suppress oil depletion by increasing the amount of oil returned to the compressor 1 and improve reliability when oil return is required during unstable operation such as startup. can.
  • the detected value is equal to or greater than the reference value when the compressor 1 is in stable operation.
  • the degree of opening of the second expansion valve 57 increases from the current degree of opening.
  • the pressure drop at the second expansion valve 57 decreases.
  • the pressure difference between the inlet and outlet of the outflow pipe 53 can be reduced without increasing the size of the accumulator 5B, and the flow rate of oil flowing into the oil return portion 54 is reduced.
  • the refrigeration cycle device 100A can prevent liquid backflow by reducing the amount of oil returned to the compressor 1 when there is no need to return oil during stable operation, thereby improving reliability and performance. be able to.
  • the pressure loss in the outflow pipe 53 is small during stable operation, so the performance of the entire circuit device can be improved.
  • FIG. 9 is a diagram showing a circuit configuration of a refrigeration cycle device 100B according to Embodiment 4.
  • a refrigerating cycle apparatus 100B of the fourth embodiment differs from the refrigerating cycle apparatus 100A of the third embodiment in that an oil concentration sensor 62 is provided in the compressor 1 instead of the discharge superheat sensor 61 as a detection sensor. is different.
  • Other configurations are the same as those of the refrigeration cycle apparatus 100A of the third embodiment. In the following description, points different from the third embodiment are mainly described.
  • the oil concentration sensor 62 is a sensor for detecting the concentration of oil inside the compressor 1 .
  • a signal regarding the oil concentration measured by the oil concentration sensor is transmitted to the control device 10 .
  • the control device 10 obtains the oil concentration as a detected value from the detected signal value.
  • the control device 10 controls the second expansion valve 57 based on the detected value of the oil concentration.
  • the oil concentration sensor 62 may be a sensor for detecting the state of the liquid, such as a sensor that detects liquid concentration by electrostatic capacitance, a sensor that detects ultrasonic waves, a sensor that detects refractive index, or the like.
  • FIG. 10 is a flow chart showing control of the second expansion valve 57 in the fourth embodiment.
  • the control device 10 determines whether or not the compressor 1 is in operation.
  • the controller 10 determines that the compressor 1 is not in operation (NO in step S11)
  • the process ends.
  • the controller 10 determines that the compressor 1 is in operation (YES in step S11)
  • the process proceeds to step S12.
  • the control device 10 acquires the detection value of the oil concentration sensor 62 in step S12. Next, the control device 10 compares a predetermined reference value and the detected value (step S13). When the control device 10 determines that the detected value is smaller than the reference value (YES in step S13), the opening degree of the second expansion valve 57 is decreased from the current opening degree (step S14), and the process proceeds to step S11. do. When the control device 10 determines that the detected value is equal to or greater than the reference value (NO in step S13), it increases the degree of opening of the second expansion valve 57 from the current degree of opening (step S15), and performs the processing of step S11. to
  • the control device 10 may increase or decrease the degree of opening of the second expansion valve 57 in predetermined steps.
  • the control device 10 may end the opening degree adjustment process when the opening degree of the second expansion valve 57 reaches a predetermined minimum opening degree or a predetermined maximum opening degree.
  • the detected value becomes smaller than the reference value during unstable operation such as when the compressor 1 is started.
  • the degree of opening of the second expansion valve 57 is reduced from the current degree of opening.
  • the pressure drop at the second expansion valve 57 increases.
  • the pressure difference between the inlet and the outlet of the outflow pipe 53 can be increased without increasing the size of the accumulator 5B, and the flow rate of oil flowing into the oil return portion 54 is increased.
  • the refrigeration cycle device 100B increases the amount of oil returned to the compressor 1 when oil is required to be returned during unstable operation such as startup, thereby suppressing oil depletion and improving reliability. can.
  • the detected value is equal to or greater than the reference value when the compressor 1 is in stable operation.
  • the degree of opening of the second expansion valve 57 increases from the current degree of opening.
  • the pressure drop at the second expansion valve 57 decreases.
  • the pressure difference between the inlet and the outlet of the outflow pipe 53 can be reduced without increasing the size of the accumulator 5B, and the flow rate of oil flowing into the oil return portion 54 is reduced.
  • the refrigeration cycle device 100B can prevent liquid backflow by reducing the amount of oil returned to the compressor 1 when there is no need to return oil during stable operation, thereby improving reliability and performance. be able to.
  • the pressure loss in the outflow pipe 53 is small during stable operation, so the performance of the entire circuit device can be improved.
  • FIG. 11 is a diagram showing a circuit configuration of a refrigeration cycle apparatus 100C according to Embodiment 5.
  • the refrigerating cycle apparatus 100B of the fifth embodiment has an intake superheat sensor 63 instead of the discharge superheat sensor 61 as a detection sensor in the second heat exchanger 4 and the accumulator 5B.
  • the difference is that it is provided between Other configurations are the same as those of the refrigeration cycle apparatus 100A of the third embodiment.
  • points different from the third embodiment are mainly described.
  • the intake superheat sensor 63 is a sensor for detecting the degree of superheat of the refrigerant sucked into the compressor 1 .
  • the suction superheat is the temperature difference between the temperature of the refrigerant sucked by the compressor 1 (hereinafter also referred to as suction temperature) and the saturated gas temperature corresponding to the pressure of the refrigerant sucked by the compressor (hereinafter also referred to as suction pressure). is the degree of superheat of the refrigerant gas represented by
  • the intake superheat sensor 63 measures the intake temperature and the intake pressure. The measured signal is transmitted to the control device 10 .
  • the controller 10 obtains the degree of suction superheat as a detection value from the detected signal value.
  • the control device 10 controls the second expansion valve 57 based on the detected value of the degree of suction superheat.
  • a differential pressure gauge may be used as the intake superheat sensor 63 .
  • FIG. 12 is a flow chart showing control of the first expansion valve 3 and the second expansion valve 57 in the fifth embodiment.
  • the control device 10 determines whether or not a signal for stopping operation of the compressor 1 transmitted to the control device 10 by user's operation has been received. If the control device 10 determines that the operation stop signal for the compressor 1 has not been received (NO in step S21), the process ends. If the control device 10 determines that it has received the operation stop signal for the compressor 1 (YES in step S21), the process proceeds to step S22.
  • step S22 the control device 10 determines whether or not the compressor 1 is in operation. When the controller 10 determines that the compressor 1 is not in operation (NO in step S22), the process ends. When the controller 10 determines that the compressor 1 is in operation (YES in step S22), the process proceeds to step S23.
  • step S23 the control device 10 acquires the detected value of the degree of suction superheat from the value of the degree of suction superheat sensor 63.
  • step S24 the controller increases the degree of opening of the second expansion valve 57 from the current degree of opening.
  • the control device 10 compares the predetermined reference value and the detected value (step S25). When the control device 10 determines that the detected value is smaller than the reference value (YES in step S25), the opening degree of the first expansion valve 3 is decreased from the current opening degree (step S26), and the process proceeds to step S21. do. If the control device 10 determines that the detected value is equal to or greater than the reference value (NO in step S25), it increases the degree of opening of the first expansion valve 3 from the current degree of opening (step S27), and performs the processing of step S21. Move to
  • step S21 the control device 10 starts counting from the time when the operation stop signal of the compressor 1 is received, increases the count value when proceeding to step S26, and increases the count value when proceeding to step S27. Reset and set the stop flag.
  • the control device 10 may determine that the operation of the compressor 1 has been stopped when the stop flag is set.
  • the control device 10 controls the opening degrees of the first expansion valve 3 and the second expansion valve 57 in the processing from when the stop signal for the compressor 1 is received until the compressor 1 is completely stopped. to adjust. As a result, the degree of suction superheat can be sufficiently improved from when the stop signal for the compressor 1 is received to when the compressor 1 is completely stopped.
  • the control device 10 may increase or decrease the opening degrees of the first expansion valve 3 and the second expansion valve 57 in predetermined steps. When the opening degrees of the first expansion valve 3 and the second expansion valve 57 reach a predetermined minimum opening degree or a predetermined maximum opening degree, the control device 10 ends the opening adjustment process. Just do it.
  • the control device 10 keeps the second expansion valve 57 open during the period from when the stop signal for the compressor 1 is received until the compressor 1 is completely stopped. Increase the opening from the current opening.
  • the accumulator 5B as the degree of opening of the second expansion valve 57 increases, the pressure drop at the second expansion valve 57 decreases.
  • the pressure difference between the inlet and the outlet of the outflow pipe 53 can be reduced without increasing the size of the accumulator 5B, and the flow rate of oil flowing into the oil return portion 54 is reduced.
  • the refrigeration cycle device 100C can improve reliability by accumulating oil necessary for start-up in the container 51 of the accumulator 5B when operation is stopped.
  • the control device 10 when the detected value is smaller than the reference value, the control device 10 reduces the opening degree of the first expansion valve 3 from the current opening degree as shown in step S26. Increase the pressure drop across valve 3 . As a result, the degree of suction superheat increases by increasing the dryness of the refrigerant. By increasing the degree of suction superheat, the amount of oil flowing into the accumulator 5B can be increased.
  • the control device 10 increases the degree of opening of the first expansion valve 3 from the current degree of opening as shown in step S27. Reduce the pressure drop at 3. As a result, the dryness of the refrigerant decreases and the degree of suction superheat decreases. As the degree of suction superheat drops, the amount of oil flowing into the accumulator 5B can be reduced.
  • the oil flowing into the compressor 1 at the next start-up is controlled. can be adjusted, and the reliability of the compressor 1 can be improved.
  • FIG. 13 is a diagram showing the circuit configuration of a refrigeration cycle device 100D according to Embodiment 6.
  • a refrigerating cycle device 100 ⁇ /b>D of the sixth embodiment differs from the refrigerating cycle device 100 of the first embodiment in that a four-way valve 6 is provided on the refrigerant discharge side of the compressor 1 .
  • Other configurations are the same as those of the refrigeration cycle apparatus 100 of the first embodiment. In the following description, points different from the first embodiment are mainly described.
  • the four-way valve 6 switches the direction in which the refrigerant discharged from the compressor 1 flows through the flow path by changing between the first state and the second state.
  • the solid line indicated by the four-way valve 6 is the same as the flow path of the refrigeration cycle apparatus 100 of the first embodiment.
  • the control device 10 can switch from the flow path indicated by the solid line to the flow path indicated by the broken line.
  • the refrigerant flows through the compressor 1, the second heat exchanger 4, the first expansion valve 3, the first heat exchanger 2, and the accumulator 5 in this order. circulate.
  • a configuration using such a four-way valve 6 can also be applied to the second to fifth embodiments.
  • the present disclosure relates to an accumulator 5 installed between a second heat exchanger 4 that is an evaporator of a refrigeration cycle device 100 and a refrigerant suction side of a compressor 1 .
  • the accumulator 5 includes a container 51 for storing refrigerant, an inflow pipe 52 for inflowing the refrigerant into the container 51, an outflow pipe 53 for flowing the refrigerant out of the container 51, and an opening for sucking oil. It is provided with an oil return section 54 provided, and a decompression pipe 56 as a decompression device for decompressing the refrigerant.
  • a decompression pipe 56 and an oil return portion 54 are arranged on the outflow pipe 53 in the accumulator 5 .
  • the decompression device is configured with a decompression pipe 56 having a smaller diameter than the outflow pipe.
  • the accumulator 5 is arranged in the order of the decompression pipe 56 and the oil return portion 54 on the outflow pipe 53 with respect to the flow direction of the refrigerant.
  • the oil return portion includes a first oil return portion 54A and a second oil return portion 54B.
  • the decompression device is composed of a decompression pipe 56 having a diameter smaller than that of the outflow pipe 53 .
  • the accumulator 5A is arranged on the outflow pipe 53 in the order of the first oil return portion 54A, the decompression pipe 56, and the second oil return portion 54B with respect to the flow direction of the refrigerant.
  • the decompression device is composed of a second expansion valve 57 whose degree of opening is adjustable.
  • the accumulator 5B is arranged in the order of the second expansion valve 57 and the oil return portion 54 on the outflow pipe 53 with respect to the flow direction of the refrigerant.
  • the present disclosure relates to a refrigeration cycle device 100A including an accumulator 5B.
  • the refrigeration cycle device 100A includes a compressor 1, a first heat exchanger 2, a second heat exchanger 4, a first expansion valve 3, and for measuring the discharge superheat degree of the refrigerant discharged from the compressor 1. and a control device 10 for controlling the degree of opening of the second expansion valve 57 .
  • the second heat exchanger 4 functions as an evaporator, refrigerant flows through the compressor 1, the first heat exchanger 2, the first expansion valve 3, the second heat exchanger 4, and the accumulator 5B in this order.
  • the control device 10 controls the degree of opening of the second expansion valve 57 according to the degree of discharge superheat of the refrigerant obtained from the value of the discharge superheat degree sensor 61 .
  • the present disclosure relates to a refrigeration cycle device 100B having an accumulator 5B.
  • the refrigeration cycle device 100B includes a compressor 1, a first heat exchanger 2, a second heat exchanger 4, a first expansion valve 3, and a second sensor for measuring the state of oil in the compressor 1. and a controller 10 that controls the degree of opening of the second expansion valve 57 .
  • the second heat exchanger 4 functions as an evaporator, refrigerant flows through the compressor 1, the first heat exchanger 2, the first expansion valve 3, the second heat exchanger 4, and the accumulator 5B in this order.
  • the control device 10 controls the degree of opening of the second expansion valve 57 according to the state of the oil detected by the oil concentration sensor 62 .
  • the present disclosure relates to a refrigeration cycle device 100C including an accumulator 5B.
  • the refrigeration cycle device 100C includes a compressor 1, a first heat exchanger 2, a second heat exchanger 4, a first expansion valve 3, and a first heat exchanger for measuring the degree of suction superheat of the refrigerant flowing into the accumulator 5B.
  • An intake superheat sensor 63 as a three-sensor and a control device 10 for controlling the opening degrees of the first expansion valve 3 and the second expansion valve 57 are provided.
  • the second heat exchanger 4 functions as an evaporator, refrigerant flows through the compressor 1, the first heat exchanger 2, the first expansion valve 3, the second heat exchanger 4, and the accumulator 5B in this order.
  • the control device 10 After receiving the stop signal of the compressor 1, the control device 10 increases the degree of opening of the second expansion valve 57 from before the stop of the compressor 1, and increases the suction superheat of the refrigerant obtained from the value of the suction superheat sensor 63.
  • the degree of opening of the first expansion valve 3 is controlled according to the degree.
  • the present disclosure relates to a refrigeration cycle device 100 including an accumulator 5.
  • the refrigeration cycle device 100 includes a compressor 1 , a first heat exchanger 2 , a second heat exchanger 4 and a first expansion valve 3 .
  • the second heat exchanger 4 functions as an evaporator, refrigerant flows through the compressor 1, the first heat exchanger 2, the first expansion valve 3, the second heat exchanger 4, and the accumulator 5 in this order.
  • Refrigerating cycle apparatuses 100 , 100 A, 100 B, and 100 C of the present embodiment can be configured as a refrigerant circuit in which an appropriate amount of oil flows into compressor 1 with small accumulator 5 by providing the above configuration.
  • the accumulator 5 may appropriately change the size of the opening of the oil return portion 54 and the size of the diameter of the decompression pipe according to the flow rate of the refrigerant.
  • Embodiment 2 three or more openings may be formed as the oil return portions.
  • the accumulator 5A may have openings of different sizes for each of the plurality of oil return portions.
  • the accumulator 5 ⁇ /b>A may be provided with a pressure reducing pipe 56 between each of the plurality of oil return portions, or the diameter of each of the plurality of pressure reducing pipes 56 may be changed.
  • the suction superheat sensor 63 is provided between the second heat exchanger 4 and the accumulator 5B.
  • the suction superheat sensor 63 may be provided between the accumulator 5B and the compressor 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

An accumulator (5) comprises: a container (51) that stores refrigerant; an inlet pipe (52) for allowing the refrigerant to flow into the container (51); an outlet pipe (53) for allowing the refrigerant to flow outside the container (51); an oil return unit (54) in which an opening for sucking oil is provided; and a decompression pipe (56) that decompresses the refrigerant. The accumulator (5) is configured by the decompression pipe (56) and oil return unit (54) being arranged on the outlet pipe (53).

Description

アキュムレータおよび冷凍サイクル装置Accumulator and refrigeration cycle equipment
 本開示は、アキュムレータおよび冷凍サイクル装置に関する。 The present disclosure relates to accumulators and refrigeration cycle devices.
 従来、アキュムレータを備えた冷凍サイクル装置が知られている。アキュムレータは、蒸発器と圧縮機との間に設置される。アキュムレータには、蒸発器から流出した冷媒が流入する。アキュムレータに流入する冷媒は、ガス冷媒と混合液とで構成される。混合液には、液冷媒と、圧縮機を潤滑するための油とが含まれる。アキュムレータは、余剰な液冷媒を貯留することにより液冷媒が圧縮機に流入する液バックを防止している。アキュムレータは、油戻し部から返油することにより圧縮機からの油の吐出量の増加による油枯渇を防止している。 A refrigeration cycle device equipped with an accumulator is conventionally known. The accumulator is installed between the evaporator and the compressor. Refrigerant that has flowed out of the evaporator flows into the accumulator. The refrigerant flowing into the accumulator is composed of a gaseous refrigerant and a liquid mixture. The liquid mixture contains liquid refrigerant and oil for lubricating the compressor. The accumulator prevents liquid backflow, in which the liquid refrigerant flows into the compressor, by storing excess liquid refrigerant. The accumulator prevents oil depletion caused by an increase in the amount of oil discharged from the compressor by returning oil from the oil return portion.
 油戻し部は、穴の径を大きくし過ぎると流入流量が増加し液バックが発生する可能性がある。単純に穴の径を小さくした場合には、流入流量が少なくなり過ぎることで返油不足の可能性がある。返油量を大きくするためには、流出配管を長くすること、別途返油のためのストロー管を設けることも考えられるが装置が大型化してしまう。 If the diameter of the hole in the oil return part is too large, the inflow flow rate increases and liquid back may occur. If the diameter of the hole is simply reduced, there is a possibility that the inflow flow rate will be too small, resulting in insufficient oil return. In order to increase the amount of returned oil, it is conceivable to lengthen the outflow pipe or provide a separate straw pipe for returning oil, but this would result in an increase in the size of the device.
 特開2014-203736号公報(特許文献1)には、アキュムレータとしての気液分離装置において、油戻し部としての液戻り孔の開度を調整することにより、混合液の流入割合を調整する混合割合調整装置が設けられている。 Japanese Patent Application Laid-Open No. 2014-203736 (Patent Document 1) discloses a gas-liquid separation device as an accumulator, by adjusting the opening of a liquid return hole as an oil return section, thereby adjusting the inflow ratio of the mixed liquid. A rate adjuster is provided.
特開2014-203736号公報JP 2014-203736 A
 特許文献1の冷凍サイクル装置は、冷媒の過熱状態を抑制するために電動機の駆動により混合割合調整装置に設けられた孔開度調整弁を作動する。このような特許文献1の冷凍サイクル装置は、アキュムレータから圧縮機に流入する混合液の流量を調整できるものの、混合液に対する油量を考慮していないため適量の返油ができないとともに、混合割合調整装置が電動機を備えた大型のものであった。 In the refrigeration cycle device of Patent Document 1, the hole opening degree adjustment valve provided in the mixture ratio adjustment device is operated by driving the electric motor in order to suppress the overheating state of the refrigerant. Although the refrigeration cycle device of Patent Document 1 can adjust the flow rate of the mixed liquid flowing into the compressor from the accumulator, it cannot return an appropriate amount of oil because it does not consider the amount of oil in the mixed liquid, and the mixing ratio can be adjusted. The device was a large one with an electric motor.
 本開示の目的は、圧縮機に適切な量の油を流入することのできる小型のアキュムレータおよび冷凍サイクル装置を提供することである。 An object of the present disclosure is to provide a compact accumulator and refrigeration cycle device that can flow an appropriate amount of oil into the compressor.
 本開示は、冷凍サイクル装置の蒸発器と圧縮機の冷媒吸入側との間に設置するアキュムレータに関する。アキュムレータは、冷媒を貯留する容器と、容器内へ冷媒を流入させるための流入配管と、容器外へ冷媒を流出させるための流出配管と、油を吸引するための開口が設けられた油戻し部と、冷媒を減圧する減圧装置と、を備える。アキュムレータは、流出配管上に減圧装置と、油戻し部とが配置される。 The present disclosure relates to an accumulator installed between an evaporator of a refrigeration cycle device and a refrigerant suction side of a compressor. The accumulator includes a container for storing the refrigerant, an inflow pipe for inflowing the refrigerant into the container, an outflow pipe for flowing the refrigerant out of the container, and an oil return portion provided with an opening for sucking the oil. and a decompression device that decompresses the refrigerant. The accumulator has a pressure reducing device and an oil return on the outflow line.
 本開示によれば、小型のアキュムレータにより圧縮機に適切な量の油を流入することができる。 According to the present disclosure, a small accumulator allows an appropriate amount of oil to flow into the compressor.
実施の形態1における冷凍サイクル装置の回路構成を示す図である。1 is a diagram showing a circuit configuration of a refrigeration cycle device according to Embodiment 1; FIG. 実施の形態1のアキュムレータを説明するための図である。FIG. 2 is a diagram for explaining an accumulator according to Embodiment 1; FIG. 図2のIII-III断面を示す図である。FIG. 3 is a view showing the III-III cross section of FIG. 2; 実施の形態2のアキュムレータを説明するための図である。FIG. 11 is a diagram for explaining an accumulator according to Embodiment 2; FIG. 図4のV-V断面を示す図である。FIG. 5 is a view showing a VV cross section of FIG. 4; 実施の形態3における冷凍サイクル装置の回路構成を示す図である。FIG. 10 is a diagram showing a circuit configuration of a refrigeration cycle apparatus according to Embodiment 3; 実施の形態3のアキュムレータを説明するための図である。FIG. 11 is a diagram for explaining an accumulator according to Embodiment 3; FIG. 実施の形態3における第2膨張弁の制御を示すフローチャートである。10 is a flow chart showing control of a second expansion valve in Embodiment 3. FIG. 実施の形態4における冷凍サイクル装置の回路構成を示す図である。FIG. 10 is a diagram showing a circuit configuration of a refrigeration cycle apparatus according to Embodiment 4; 実施の形態4における第2膨張弁の制御を示すフローチャートである。14 is a flow chart showing control of a second expansion valve in Embodiment 4. FIG. 実施の形態5における冷凍サイクル装置の回路構成を示す図である。FIG. 10 is a diagram showing a circuit configuration of a refrigeration cycle apparatus according to Embodiment 5; 実施の形態5における第1膨張弁および第2膨張弁の制御を示すフローチャートである。14 is a flow chart showing control of a first expansion valve and a second expansion valve in Embodiment 5. FIG. 実施の形態6における冷凍サイクル装置の回路構成を示す図である。FIG. 11 is a diagram showing a circuit configuration of a refrigeration cycle apparatus according to Embodiment 6;
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本開示の範囲は必ずしもその個数、量などに限定されない。同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。実施の形態における構成を適宜組み合わせて用いることは当初から予定されている。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the embodiments described below, when referring to the number, amount, etc., the scope of the present disclosure is not necessarily limited to the number, amount, etc., unless otherwise specified. The same reference numbers are given to the same parts and equivalent parts, and redundant description may not be repeated. It is planned from the beginning to use the configurations in the embodiments in combination as appropriate.
 実施の形態1.
 <冷凍サイクル装置100の回路構成>
 図1は、実施の形態1における冷凍サイクル装置100の回路構成を示す図である。冷凍サイクル装置100は、圧縮機1と、第1熱交換器2と、第2熱交換器4と、第1膨張弁3と、アキュムレータ5と、制御装置10とを備える。
Embodiment 1.
<Circuit Configuration of Refrigeration Cycle Device 100>
FIG. 1 is a diagram showing a circuit configuration of a refrigeration cycle apparatus 100 according to Embodiment 1. FIG. A refrigeration cycle device 100 includes a compressor 1 , a first heat exchanger 2 , a second heat exchanger 4 , a first expansion valve 3 , an accumulator 5 , and a control device 10 .
 冷凍サイクル装置100は、暖房運転時において、圧縮機1、第1熱交換器2、第1膨張弁3、第2熱交換器4、アキュムレータ5の順に冷媒を循環させる。 The refrigeration cycle device 100 circulates the refrigerant in the order of the compressor 1, the first heat exchanger 2, the first expansion valve 3, the second heat exchanger 4, and the accumulator 5 during the heating operation.
 圧縮機1は、冷媒を吸入し圧縮して吐出する。第1熱交換器2は、凝縮器として機能する。第1熱交換器2は、図示しないファンを用いて空気と冷媒との間で熱交換し、冷媒を凝縮する。第1膨張弁3は、第1熱交換器2と第2熱交換器4との間に配置され、冷媒を膨張または減圧させる。第1膨張弁3は、たとえば、電子膨張弁等の開度を任意に制御することができる装置である。第1膨張弁3の開度は、制御装置10により制御される。 The compressor 1 sucks, compresses, and discharges the refrigerant. The first heat exchanger 2 functions as a condenser. The first heat exchanger 2 uses a fan (not shown) to exchange heat between the air and the refrigerant to condense the refrigerant. The first expansion valve 3 is arranged between the first heat exchanger 2 and the second heat exchanger 4 and expands or decompresses the refrigerant. The first expansion valve 3 is a device capable of arbitrarily controlling the degree of opening, such as an electronic expansion valve. The degree of opening of the first expansion valve 3 is controlled by the controller 10 .
 第2熱交換器4は、蒸発器として機能する。第2熱交換器4は、第1膨張弁3で減圧された低圧の液冷媒を蒸発する。第2熱交換器4で蒸発された気液二相冷媒は、アキュムレータ5に流入する。冷凍サイクル装置100の冷媒回路には、冷凍機油(以下、単に油とも称する)が封入されている。圧縮機1と第2熱交換器4との間に設置されるアキュムレータ5は、ガス冷媒と、油および液冷媒の混合液とで構成される気液二相冷媒を気液分離する。アキュムレータ5を通過したガス冷媒と油量が調整された混合液とは、圧縮機1へ戻る。 The second heat exchanger 4 functions as an evaporator. The second heat exchanger 4 evaporates the low-pressure liquid refrigerant decompressed by the first expansion valve 3 . The gas-liquid two-phase refrigerant evaporated in the second heat exchanger 4 flows into the accumulator 5 . A refrigerant circuit of the refrigerating cycle device 100 is filled with refrigerating machine oil (hereinafter also simply referred to as oil). An accumulator 5 installed between the compressor 1 and the second heat exchanger 4 separates a gas-liquid two-phase refrigerant composed of a gas refrigerant and a mixture of oil and liquid refrigerant. After passing through the accumulator 5 , the gas refrigerant and the mixed liquid whose oil amount has been adjusted return to the compressor 1 .
 制御装置10は、CPU(Central Processing Unit)11と、メモリ12(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入力するための図示しない入出力装置等を含んで構成される。CPU11は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置10の処理手順が記されたプログラムである。制御装置10は、これらのプログラムに従って、冷凍サイクル装置100における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control device 10 includes a CPU (Central Processing Unit) 11, a memory 12 (ROM (Read Only Memory) and RAM (Random Access Memory)), and an input/output device (not shown) for inputting various signals. be done. The CPU 11 expands a program stored in the ROM into the RAM or the like and executes it. The program stored in the ROM is a program in which processing procedures of the control device 10 are described. The control device 10 controls each device in the refrigeration cycle device 100 according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
 <アキュムレータ5の構成>
 図2は、実施の形態1のアキュムレータ5を説明するための図である。アキュムレータ5は、容器51と、流入配管52と、流出配管53と、油戻し部54と、減圧装置としての減圧配管56とを備える。
<Configuration of accumulator 5>
FIG. 2 is a diagram for explaining the accumulator 5 according to the first embodiment. The accumulator 5 includes a container 51, an inflow pipe 52, an outflow pipe 53, an oil return portion 54, and a pressure reducing pipe 56 as a pressure reducing device.
 容器51は、液冷媒と油との混合液を溜める。流入配管52は、ガス冷媒と混合液とを容器51内に流入するために用いられる。流入配管52は、容器51内の壁面に向かい先端が曲がった形状である。流出配管53は、U字状に曲げられ、流出配管53の入口からはガス冷媒と混合液とのうち、ガス冷媒が流入する。流出配管53の出口からは、ガス冷媒と油量が調整された混合液とが流出する。流出配管53は、ガス冷媒の流入端部が容器51内において、油戻し部54および減圧配管56よりも高い位置にあり、ガス冷媒の流出端部が容器51外に突き出した位置にある形状である。 The container 51 stores a mixed liquid of liquid refrigerant and oil. The inflow pipe 52 is used to flow the gas refrigerant and the liquid mixture into the container 51 . The inflow pipe 52 has a shape in which the tip is bent toward the wall surface inside the container 51 . The outflow pipe 53 is bent in a U shape, and the gas refrigerant flows in from the inlet of the outflow pipe 53, out of the gas refrigerant and the liquid mixture. From the outlet of the outflow pipe 53, the gas refrigerant and the mixed liquid in which the amount of oil is adjusted flow out. The outflow pipe 53 has a shape in which the inflow end of the gas refrigerant is positioned higher than the oil return portion 54 and the decompression pipe 56 in the container 51 , and the outflow end of the gas refrigerant protrudes outside the container 51 . be.
 油戻し部54は、流出配管53の円弧部に形成される油を吸引するための開口である。アキュムレータ5は、油戻し部54から返油することにより圧縮機1へ油(冷凍機油)が少量の液冷媒ともに混合液として還り、圧縮機1の能力低下や信頼性低下となる液バックを防ぐ。流出配管53の出口からは、ガス冷媒と油とが流出する。油戻し部54の開口には、ごみを除去するための網目状のカバーが設けられているが説明上、図示を省略している。 The oil return portion 54 is an opening for sucking oil formed in the arc portion of the outflow pipe 53 . The accumulator 5 returns the oil (refrigerating machine oil) to the compressor 1 as a mixed liquid together with a small amount of liquid refrigerant by returning the oil from the oil return portion 54, thereby preventing the liquid backflow that lowers the performance and reliability of the compressor 1. . The gas refrigerant and oil flow out from the outlet of the outflow pipe 53 . The opening of the oil return portion 54 is provided with a mesh-like cover for removing dust, but the illustration is omitted for the sake of explanation.
 減圧配管56は、流出配管53の入口から油戻し部54までの間に設けられ、流出配管53よりも径が小さくなっている。減圧配管56は、ガス冷媒を減圧する。減圧配管56は、流出配管53の先端部に設けると先端部での流速が上がり、気液分離の効率が悪くなるが、流出配管53の途中に設けることで気液分離の効率を低下させないようにできる。 The decompression pipe 56 is provided between the inlet of the outflow pipe 53 and the oil return portion 54 and has a diameter smaller than that of the outflow pipe 53 . The decompression pipe 56 decompresses the gas refrigerant. If the decompression pipe 56 is provided at the tip of the outflow pipe 53, the flow velocity at the tip increases and the efficiency of gas-liquid separation deteriorates. can be done.
 図3は、図2のIII-III断面を示す図である。図3に示すように、流出配管53には、流出配管53の径に対して径の小さい穴が形成された油戻し部54が配置されている。流出配管53内部の圧力をP1、流出配管53外部の圧力をP2、油戻し部54における圧力をΔPとすると、P2>P1の関係がある。油戻し部54に流れる流量は、P2-P1=ΔPとなる関係で決定される。 FIG. 3 is a diagram showing the III-III cross section of FIG. As shown in FIG. 3 , the outflow pipe 53 is provided with an oil return portion 54 formed with a hole having a smaller diameter than the diameter of the outflow pipe 53 . Assuming that the pressure inside the outflow pipe 53 is P1, the pressure outside the outflow pipe 53 is P2, and the pressure in the oil return portion 54 is ΔP, there is a relationship of P2>P1. The flow rate flowing through the oil return portion 54 is determined by the relationship of P2-P1=ΔP.
 <冷媒の流れについて>
 実施の形態1における冷媒の流れについて説明する。第2熱交換器4から流出したガス冷媒および液冷媒と油との混合液は、アキュムレータ5に流入する。ガス冷媒および混合液は、アキュムレータ5の流入配管52を通り、容器51内に流入する。ガス冷媒および混合液は、気液分離され、ガス冷媒が流出配管53に流入し、混合液が容器51内に溜まる。流出配管53に流入したガス冷媒は、減圧配管56を通過する際に圧力が低下しながら流れる。圧力低下は、圧力損失と言い換えることもできる。
<Refrigerant flow>
The flow of refrigerant in Embodiment 1 will be described. The mixture of gas refrigerant and liquid refrigerant and oil that has flowed out of the second heat exchanger 4 flows into the accumulator 5 . The gas refrigerant and mixed liquid pass through the inflow pipe 52 of the accumulator 5 and flow into the container 51 . The gas refrigerant and the mixed liquid are gas-liquid separated, the gas refrigerant flows into the outflow pipe 53 , and the mixed liquid accumulates in the container 51 . The gas refrigerant that has flowed into the outflow pipe 53 flows while the pressure decreases when passing through the decompression pipe 56 . A pressure drop can also be rephrased as a pressure loss.
 容器51内に溜まる混合液は、油戻し部54から流出配管53へ流入する。アキュムレータ5では、容器51内の油戻し部54の入口圧力であるP2と流出配管53内部の圧力P1との圧力差ΔPにしたがって、油戻し部54から混合液の下部分の油が流入し、ガス冷媒と合流する。合流したガス冷媒と油とは、流出配管53を通りアキュムレータ5から流出し、圧縮機1へ流入する。 The mixed liquid accumulated in the container 51 flows into the outflow pipe 53 from the oil return portion 54 . In the accumulator 5, according to the pressure difference ΔP between the inlet pressure P2 of the oil return portion 54 in the container 51 and the pressure P1 inside the outflow pipe 53, the oil in the lower part of the mixture flows from the oil return portion 54, Merges with gas refrigerant. The combined gas refrigerant and oil flow out of the accumulator 5 through the outflow pipe 53 and into the compressor 1 .
 油戻し部54は、穴の径を大きくし過ぎると流入流量が増加し液バックが発生する可能性がある。単純に穴の径を小さくした場合には、流入流量が少なくなり過ぎることで返油不足の可能性がある。返油量を大きくするためには、流出配管53の端部から穴までの距離を長くすること、別途返油のためのストロー管を設けることも考えられるが装置が大型化してしまう。 If the diameter of the hole of the oil return portion 54 is made too large, the inflow flow rate increases and liquid back may occur. If the diameter of the hole is simply reduced, there is a possibility that the inflow flow rate will be too small, resulting in insufficient oil return. In order to increase the amount of returned oil, it is possible to lengthen the distance from the end of the outflow pipe 53 to the hole, or to separately provide a straw pipe for returning oil, but this would increase the size of the device.
 本実施の形態のアキュムレータ5は、流出配管53の途中に冷媒の流れ方向に対して減圧配管56、油戻し部54の順に配置されている。このため、アキュムレータ5を大型化せずに差圧を大きくすることができ、適切な量の油を圧縮機1へと流入することができる。 The accumulator 5 of the present embodiment is arranged in the middle of the outflow pipe 53 in the order of the decompression pipe 56 and the oil return portion 54 with respect to the flow direction of the refrigerant. Therefore, the differential pressure can be increased without increasing the size of the accumulator 5 , and an appropriate amount of oil can flow into the compressor 1 .
 実施の形態2.
 <アキュムレータ5Aの構成>
 図4は、実施の形態2のアキュムレータ5Aを説明するための図である。実施の形態2のアキュムレータ5Aは、実施の形態1のアキュムレータ5と比較すると2つの油戻し部として、第1油戻し部54Aと、第2戻し部54Bとが形成され、減圧配管56が2つの油戻し部の間に配置されている点が異なっている。その他の構成は、実施の形態1のアキュムレータ5と同様である。以下の説明では、実施の形態1と異なる点を主に説明する。
Embodiment 2.
<Configuration of accumulator 5A>
FIG. 4 is a diagram for explaining the accumulator 5A of the second embodiment. Compared with the accumulator 5 of Embodiment 1, the accumulator 5A of Embodiment 2 has two oil return portions, namely, a first oil return portion 54A and a second oil return portion 54B. It is different in that it is arranged between the oil return parts. Other configurations are the same as those of the accumulator 5 of the first embodiment. In the following description, points different from the first embodiment are mainly described.
 第1油戻し部54Aおよび第2油戻し部54Bは、流出配管53の円弧部に形成される油を吸引するための開口である。アキュムレータ5Aは、第1油戻し部54Aおよび第2油戻し部54Bから返油することにより圧縮機1へ油が還り、圧縮機1の能力低下や信頼性低下となる液バックを防ぐ。流出配管53の出口からは、ガス冷媒と油とが流出する。 The first oil return portion 54A and the second oil return portion 54B are openings formed in the arc portion of the outflow pipe 53 for sucking oil. The accumulator 5A returns oil to the compressor 1 by returning oil from the first oil return portion 54A and the second oil return portion 54B, and prevents liquid backflow that causes deterioration in performance and reliability of the compressor 1. The gas refrigerant and oil flow out from the outlet of the outflow pipe 53 .
 減圧配管56は、第1油戻し部54Aと第2油戻し部54Bとの間に設けられ、流出配管53よりも径が小さくなっている。減圧配管56は、ガス冷媒と混合液とを減圧する。 The decompression pipe 56 is provided between the first oil return portion 54A and the second oil return portion 54B, and has a smaller diameter than the outflow pipe 53. The decompression pipe 56 decompresses the gas refrigerant and the liquid mixture.
 図5は、図4のV-V断面を示す図である。図5に示すように、流出配管53には、流出配管53の径に対して径の小さい第2油戻し部54Bが形成されている。流出配管53内部の圧力をP1’、流出配管53外部の圧力をP2’、第2油戻し部54Bにおける圧力をΔP’とすると、P2’>P1’の関係がある。第2油戻し部54Bに流れる流量は、P2’-P1’=ΔP’となる関係で決定される。 FIG. 5 is a diagram showing a VV cross section in FIG. As shown in FIG. 5, the outflow pipe 53 is formed with a second oil return portion 54B having a diameter smaller than that of the outflow pipe 53 . Assuming that the pressure inside the outflow pipe 53 is P1', the pressure outside the outflow pipe 53 is P2', and the pressure in the second oil return portion 54B is ΔP', there is a relationship of P2'>P1'. The flow rate flowing through the second oil return portion 54B is determined by the relationship of P2'-P1'=.DELTA.P'.
 図4のIII-III断面における第1油戻し部54Aは、図3の油戻し部54と同じである。流出配管53内部の圧力をP1、流出配管外部の圧力をP2、第1油戻し部54Aにおける圧力をΔPとすると、P2>P1の関係がある。第1油戻し部54Aに流れる流量は、P2-P1=ΔPとなる関係で決定される。 The first oil return portion 54A in the III-III cross section of FIG. 4 is the same as the oil return portion 54 of FIG. Assuming that the pressure inside the outflow pipe 53 is P1, the pressure outside the outflow pipe is P2, and the pressure in the first oil return portion 54A is ΔP, there is a relationship of P2>P1. The flow rate flowing through the first oil return portion 54A is determined by the relationship of P2-P1=ΔP.
 アキュムレータ5Aでは、P2≒P2’の関係、減圧配管56によりP1>P1’の関係がある。このため、第2油戻し部54Bを流れる流量は、第1油戻し部54Aを流れる流量よりも大きい。 In the accumulator 5A, there is a relationship of P2≈P2' and a relationship of P1>P1' due to the decompression pipe 56. Therefore, the flow rate through the second oil return portion 54B is greater than the flow rate through the first oil return portion 54A.
 <冷媒の流れについて>
 実施の形態2における冷媒の流れについて説明する。第2熱交換器4から流出したガス冷媒および液冷媒と油との混合液は、アキュムレータ5Aに流入する。ガス冷媒および混合液は、アキュムレータ5Aの流入配管52を通り、容器51内に流入する。ガス冷媒および混合液は、気液分離され、ガス冷媒が流出配管53に流入し、混合液が容器51内に溜まる。流出配管53に流入したガス冷媒は、減圧配管56を通過する際に圧力が低下しながら流れる。
<Refrigerant flow>
The flow of refrigerant in Embodiment 2 will be described. The mixture of the gas refrigerant and the liquid refrigerant and the oil that has flowed out of the second heat exchanger 4 flows into the accumulator 5A. The gas refrigerant and mixed liquid flow into the container 51 through the inflow pipe 52 of the accumulator 5A. The gas refrigerant and the mixed liquid are gas-liquid separated, the gas refrigerant flows into the outflow pipe 53 , and the mixed liquid accumulates in the container 51 . The gas refrigerant that has flowed into the outflow pipe 53 flows while the pressure decreases when passing through the decompression pipe 56 .
 容器51内に溜まる混合液は、第1油戻し部54Aから流出配管53へ流入する。アキュムレータ5Aでは、容器51内の第1油戻し部54Aの入口圧力であるP2と流出配管53内部の圧力P1との圧力差ΔPにしたがって、第1油戻し部54Aから混合液の下部分の油が流入し、ガス冷媒と合流する。合流したガス冷媒と油とは、減圧配管56を通過する際に圧力が低下しながら流れる。 The liquid mixture accumulated in the container 51 flows into the outflow pipe 53 from the first oil return portion 54A. In the accumulator 5A, according to the pressure difference ΔP between the pressure P2, which is the inlet pressure of the first oil return portion 54A in the container 51, and the pressure P1 inside the outflow pipe 53, the oil in the lower part of the mixture is discharged from the first oil return portion 54A. flows in and joins the gas refrigerant. The merged gas refrigerant and oil flow while the pressure decreases when passing through the decompression pipe 56 .
 その後、容器51内に溜まる混合液は、第2油戻し部54Bから流出配管53へ流入する。混合液は、容器51内の第2油戻し部54Bの入口圧力であるP2’と流出配管53内部の圧力P1’との圧力差ΔP’にしたがって、第2油戻し部54Bから混合液の下部分の油が流入する。合流したガス冷媒と油とは、流出配管53を通りアキュムレータ5から流出し、圧縮機1へ流入する。 After that, the mixed liquid accumulated in the container 51 flows into the outflow pipe 53 from the second oil return portion 54B. The liquid mixture flows from the second oil return section 54B to the bottom of the liquid mixture according to the pressure difference ΔP' between the pressure P2' which is the inlet pressure of the second oil return section 54B in the container 51 and the pressure P1' inside the outflow pipe 53. Some oil will flow in. The combined gas refrigerant and oil flow out of the accumulator 5 through the outflow pipe 53 and into the compressor 1 .
 アキュムレータ5Aは、流出配管53の途中に冷媒の流れ方向に対して第1油戻し部54A、減圧配管56、第2油戻し部54Bの順に配置されている。このため、冷媒回路内の冷媒流量が小さいときは、第1油戻し部54Aへの流入流量を低下させ、液バックを抑制させ性能を向上させることができる。冷媒回路内の冷媒流量が大きいときは、第1油戻し部54Aと第2戻し部54Bとで返油することが可能となり信頼性を向上させることができる。このように、アキュムレータ5Aを大型化せずに適切な量の油を圧縮機1へと流入することができる。 The accumulator 5A is arranged in the middle of the outflow pipe 53 in the order of the first oil return portion 54A, the decompression pipe 56, and the second oil return portion 54B with respect to the flow direction of the refrigerant. Therefore, when the refrigerant flow rate in the refrigerant circuit is small, the inflow flow rate to the first oil return portion 54A is reduced, liquid backflow is suppressed, and performance can be improved. When the flow rate of refrigerant in the refrigerant circuit is large, oil can be returned by the first oil return portion 54A and the second oil return portion 54B, thereby improving reliability. Thus, an appropriate amount of oil can flow into the compressor 1 without enlarging the accumulator 5A.
 実施の形態3.
 <冷凍サイクル装置100Aの回路構成>
 図6は、実施の形態3における冷凍サイクル装置100Aの回路構成を示す図である。実施の形態3の冷凍サイクル装置100Aは、実施の形態1の冷凍サイクル装置100と比較すると、アキュムレータ5がアキュムレータ5Bに変更され、検知センサとして吐出過熱度センサ61が圧縮機1と第1熱交換器2との間に設けられている点が異なっている。その他の構成は、実施の形態1の冷凍サイクル装置100と同様である。以下の説明では、実施の形態1と異なる点を主に説明する。
Embodiment 3.
<Circuit Configuration of Refrigeration Cycle Device 100A>
FIG. 6 is a diagram showing a circuit configuration of a refrigeration cycle apparatus 100A according to Embodiment 3. As shown in FIG. Compared with the refrigerating cycle device 100 of the first embodiment, the refrigerating cycle device 100A of the third embodiment has an accumulator 5B instead of the accumulator 5, and a discharge superheat sensor 61 serving as a detection sensor performs first heat exchange with the compressor 1. The point provided between the vessel 2 is different. Other configurations are the same as those of the refrigeration cycle apparatus 100 of the first embodiment. In the following description, points different from the first embodiment are mainly described.
 吐出過熱度センサ61は、圧縮機1から吐出される冷媒の過熱度を検出するためのセンサである。吐出過熱度とは、圧縮機1が吐出する冷媒の温度(以下、吐出温度とも称する)と圧縮機が吐出する冷媒の圧力(以下、吐出圧力とも称する)に対応する飽和ガス温度との温度差で表される冷媒ガスの過熱度のことである。吐出過熱度センサ61は、吐出温度と吐出圧力とを計測する。計測した信号は、制御装置10へ送信される。制御装置10は、検出した信号値から吐出過熱度を検知値として求める。吐出過熱度センサ61として差圧計を用いるようにしてもよい。 The discharge superheat sensor 61 is a sensor for detecting the degree of superheat of the refrigerant discharged from the compressor 1 . The discharge superheat is the temperature difference between the temperature of the refrigerant discharged by the compressor 1 (hereinafter also referred to as discharge temperature) and the saturated gas temperature corresponding to the pressure of the refrigerant discharged by the compressor (hereinafter also referred to as discharge pressure). is the degree of superheat of the refrigerant gas represented by A discharge superheat sensor 61 measures the discharge temperature and the discharge pressure. The measured signal is transmitted to the control device 10 . The controller 10 obtains the degree of discharge superheat as a detection value from the detected signal value. A differential pressure gauge may be used as the discharge superheat sensor 61 .
 <アキュムレータ5Bの構成>
 図7は、実施の形態3のアキュムレータ5Bを説明するための図である。実施の形態3のアキュムレータ5Bは、実施の形態1のアキュムレータ5と比較すると油戻し部54の位置と、減圧装置として減圧配管56の代わりに第2膨張弁57が配置されている点とが異なっている。その他の構成は、実施の形態1のアキュムレータ5と同様である。以下の説明では、実施の形態1と異なる点を主に説明する。
<Configuration of accumulator 5B>
FIG. 7 is a diagram for explaining the accumulator 5B of the third embodiment. The accumulator 5B of the third embodiment differs from the accumulator 5 of the first embodiment in that the position of the oil return portion 54 and that a second expansion valve 57 is arranged instead of the pressure reducing pipe 56 as a pressure reducing device. ing. Other configurations are the same as those of the accumulator 5 of the first embodiment. In the following description, points different from the first embodiment are mainly described.
 油戻し部54は、流出配管53の円弧部の中央付近に形成される油を吸引するための開口である。第2膨張弁57は、流出配管53の入口から油戻し部54までの間に設けられ、流出配管53から流入するガス冷媒を減圧する。第2膨張弁57は、冷媒回路内を流れる流量に応じて開度を調整することができる。図6に示すように、制御装置10は、吐出過熱度の検知値に基づき第2膨張弁57の開度を制御する。 The oil return portion 54 is an opening for sucking oil formed near the center of the arc portion of the outflow pipe 53 . The second expansion valve 57 is provided between the inlet of the outflow pipe 53 and the oil return portion 54 and reduces the pressure of the gas refrigerant flowing in from the outflow pipe 53 . The second expansion valve 57 can adjust the degree of opening in accordance with the flow rate flowing through the refrigerant circuit. As shown in FIG. 6, the control device 10 controls the degree of opening of the second expansion valve 57 based on the detected value of the degree of discharge superheat.
 <第2膨張弁57の制御について>
 図8は、実施の形態3における第2膨張弁57の制御を示すフローチャートである。図8に示すように、制御装置10は、ステップS1において、圧縮機1が運転中であるか否かを判定する。制御装置10は、圧縮機1が運転中でないと判定した場合(ステップS1でNO)は、処理を終了する。制御装置10は、圧縮機1が運転中あると判定した場合(ステップS1でYES)は、ステップS2の処理へ移行する。
<Regarding control of the second expansion valve 57>
FIG. 8 is a flow chart showing control of the second expansion valve 57 in the third embodiment. As shown in FIG. 8, the control device 10 determines whether or not the compressor 1 is in operation in step S1. When the controller 10 determines that the compressor 1 is not in operation (NO in step S1), the process ends. When the controller 10 determines that the compressor 1 is in operation (YES in step S1), the process proceeds to step S2.
 制御装置10は、ステップS2において、吐出過熱度センサ61の値から吐出過熱度の検知値を取得する。次いで、制御装置10は、予め定められている基準値と検知値とを比較する(ステップS3)。制御装置10は、検知値が基準値より小さいと判定した場合(ステップS3でYES)、第2膨張弁57の開度を現在の開度より減少させ(ステップS4)、ステップS1の処理へ移行する。制御装置10は、検知値が基準値以上であると判定した場合(ステップS3でNO)は、第2膨張弁57の開度を現在の開度より増加させ(ステップS5)、ステップS1の処理へ移行する。 The controller 10 acquires the detected value of the discharge superheat from the value of the discharge superheat sensor 61 in step S2. Next, control device 10 compares a predetermined reference value with the detected value (step S3). When the control device 10 determines that the detected value is smaller than the reference value (YES in step S3), it reduces the degree of opening of the second expansion valve 57 from the current degree of opening (step S4), and proceeds to the process of step S1. do. When the control device 10 determines that the detected value is equal to or greater than the reference value (NO in step S3), it increases the degree of opening of the second expansion valve 57 from the current degree of opening (step S5), and performs the processing of step S1. Move to
 制御装置10は、第2膨張弁57の開度を予め定められた段階ごとに増減させるようにすればよい。制御装置10は、第2膨張弁57の開度が予め定められた最小の開度あるいは予め定められた最大の開度となったときに開度の調整処理を終了すればよい。 The control device 10 may increase or decrease the degree of opening of the second expansion valve 57 in predetermined steps. The control device 10 may end the opening degree adjustment process when the opening degree of the second expansion valve 57 reaches a predetermined minimum opening degree or a predetermined maximum opening degree.
 <冷媒の流れについて>
 実施の形態3における冷媒の流れについて説明する。第2熱交換器4から流出したガス冷媒および液冷媒と油との混合液は、アキュムレータ5Bに流入する。ガス冷媒および混合液は、アキュムレータ5Bの流入配管52を通り、容器51内に流入する。ガス冷媒および混合液は、気液分離され、ガス冷媒が流出配管53に流入し、混合液が容器51内に溜まる。流出配管53に流入したガス冷媒は、第2膨張弁57を通過する際に圧力が低下しながら流れる。
<Refrigerant flow>
The flow of refrigerant in Embodiment 3 will be described. The mixture of gas refrigerant and liquid refrigerant and oil that has flowed out of the second heat exchanger 4 flows into the accumulator 5B. The gas refrigerant and mixed liquid flow into the container 51 through the inflow pipe 52 of the accumulator 5B. The gas refrigerant and the mixed liquid are gas-liquid separated, the gas refrigerant flows into the outflow pipe 53 , and the mixed liquid accumulates in the container 51 . The gas refrigerant that has flowed into the outflow pipe 53 flows while the pressure decreases when passing through the second expansion valve 57 .
 容器51内に溜まる混合液は、油戻し部54から流出配管53へ流入する。アキュムレータ5では、容器51内の油戻し部54の入口圧力であるP2と流出配管53内部の圧力P1との圧力差ΔPにしたがって、油戻し部54から混合液の下部分の油が流入し、ガス冷媒と合流する。合流したガス冷媒と油とは、流出配管53を通りアキュムレータ5から流出し、圧縮機1へ流入する。 The mixed liquid accumulated in the container 51 flows into the outflow pipe 53 from the oil return portion 54 . In the accumulator 5, according to the pressure difference ΔP between the inlet pressure P2 of the oil return portion 54 in the container 51 and the pressure P1 inside the outflow pipe 53, the oil in the lower part of the mixture flows from the oil return portion 54, Merges with gas refrigerant. The combined gas refrigerant and oil flow out of the accumulator 5 through the outflow pipe 53 and into the compressor 1 .
 <起動時などの安定していない運転時について>
 冷凍サイクル装置100Aにおいて、圧縮機1の起動時などの安定していない運転時には、検知値が基準値よりも小さくなる。この場合、図8のステップS4に示すように、第2膨張弁57の開度が現在の開度より減少する。アキュムレータ5Bにおいては、第2膨張弁57の開度が減少することにより、第2膨張弁57での圧力低下が大きくなる。
<About unstable operation such as startup>
In the refrigeration cycle apparatus 100A, the detected value becomes smaller than the reference value during unstable operation such as when the compressor 1 is started. In this case, as shown in step S4 in FIG. 8, the degree of opening of the second expansion valve 57 is decreased from the current degree of opening. In the accumulator 5B, as the degree of opening of the second expansion valve 57 decreases, the pressure drop at the second expansion valve 57 increases.
 これにより、冷凍サイクル装置100Aでは、アキュムレータ5Bを大型化せずに流出配管53の入口と出口とで圧力差を大きくすることができ、油戻し部54への油の流入流量が増加する。冷凍サイクル装置100Aは、起動時などの安定していない運転時において返油が必要なとき、圧縮機1への返油量を多くすることで油枯渇を抑制し、信頼性を向上させることができる。 As a result, in the refrigeration cycle device 100A, the pressure difference between the inlet and outlet of the outflow pipe 53 can be increased without enlarging the accumulator 5B, and the flow rate of oil flowing into the oil return portion 54 is increased. The refrigeration cycle device 100A can suppress oil depletion by increasing the amount of oil returned to the compressor 1 and improve reliability when oil return is required during unstable operation such as startup. can.
 <安定運転時について>
 冷凍サイクル装置100Aにおいて、圧縮機1の安定運転時には、検知値が基準値以上となる。この場合、図8のステップS5に示すように、第2膨張弁57の開度が現在の開度より増加する。アキュムレータ5Bにおいては、第2膨張弁57の開度が増加することにより、第2膨張弁57での圧力低下が小さくなる。
<About stable operation>
In the refrigeration cycle apparatus 100A, the detected value is equal to or greater than the reference value when the compressor 1 is in stable operation. In this case, as shown in step S5 of FIG. 8, the degree of opening of the second expansion valve 57 increases from the current degree of opening. In the accumulator 5B, as the degree of opening of the second expansion valve 57 increases, the pressure drop at the second expansion valve 57 decreases.
 これにより、冷凍サイクル装置100Aでは、アキュムレータ5Bを大型化せずに流出配管53の入口と出口とで圧力差を小さくすることができ、油戻し部54への油の流入流量が減少する。冷凍サイクル装置100Aは、安定運転時において返油の必要がないとき、圧縮機1への返油量を少なくすることで液バックを防ぐことができ、信頼性の向上と性能の改善とを得ることができる。冷凍サイクル装置100Aでは、安定運転時に流出配管53における圧力損失が小さくなるため、回路装置全体の性能を改善することができる。 As a result, in the refrigeration cycle device 100A, the pressure difference between the inlet and outlet of the outflow pipe 53 can be reduced without increasing the size of the accumulator 5B, and the flow rate of oil flowing into the oil return portion 54 is reduced. The refrigeration cycle device 100A can prevent liquid backflow by reducing the amount of oil returned to the compressor 1 when there is no need to return oil during stable operation, thereby improving reliability and performance. be able to. In the refrigeration cycle device 100A, the pressure loss in the outflow pipe 53 is small during stable operation, so the performance of the entire circuit device can be improved.
 実施の形態4.
 <冷凍サイクル装置100Bの回路構成>
 図9は、実施の形態4における冷凍サイクル装置100Bの回路構成を示す図である。実施の形態4の冷凍サイクル装置100Bは、実施の形態3の冷凍サイクル装置100Aと比較すると、検知センサとして吐出過熱度センサ61の代わりに油濃度センサ62が圧縮機1内に設けられている点が異なっている。その他の構成は、実施の形態3の冷凍サイクル装置100Aと同様である。以下の説明では、実施の形態3と異なる点を主に説明する。
Embodiment 4.
<Circuit Configuration of Refrigeration Cycle Device 100B>
FIG. 9 is a diagram showing a circuit configuration of a refrigeration cycle device 100B according to Embodiment 4. As shown in FIG. A refrigerating cycle apparatus 100B of the fourth embodiment differs from the refrigerating cycle apparatus 100A of the third embodiment in that an oil concentration sensor 62 is provided in the compressor 1 instead of the discharge superheat sensor 61 as a detection sensor. is different. Other configurations are the same as those of the refrigeration cycle apparatus 100A of the third embodiment. In the following description, points different from the third embodiment are mainly described.
 油濃度センサ62は、圧縮機1内の油の濃度を検出するためのセンサである。油濃度センサで計測した油濃度に関する信号は、制御装置10へ送信される。制御装置10は、検出した信号値から油濃度を検知値として求める。制御装置10は、油濃度の検知値に基づき第2膨張弁57を制御する。油濃度センサ62は、静電容量により液体濃度を検知するセンサ、超音波を検知するセンサ、屈折率を検知するセンサ等の液体の状態を検出するためのセンサを用いればよい。 The oil concentration sensor 62 is a sensor for detecting the concentration of oil inside the compressor 1 . A signal regarding the oil concentration measured by the oil concentration sensor is transmitted to the control device 10 . The control device 10 obtains the oil concentration as a detected value from the detected signal value. The control device 10 controls the second expansion valve 57 based on the detected value of the oil concentration. The oil concentration sensor 62 may be a sensor for detecting the state of the liquid, such as a sensor that detects liquid concentration by electrostatic capacitance, a sensor that detects ultrasonic waves, a sensor that detects refractive index, or the like.
 <第2膨張弁57の制御について>
 図10は、実施の形態4における第2膨張弁57の制御を示すフローチャートである。図10に示すように、制御装置10は、ステップS11において、圧縮機1が運転中であるか否かを判定する。制御装置10は、圧縮機1が運転中でないと判定した場合(ステップS11でNO)は、処理を終了する。制御装置10は、圧縮機1が運転中あると判定した場合(ステップS11でYES)は、ステップS12の処理へ移行する。
<Regarding control of the second expansion valve 57>
FIG. 10 is a flow chart showing control of the second expansion valve 57 in the fourth embodiment. As shown in FIG. 10, in step S11, the control device 10 determines whether or not the compressor 1 is in operation. When the controller 10 determines that the compressor 1 is not in operation (NO in step S11), the process ends. When the controller 10 determines that the compressor 1 is in operation (YES in step S11), the process proceeds to step S12.
 制御装置10は、ステップS12において、油濃度センサ62の検知値を取得する。次いで、制御装置10は、予め定められている基準値と検知値とを比較する(ステップS13)。制御装置10は、検知値が基準値より小さいと判定した場合(ステップS13でYES)、第2膨張弁57の開度を現在の開度より減少し(ステップS14)、ステップS11の処理へ移行する。制御装置10は、検知値が基準値以上であると判定した場合(ステップS13でNO)は、第2膨張弁57の開度を現在の開度より増加し(ステップS15)、ステップS11の処理へ移行する。 The control device 10 acquires the detection value of the oil concentration sensor 62 in step S12. Next, the control device 10 compares a predetermined reference value and the detected value (step S13). When the control device 10 determines that the detected value is smaller than the reference value (YES in step S13), the opening degree of the second expansion valve 57 is decreased from the current opening degree (step S14), and the process proceeds to step S11. do. When the control device 10 determines that the detected value is equal to or greater than the reference value (NO in step S13), it increases the degree of opening of the second expansion valve 57 from the current degree of opening (step S15), and performs the processing of step S11. to
 制御装置10は、第2膨張弁57の開度を予め定められた段階ごとに増減させるようにすればよい。制御装置10は、第2膨張弁57の開度が予め定められた最小の開度あるいは予め定められた最大の開度となったときに開度の調整処理を終了すればよい。 The control device 10 may increase or decrease the degree of opening of the second expansion valve 57 in predetermined steps. The control device 10 may end the opening degree adjustment process when the opening degree of the second expansion valve 57 reaches a predetermined minimum opening degree or a predetermined maximum opening degree.
 <起動時などの安定していない運転時について>
 冷凍サイクル装置100Bにおいて、圧縮機1の起動時などの安定していない運転時には、検知値が基準値よりも小さくなる。この場合、図10のステップS14に示すように、第2膨張弁57の開度が現在の開度より減少する。アキュムレータ5Bにおいては、第2膨張弁57の開度が小さくなることにより、第2膨張弁57での圧力低下が大きくなる。
<About unstable operation such as startup>
In the refrigeration cycle apparatus 100B, the detected value becomes smaller than the reference value during unstable operation such as when the compressor 1 is started. In this case, as shown in step S14 of FIG. 10, the degree of opening of the second expansion valve 57 is reduced from the current degree of opening. In the accumulator 5B, as the degree of opening of the second expansion valve 57 decreases, the pressure drop at the second expansion valve 57 increases.
 これにより、冷凍サイクル装置100Bでは、アキュムレータ5Bを大型化せずに流出配管53の入口と出口とで圧力差を大きくすることができ、油戻し部54への油の流入流量が増加する。冷凍サイクル装置100Bは、起動時などの安定していない運転時において返油が必要なとき、圧縮機1への返油量を多くすることで油枯渇を抑制し、信頼性を向上させることができる。 As a result, in the refrigeration cycle device 100B, the pressure difference between the inlet and the outlet of the outflow pipe 53 can be increased without increasing the size of the accumulator 5B, and the flow rate of oil flowing into the oil return portion 54 is increased. The refrigeration cycle device 100B increases the amount of oil returned to the compressor 1 when oil is required to be returned during unstable operation such as startup, thereby suppressing oil depletion and improving reliability. can.
 <安定運転時について>
 冷凍サイクル装置100Bにおいて、圧縮機1の安定運転時には、検知値が基準値以上となる。この場合、図10のステップS15に示すように、第2膨張弁57の開度が現在の開度より増加する。アキュムレータ5Bにおいては、第2膨張弁57の開度が増加することにより、第2膨張弁57での圧力低下が小さくなる。
<About stable operation>
In the refrigerating cycle device 100B, the detected value is equal to or greater than the reference value when the compressor 1 is in stable operation. In this case, as shown in step S15 of FIG. 10, the degree of opening of the second expansion valve 57 increases from the current degree of opening. In the accumulator 5B, as the degree of opening of the second expansion valve 57 increases, the pressure drop at the second expansion valve 57 decreases.
 これにより、冷凍サイクル装置100Bでは、アキュムレータ5Bを大型化せずに流出配管53の入口と出口とで圧力差を小さくすることができ、油戻し部54への油の流入流量が減少する。冷凍サイクル装置100Bは、安定運転時において返油の必要がないとき、圧縮機1への返油量を少なくすることで液バックを防ぐことができ、信頼性の向上と性能の改善とを得ることができる。冷凍サイクル装置100Bでは、安定運転時に流出配管53における圧力損失が小さくなるため、回路装置全体の性能を改善することができる。 As a result, in the refrigeration cycle device 100B, the pressure difference between the inlet and the outlet of the outflow pipe 53 can be reduced without increasing the size of the accumulator 5B, and the flow rate of oil flowing into the oil return portion 54 is reduced. The refrigeration cycle device 100B can prevent liquid backflow by reducing the amount of oil returned to the compressor 1 when there is no need to return oil during stable operation, thereby improving reliability and performance. be able to. In the refrigeration cycle device 100B, the pressure loss in the outflow pipe 53 is small during stable operation, so the performance of the entire circuit device can be improved.
 実施の形態5.
 <冷凍サイクル装置100Bの回路構成>
 図11は、実施の形態5における冷凍サイクル装置100Cの回路構成を示す図である。実施の形態5の冷凍サイクル装置100Bは、実施の形態3の冷凍サイクル装置100Aと比較すると、検知センサとして吐出過熱度センサ61の代わりに吸入過熱度センサ63が第2熱交換器4とアキュムレータ5Bとの間に設けられている点が異なっている。その他の構成は、実施の形態3の冷凍サイクル装置100Aと同様である。以下の説明では、実施の形態3と異なる点を主に説明する。
Embodiment 5.
<Circuit Configuration of Refrigeration Cycle Device 100B>
FIG. 11 is a diagram showing a circuit configuration of a refrigeration cycle apparatus 100C according to Embodiment 5. As shown in FIG. Compared with the refrigerating cycle apparatus 100A of the third embodiment, the refrigerating cycle apparatus 100B of the fifth embodiment has an intake superheat sensor 63 instead of the discharge superheat sensor 61 as a detection sensor in the second heat exchanger 4 and the accumulator 5B. The difference is that it is provided between Other configurations are the same as those of the refrigeration cycle apparatus 100A of the third embodiment. In the following description, points different from the third embodiment are mainly described.
 吸入過熱度センサ63は、圧縮機1へ吸入される冷媒の過熱度を検出するためのセンサである。吸入過熱度とは、圧縮機1が吸入する冷媒の温度(以下、吸入温度とも称する)と圧縮機が吸入する冷媒の圧力(以下、吸入圧力とも称する)に対応する飽和ガス温度との温度差で表される冷媒ガスの過熱度のことである。吸入過熱度センサ63は、吸入温度と吸入圧力とを計測する。計測した信号は、制御装置10へ送信される。制御装置10は、検出した信号値から吸入過熱度を検知値として求める。制御装置10は、吸入過熱度の検知値に基づき第2膨張弁57を制御する。吸入過熱度センサ63として差圧計を用いるようにしてもよい。 The intake superheat sensor 63 is a sensor for detecting the degree of superheat of the refrigerant sucked into the compressor 1 . The suction superheat is the temperature difference between the temperature of the refrigerant sucked by the compressor 1 (hereinafter also referred to as suction temperature) and the saturated gas temperature corresponding to the pressure of the refrigerant sucked by the compressor (hereinafter also referred to as suction pressure). is the degree of superheat of the refrigerant gas represented by The intake superheat sensor 63 measures the intake temperature and the intake pressure. The measured signal is transmitted to the control device 10 . The controller 10 obtains the degree of suction superheat as a detection value from the detected signal value. The control device 10 controls the second expansion valve 57 based on the detected value of the degree of suction superheat. A differential pressure gauge may be used as the intake superheat sensor 63 .
 <第2膨張弁57の制御について>
 図12は、実施の形態5における第1膨張弁3および第2膨張弁57の制御を示すフローチャートである。図12に示すように、制御装置10は、ステップS21において、ユーザーの操作により制御装置10へ送信される圧縮機1の運転停止信号を受信したか否かを判定する。制御装置10は、圧縮機1の運転停止信号を受信していないと判定した場合(ステップS21でNO)は、処理を終了する。制御装置10は、圧縮機1の運転停止信号を受信したと判定した場合(ステップS21でYES)は、ステップS22の処理へ移行する。
<Regarding control of the second expansion valve 57>
FIG. 12 is a flow chart showing control of the first expansion valve 3 and the second expansion valve 57 in the fifth embodiment. As shown in FIG. 12, in step S21, the control device 10 determines whether or not a signal for stopping operation of the compressor 1 transmitted to the control device 10 by user's operation has been received. If the control device 10 determines that the operation stop signal for the compressor 1 has not been received (NO in step S21), the process ends. If the control device 10 determines that it has received the operation stop signal for the compressor 1 (YES in step S21), the process proceeds to step S22.
 制御装置10は、ステップS22において、圧縮機1が運転中であるか否かを判定する。制御装置10は、圧縮機1が運転中でないと判定した場合(ステップS22でNO)は、処理を終了する。制御装置10は、圧縮機1が運転中あると判定した場合(ステップS22でYES)は、ステップS23の処理へ移行する。 In step S22, the control device 10 determines whether or not the compressor 1 is in operation. When the controller 10 determines that the compressor 1 is not in operation (NO in step S22), the process ends. When the controller 10 determines that the compressor 1 is in operation (YES in step S22), the process proceeds to step S23.
 制御装置10は、ステップS23において、吸入過熱度センサ63の値から吸入過熱度の検知値を取得する。次いで、制御装置は、ステップS24において、第2膨張弁57の開度を現在の開度より増加する。次いで、制御装置10は、予め定められている基準値と検知値とを比較する(ステップS25)。制御装置10は、検知値が基準値より小さいと判定した場合(ステップS25でYES)、第1膨張弁3の開度を現在の開度より減少し(ステップS26)、ステップS21の処理へ移行する。制御装置10は、検知値が基準値以上であると判定した場合(ステップS25でNO)は、第1膨張弁3の開度を現在の開度より増加し(ステップS27)、ステップS21の処理へ移行する。 In step S23, the control device 10 acquires the detected value of the degree of suction superheat from the value of the degree of suction superheat sensor 63. Next, in step S24, the controller increases the degree of opening of the second expansion valve 57 from the current degree of opening. Next, the control device 10 compares the predetermined reference value and the detected value (step S25). When the control device 10 determines that the detected value is smaller than the reference value (YES in step S25), the opening degree of the first expansion valve 3 is decreased from the current opening degree (step S26), and the process proceeds to step S21. do. If the control device 10 determines that the detected value is equal to or greater than the reference value (NO in step S25), it increases the degree of opening of the first expansion valve 3 from the current degree of opening (step S27), and performs the processing of step S21. Move to
 制御装置10は、ステップS21において、圧縮機1の運転停止信号を受信した時点からカウントを開始し、ステップS26へ移行する場合はカウント値を増加させ、ステップS27へ移行する場合は、カウント値をリセットし停止フラグを設定すればよい。制御装置10は、停止フラグが設定されているときに、圧縮機1の運転が停止されたと判定すればよい。制御装置10は、ステップS21,S22の処理において、圧縮機1の停止信号を受信してから圧縮機1が完全に停止するまでの処理において第1膨張弁3および第2膨張弁57の開度を調整する。これにより、圧縮機1の停止信号を受信してから圧縮機1が完全に停止するまでに吸入過熱度を十分に向上させることができる。 In step S21, the control device 10 starts counting from the time when the operation stop signal of the compressor 1 is received, increases the count value when proceeding to step S26, and increases the count value when proceeding to step S27. Reset and set the stop flag. The control device 10 may determine that the operation of the compressor 1 has been stopped when the stop flag is set. In the processing of steps S21 and S22, the control device 10 controls the opening degrees of the first expansion valve 3 and the second expansion valve 57 in the processing from when the stop signal for the compressor 1 is received until the compressor 1 is completely stopped. to adjust. As a result, the degree of suction superheat can be sufficiently improved from when the stop signal for the compressor 1 is received to when the compressor 1 is completely stopped.
 制御装置10は、第1膨張弁3および第2膨張弁57の開度を予め定められた段階ごとに増減させるようにすればよい。制御装置10は、第1膨張弁3および第2膨張弁57の開度が予め定められた最小の開度あるいは予め定められた最大の開度となったときに開度の調整処理を終了すればよい。 The control device 10 may increase or decrease the opening degrees of the first expansion valve 3 and the second expansion valve 57 in predetermined steps. When the opening degrees of the first expansion valve 3 and the second expansion valve 57 reach a predetermined minimum opening degree or a predetermined maximum opening degree, the control device 10 ends the opening adjustment process. Just do it.
 <停止信号受信時について>
 冷凍サイクル装置100Cにおいて、圧縮機1の停止信号が制御装置10に受信されるとき、運転の継続によりアキュムレータ5Bの入口の冷媒の乾き度が上昇していることがある。このような場合、アキュムレータ5Bには、ガス冷媒と油とが流入する。ガス冷媒および油は、アキュムレータ5Bの流入配管52を通り、容器51内に流入する。ガス冷媒および油は、気液分離され、ガス冷媒が流出配管53に流入し、油が容器51内に溜まる。
<When receiving a stop signal>
In the refrigeration cycle device 100C, when the control device 10 receives a signal to stop the compressor 1, the dryness of the refrigerant at the inlet of the accumulator 5B may increase due to continued operation. In such a case, gas refrigerant and oil flow into the accumulator 5B. The gas refrigerant and oil flow into the container 51 through the inflow pipe 52 of the accumulator 5B. Gas refrigerant and oil are gas-liquid separated, the gas refrigerant flows into the outflow pipe 53 , and the oil accumulates in the container 51 .
 冷凍サイクル装置100Cにおいて、制御装置10は、ステップS21~ステップS24に示すように、圧縮機1の停止信号を受信してから圧縮機1が完全に停止するまでの期間に第2膨張弁57の開度を現在の開度よりも増加させる。アキュムレータ5Bにおいては、第2膨張弁57の開度が大きくなることにより、第2膨張弁57での圧力低下が小さくなる。 In the refrigeration cycle apparatus 100C, the control device 10, as shown in steps S21 to S24, keeps the second expansion valve 57 open during the period from when the stop signal for the compressor 1 is received until the compressor 1 is completely stopped. Increase the opening from the current opening. In the accumulator 5B, as the degree of opening of the second expansion valve 57 increases, the pressure drop at the second expansion valve 57 decreases.
 これにより、冷凍サイクル装置100Cでは、アキュムレータ5Bを大型化せずに流出配管53の入口と出口とで圧力差が小さくすることができ、油戻し部54への油の流入流量が減少する。冷凍サイクル装置100Cは、運転停止時において起動時のために必要な油をアキュムレータ5Bの容器51内に溜めることで信頼性を向上させることができる。 As a result, in the refrigeration cycle device 100C, the pressure difference between the inlet and the outlet of the outflow pipe 53 can be reduced without increasing the size of the accumulator 5B, and the flow rate of oil flowing into the oil return portion 54 is reduced. The refrigeration cycle device 100C can improve reliability by accumulating oil necessary for start-up in the container 51 of the accumulator 5B when operation is stopped.
 冷凍サイクル装置100Cにおいて、制御装置10は、検知値が基準値よりも小さいときステップS26に示すように、第1膨張弁3の開度を現在の開度よりも減少させることにより、第1膨張弁3での圧力低下を大きくする。これにより、冷媒の乾き度を上昇させることで吸入過熱度が上昇する。吸入過熱度が上昇することで、アキュムレータ5Bに流入する油の量を多くすることができる。 In the refrigeration cycle apparatus 100C, when the detected value is smaller than the reference value, the control device 10 reduces the opening degree of the first expansion valve 3 from the current opening degree as shown in step S26. Increase the pressure drop across valve 3 . As a result, the degree of suction superheat increases by increasing the dryness of the refrigerant. By increasing the degree of suction superheat, the amount of oil flowing into the accumulator 5B can be increased.
 冷凍サイクル装置100Cにおいて、制御装置10は、検知値が基準値以上のときステップS27に示すように、第1膨張弁3の開度を現在の開度よりも増加させることにより、第1膨張弁3での圧力低下を小さくする。これにより、冷媒の乾き度が下降することで吸入過熱度が下降する。吸入過熱度が下降することで、アキュムレータ5Bに流入する油の量を少なくすることができる。 In the refrigeration cycle apparatus 100C, when the detected value is equal to or greater than the reference value, the control device 10 increases the degree of opening of the first expansion valve 3 from the current degree of opening as shown in step S27. Reduce the pressure drop at 3. As a result, the dryness of the refrigerant decreases and the degree of suction superheat decreases. As the degree of suction superheat drops, the amount of oil flowing into the accumulator 5B can be reduced.
 このように、冷凍サイクル装置100Cでは、アキュムレータ5Bを大型化せずに停止信号受信時において第1膨張弁3および第2膨張弁57を制御することにより、次回起動時に圧縮機1へ流入する油の量を調整することができ、圧縮機1の信頼性を向上させることができる。 In this way, in the refrigeration cycle apparatus 100C, by controlling the first expansion valve 3 and the second expansion valve 57 when the stop signal is received without increasing the size of the accumulator 5B, the oil flowing into the compressor 1 at the next start-up is controlled. can be adjusted, and the reliability of the compressor 1 can be improved.
 実施の形態6.
 <冷凍サイクル装置100Bの回路構成>
 図13は、実施の形態6における冷凍サイクル装置100Dの回路構成を示す図である。実施の形態6の冷凍サイクル装置100Dは、実施の形態1の冷凍サイクル装置100と比較すると、圧縮機1の冷媒の吐出側に四方弁6が設けられている点が異なっている。その他の構成は、実施の形態1の冷凍サイクル装置100と同様である。以下の説明では、実施の形態1と異なる点を主に説明する。
Embodiment 6.
<Circuit Configuration of Refrigeration Cycle Device 100B>
FIG. 13 is a diagram showing the circuit configuration of a refrigeration cycle device 100D according to Embodiment 6. As shown in FIG. A refrigerating cycle device 100</b>D of the sixth embodiment differs from the refrigerating cycle device 100 of the first embodiment in that a four-way valve 6 is provided on the refrigerant discharge side of the compressor 1 . Other configurations are the same as those of the refrigeration cycle apparatus 100 of the first embodiment. In the following description, points different from the first embodiment are mainly described.
 四方弁6は、第1状態と第2状態とに変化することによって、圧縮機1から吐出された冷媒が流路を流れる方向を切り替える。図13において、四方弁6に示す実線は実施の形態1の冷凍サイクル装置100の流路と同様である。制御装置10は、四方弁6を制御することにより、実線で示す流路から破線で示す流路に切替えることが可能である。 The four-way valve 6 switches the direction in which the refrigerant discharged from the compressor 1 flows through the flow path by changing between the first state and the second state. In FIG. 13, the solid line indicated by the four-way valve 6 is the same as the flow path of the refrigeration cycle apparatus 100 of the first embodiment. By controlling the four-way valve 6, the control device 10 can switch from the flow path indicated by the solid line to the flow path indicated by the broken line.
 冷凍サイクル装置100Dにおいて、破線で示す流路に切替える冷房運転時において、冷媒は、圧縮機1、第2熱交換器4、第1膨張弁3、第1熱交換器2、アキュムレータ5の順に冷媒を循環させる。このような四方弁6を用いた構成は、実施の形態2~5においても適用可能である。 In the refrigeration cycle device 100D, during cooling operation in which the flow path is switched to that indicated by the dashed line, the refrigerant flows through the compressor 1, the second heat exchanger 4, the first expansion valve 3, the first heat exchanger 2, and the accumulator 5 in this order. circulate. A configuration using such a four-way valve 6 can also be applied to the second to fifth embodiments.
 <まとめ>
 本開示は、冷凍サイクル装置100の蒸発器である第2熱交換器4と圧縮機1の冷媒吸入側との間に設置するアキュムレータ5に関する。アキュムレータ5は、冷媒を貯留する容器51と、容器51内へ冷媒を流入させるための流入配管52と、容器51外へ冷媒を流出させるための流出配管53と、油を吸引するための開口が設けられた油戻し部54と、冷媒を減圧する減圧装置としての減圧配管56と、を備える。アキュムレータ5には、流出配管53上に減圧配管56と、油戻し部54とが配置される。
<Summary>
The present disclosure relates to an accumulator 5 installed between a second heat exchanger 4 that is an evaporator of a refrigeration cycle device 100 and a refrigerant suction side of a compressor 1 . The accumulator 5 includes a container 51 for storing refrigerant, an inflow pipe 52 for inflowing the refrigerant into the container 51, an outflow pipe 53 for flowing the refrigerant out of the container 51, and an opening for sucking oil. It is provided with an oil return section 54 provided, and a decompression pipe 56 as a decompression device for decompressing the refrigerant. A decompression pipe 56 and an oil return portion 54 are arranged on the outflow pipe 53 in the accumulator 5 .
 好ましくは、減圧装置は、流出配管よりも径の小さい減圧配管56で構成される。アキュムレータ5は、冷媒の流れ方向に対して、流出配管53上に減圧配管56、油戻し部54の順で配置される。 Preferably, the decompression device is configured with a decompression pipe 56 having a smaller diameter than the outflow pipe. The accumulator 5 is arranged in the order of the decompression pipe 56 and the oil return portion 54 on the outflow pipe 53 with respect to the flow direction of the refrigerant.
 好ましくは、油戻し部は、第1油戻し部54Aと、第2油戻し部54Bと、を含む。減圧装置は、流出配管53よりも径の小さい減圧配管56で構成される。アキュムレータ5Aは、冷媒の流れ方向に対して、流出配管53上に第1油戻し部54A、減圧配管56、第2油戻し部54Bの順で配置される。 Preferably, the oil return portion includes a first oil return portion 54A and a second oil return portion 54B. The decompression device is composed of a decompression pipe 56 having a diameter smaller than that of the outflow pipe 53 . The accumulator 5A is arranged on the outflow pipe 53 in the order of the first oil return portion 54A, the decompression pipe 56, and the second oil return portion 54B with respect to the flow direction of the refrigerant.
 好ましくは、減圧装置は、開度を調整可能な第2膨張弁57で構成される。アキュムレータ5Bは、冷媒の流れ方向に対して、流出配管53上に第2膨張弁57、油戻し部54の順で配置される。 Preferably, the decompression device is composed of a second expansion valve 57 whose degree of opening is adjustable. The accumulator 5B is arranged in the order of the second expansion valve 57 and the oil return portion 54 on the outflow pipe 53 with respect to the flow direction of the refrigerant.
 本開示は、アキュムレータ5Bを備えた冷凍サイクル装置100Aに関する。冷凍サイクル装置100Aは、圧縮機1と、第1熱交換器2と、第2熱交換器4と、第1膨張弁3と、圧縮機1から吐出される冷媒の吐出過熱度を計測するための第1センサとしての吐出過熱度センサ61と、第2膨張弁57の開度を制御する制御装置10と、を備える。第2熱交換器4が蒸発器として機能する場合に、冷媒が圧縮機1、第1熱交換器2、第1膨張弁3、第2熱交換器4、アキュムレータ5Bの順に流れる。制御装置10は、吐出過熱度センサ61の値から求めた冷媒の吐出過熱度に応じて、第2膨張弁57の開度を制御する。 The present disclosure relates to a refrigeration cycle device 100A including an accumulator 5B. The refrigeration cycle device 100A includes a compressor 1, a first heat exchanger 2, a second heat exchanger 4, a first expansion valve 3, and for measuring the discharge superheat degree of the refrigerant discharged from the compressor 1. and a control device 10 for controlling the degree of opening of the second expansion valve 57 . When the second heat exchanger 4 functions as an evaporator, refrigerant flows through the compressor 1, the first heat exchanger 2, the first expansion valve 3, the second heat exchanger 4, and the accumulator 5B in this order. The control device 10 controls the degree of opening of the second expansion valve 57 according to the degree of discharge superheat of the refrigerant obtained from the value of the discharge superheat degree sensor 61 .
 本開示は、アキュムレータ5Bを備えた冷凍サイクル装置100Bに関する。冷凍サイクル装置100Bは、圧縮機1と、第1熱交換器2と、第2熱交換器4と、第1膨張弁3と、圧縮機1内の油の状態を計測するための第2センサとしての油濃度センサ62と、第2膨張弁57の開度を制御する制御装置10と、を備える。第2熱交換器4が蒸発器として機能する場合に、冷媒が圧縮機1、第1熱交換器2、第1膨張弁3、第2熱交換器4、アキュムレータ5Bの順に流れる。制御装置10は、油濃度センサ62が検出する油の状態に応じて、第2膨張弁57の開度を制御する。 The present disclosure relates to a refrigeration cycle device 100B having an accumulator 5B. The refrigeration cycle device 100B includes a compressor 1, a first heat exchanger 2, a second heat exchanger 4, a first expansion valve 3, and a second sensor for measuring the state of oil in the compressor 1. and a controller 10 that controls the degree of opening of the second expansion valve 57 . When the second heat exchanger 4 functions as an evaporator, refrigerant flows through the compressor 1, the first heat exchanger 2, the first expansion valve 3, the second heat exchanger 4, and the accumulator 5B in this order. The control device 10 controls the degree of opening of the second expansion valve 57 according to the state of the oil detected by the oil concentration sensor 62 .
 本開示は、アキュムレータ5Bを備えた冷凍サイクル装置100Cに関する。冷凍サイクル装置100Cは、圧縮機1と、第1熱交換器2と、第2熱交換器4と、第1膨張弁3と、アキュムレータ5Bに流入する冷媒の吸入過熱度を計測するための第3センサとしての吸入過熱度センサ63と、第1膨張弁3および第2膨張弁57の開度を制御する制御装置10と、を備える。第2熱交換器4が蒸発器として機能する場合に、冷媒が圧縮機1、第1熱交換器2、第1膨張弁3、第2熱交換器4、アキュムレータ5Bの順に流れる。制御装置10は、圧縮機1の停止信号を受信した後に第2膨張弁57の開度を圧縮機1の停止前よりも増加させるとともに、吸入過熱度センサ63の値から求めた冷媒の吸入過熱度に応じて、第1膨張弁3の開度を制御する。 The present disclosure relates to a refrigeration cycle device 100C including an accumulator 5B. The refrigeration cycle device 100C includes a compressor 1, a first heat exchanger 2, a second heat exchanger 4, a first expansion valve 3, and a first heat exchanger for measuring the degree of suction superheat of the refrigerant flowing into the accumulator 5B. An intake superheat sensor 63 as a three-sensor and a control device 10 for controlling the opening degrees of the first expansion valve 3 and the second expansion valve 57 are provided. When the second heat exchanger 4 functions as an evaporator, refrigerant flows through the compressor 1, the first heat exchanger 2, the first expansion valve 3, the second heat exchanger 4, and the accumulator 5B in this order. After receiving the stop signal of the compressor 1, the control device 10 increases the degree of opening of the second expansion valve 57 from before the stop of the compressor 1, and increases the suction superheat of the refrigerant obtained from the value of the suction superheat sensor 63. The degree of opening of the first expansion valve 3 is controlled according to the degree.
 本開示は、アキュムレータ5を備えた冷凍サイクル装置100に関する。冷凍サイクル装置100は、圧縮機1と、第1熱交換器2と、第2熱交換器4と、第1膨張弁3と、を備える。第2熱交換器4が蒸発器として機能する場合に、冷媒が圧縮機1、第1熱交換器2、第1膨張弁3、第2熱交換器4、アキュムレータ5の順に流れる。 The present disclosure relates to a refrigeration cycle device 100 including an accumulator 5. The refrigeration cycle device 100 includes a compressor 1 , a first heat exchanger 2 , a second heat exchanger 4 and a first expansion valve 3 . When the second heat exchanger 4 functions as an evaporator, refrigerant flows through the compressor 1, the first heat exchanger 2, the first expansion valve 3, the second heat exchanger 4, and the accumulator 5 in this order.
 本実施の形態のアキュムレータ5、5A、5Bは、上記の構成を備えることによって、小型のアキュムレータ5により圧縮機1に適切な量の油を流入することができる。本実施の形態の冷凍サイクル装置100、100A、100B、100Cは、上記の構成を備えることによって、小型のアキュムレータ5により圧縮機1に適切な量の油を流入する冷媒回路とすることができる。 The accumulators 5, 5A, and 5B of the present embodiment can flow an appropriate amount of oil into the compressor 1 by using the small accumulator 5 with the above configuration. Refrigerating cycle apparatuses 100 , 100 A, 100 B, and 100 C of the present embodiment can be configured as a refrigerant circuit in which an appropriate amount of oil flows into compressor 1 with small accumulator 5 by providing the above configuration.
 <変形例>
 実施の形態1において、アキュムレータ5は、油戻し部54の開口の大きさと、減圧配管の径の大きさとを冷媒の流量により適宜変更してもよい。
<Modification>
In Embodiment 1, the accumulator 5 may appropriately change the size of the opening of the oil return portion 54 and the size of the diameter of the decompression pipe according to the flow rate of the refrigerant.
 実施の形態2において、油戻し部としての開口部の数は、3個以上形成されるようにしてもよい。このように、油戻し部の数は、流量に応じて変更することが可能である。アキュムレータ5Aは、複数の油戻し部ごとに開口の大きさを異ならせるようにしてもよい。アキュムレータ5Aは、複数の油戻し部の間ごとに減圧配管56を設けるようにしてもよいし、複数の減圧配管56ごとに径の大きさを変えるようにしてもよい。 In Embodiment 2, three or more openings may be formed as the oil return portions. Thus, the number of oil return sections can be changed according to the flow rate. The accumulator 5A may have openings of different sizes for each of the plurality of oil return portions. The accumulator 5</b>A may be provided with a pressure reducing pipe 56 between each of the plurality of oil return portions, or the diameter of each of the plurality of pressure reducing pipes 56 may be changed.
 実施の形態5において、吸入過熱度センサ63は、第2熱交換器4とアキュムレータ5Bとの間に設けられていた。吸入過熱度センサ63は、アキュムレータ5Bと圧縮機1との間に設けられるようにしてもよい。 In Embodiment 5, the suction superheat sensor 63 is provided between the second heat exchanger 4 and the accumulator 5B. The suction superheat sensor 63 may be provided between the accumulator 5B and the compressor 1 .
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 1 圧縮機、2 第1熱交換器、3 第1膨張弁、4 第2熱交換器、5,5A,5B アキュムレータ、6 四方弁、10 制御装置、51 容器、52 流入配管、53 流出配管、54,54A,54B 油戻し部、56 減圧配管、57 第2膨張弁、61 吐出過熱度センサ、62 油濃度センサ、63 吸入過熱度センサ、100,100A,100B,100C,100D 冷凍サイクル装置。 1 compressor, 2 first heat exchanger, 3 first expansion valve, 4 second heat exchanger, 5, 5A, 5B accumulator, 6 four-way valve, 10 control device, 51 container, 52 inflow pipe, 53 outflow pipe, 54, 54A, 54B Oil return section, 56 Decompression pipe, 57 Second expansion valve, 61 Discharge superheat sensor, 62 Oil concentration sensor, 63 Suction superheat sensor, 100, 100A, 100B, 100C, 100D Refrigeration cycle device.

Claims (8)

  1.  冷凍サイクル装置の蒸発器と圧縮機の冷媒吸入側との間に設置するアキュムレータであって、
     冷媒を貯留する容器と、
     前記容器内へ冷媒を流入させるための流入配管と、
     前記容器外へ冷媒を流出させるための流出配管と、
     油を吸引するための開口が設けられた油戻し部と、
     冷媒を減圧する減圧装置と、を備え、
     前記アキュムレータには、前記流出配管上に前記減圧装置と、前記油戻し部とが配置される、アキュムレータ。
    An accumulator installed between the evaporator of the refrigeration cycle device and the refrigerant suction side of the compressor,
    a container for storing a refrigerant;
    an inflow pipe for inflowing a refrigerant into the container;
    an outflow pipe for causing the refrigerant to flow out of the container;
    an oil return section provided with an opening for sucking oil;
    a decompression device that decompresses the refrigerant,
    The accumulator, wherein the decompression device and the oil return section are arranged on the outflow pipe.
  2.  前記減圧装置は、前記流出配管よりも径の小さい減圧配管で構成され、
     前記アキュムレータは、冷媒の流れ方向に対して、前記流出配管上に前記減圧配管、前記油戻し部の順で配置される、請求項1に記載のアキュムレータ。
    The decompression device is composed of a decompression pipe having a smaller diameter than the outflow pipe,
    The accumulator according to claim 1, wherein the accumulator is arranged on the outflow pipe in the order of the pressure reduction pipe and the oil return portion with respect to the flow direction of the refrigerant.
  3.  前記油戻し部は、第1油戻し部と、第2油戻し部と、を含み、
     前記減圧装置は、前記流出配管よりも径の小さい減圧配管で構成され、
     前記アキュムレータは、冷媒の流れ方向に対して、前記流出配管上に前記第1油戻し部、前記減圧配管、前記第2油戻し部の順で配置される、請求項1に記載のアキュムレータ。
    The oil return section includes a first oil return section and a second oil return section,
    The decompression device is composed of a decompression pipe having a smaller diameter than the outflow pipe,
    The accumulator according to claim 1, wherein the accumulator is arranged on the outflow pipe in the order of the first oil return section, the decompression pipe, and the second oil return section with respect to the flow direction of the refrigerant.
  4.  前記減圧装置は、開度を調整可能な第2膨張弁で構成され、
     前記アキュムレータは、冷媒の流れ方向に対して、前記流出配管上に前記第2膨張弁、前記油戻し部の順で配置される、請求項1に記載のアキュムレータ。
    The decompression device is composed of a second expansion valve whose opening can be adjusted,
    The accumulator according to claim 1, wherein the accumulator is arranged on the outflow pipe in the order of the second expansion valve and the oil return portion with respect to the flow direction of the refrigerant.
  5.  請求項4に記載のアキュムレータを備えた冷凍サイクル装置であって、
     前記圧縮機と、
     第1熱交換器と、
     第2熱交換器と、
     第1膨張弁と、
     前記圧縮機から吐出される冷媒の吐出過熱度を計測するための第1センサと、
     前記第2膨張弁の開度を制御する制御装置と、を備え、
     前記第2熱交換器が前記蒸発器として機能する場合に、冷媒が前記圧縮機、前記第1熱交換器、前記第1膨張弁、前記第2熱交換器、前記アキュムレータの順に流れ、
     前記制御装置は、前記第1センサの値から求めた冷媒の吐出過熱度に応じて、前記第2膨張弁の開度を制御する、冷凍サイクル装置。
    A refrigeration cycle device comprising the accumulator according to claim 4,
    the compressor;
    a first heat exchanger;
    a second heat exchanger;
    a first expansion valve;
    a first sensor for measuring the degree of discharge superheat of the refrigerant discharged from the compressor;
    a control device that controls the degree of opening of the second expansion valve,
    when the second heat exchanger functions as the evaporator, the refrigerant flows in the order of the compressor, the first heat exchanger, the first expansion valve, the second heat exchanger, and the accumulator;
    The refrigeration cycle device, wherein the control device controls the degree of opening of the second expansion valve in accordance with the degree of discharge superheat of the refrigerant obtained from the value of the first sensor.
  6.  請求項4に記載のアキュムレータを備えた冷凍サイクル装置であって、
     前記圧縮機と、
     第1熱交換器と、
     第2熱交換器と、
     第1膨張弁と、
     前記圧縮機内の油の状態を計測するための第2センサと、
     前記第2膨張弁の開度を制御する制御装置と、を備え、
     前記第2熱交換器が前記蒸発器として機能する場合に、冷媒が前記圧縮機、前記第1熱交換器、前記第1膨張弁、前記第2熱交換器、前記アキュムレータの順に流れ、
     前記制御装置は、前記第2センサが検出する油の状態に応じて、前記第2膨張弁の開度を制御する、冷凍サイクル装置。
    A refrigeration cycle device comprising the accumulator according to claim 4,
    the compressor;
    a first heat exchanger;
    a second heat exchanger;
    a first expansion valve;
    a second sensor for measuring the state of oil in the compressor;
    a control device that controls the degree of opening of the second expansion valve,
    when the second heat exchanger functions as the evaporator, the refrigerant flows in the order of the compressor, the first heat exchanger, the first expansion valve, the second heat exchanger, and the accumulator;
    The refrigeration cycle device, wherein the control device controls the degree of opening of the second expansion valve according to the state of the oil detected by the second sensor.
  7.  請求項4に記載のアキュムレータを備えた冷凍サイクル装置であって、
     前記圧縮機と、
     第1熱交換器と、
     第2熱交換器と、
     第1膨張弁と、
     前記アキュムレータに流入する冷媒の吸入過熱度を計測するための第3センサと、
     前記第1膨張弁および前記第2膨張弁の開度を制御する制御装置と、を備え、
     前記第2熱交換器が前記蒸発器として機能する場合に、冷媒が前記圧縮機、前記第1熱交換器、前記第1膨張弁、前記第2熱交換器、前記アキュムレータの順に流れ、
     前記制御装置は、前記圧縮機の停止信号を受信した後に前記第2膨張弁の開度を前記圧縮機の停止前よりも増加させるとともに、前記第3センサの値から求めた冷媒の吸入過熱度に応じて、前記第1膨張弁の開度を制御する、冷凍サイクル装置。
    A refrigeration cycle device comprising the accumulator according to claim 4,
    the compressor;
    a first heat exchanger;
    a second heat exchanger;
    a first expansion valve;
    a third sensor for measuring the degree of suction superheat of refrigerant flowing into the accumulator;
    a control device for controlling opening degrees of the first expansion valve and the second expansion valve;
    when the second heat exchanger functions as the evaporator, the refrigerant flows in the order of the compressor, the first heat exchanger, the first expansion valve, the second heat exchanger, and the accumulator;
    After receiving the stop signal of the compressor, the control device increases the degree of opening of the second expansion valve more than before the stop of the compressor, and the degree of suction superheat of the refrigerant obtained from the value of the third sensor. a refrigeration cycle device that controls the degree of opening of the first expansion valve according to .
  8.  請求項1から請求項3のいずれか1項に記載のアキュムレータを備えた冷凍サイクル装置であって、
     前記圧縮機と、
     第1熱交換器と、
     第2熱交換器と、
     第1膨張弁と、を備え、
     前記第2熱交換器が前記蒸発器として機能する場合に、冷媒が前記圧縮機、前記第1熱交換器、前記第1膨張弁、前記第2熱交換器、前記アキュムレータの順に流れる、冷凍サイクル装置。
    A refrigeration cycle device comprising the accumulator according to any one of claims 1 to 3,
    the compressor;
    a first heat exchanger;
    a second heat exchanger;
    a first expansion valve;
    A refrigeration cycle in which refrigerant flows in order of the compressor, the first heat exchanger, the first expansion valve, the second heat exchanger, and the accumulator when the second heat exchanger functions as the evaporator. Device.
PCT/JP2021/025601 2021-07-07 2021-07-07 Accumulator and refrigeration cycle device WO2023281653A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180100033.1A CN117581070A (en) 2021-07-07 2021-07-07 Accumulator and refrigeration cycle device
PCT/JP2021/025601 WO2023281653A1 (en) 2021-07-07 2021-07-07 Accumulator and refrigeration cycle device
JP2023532944A JPWO2023281653A1 (en) 2021-07-07 2021-07-07
EP21949287.3A EP4368920A1 (en) 2021-07-07 2021-07-07 Accumulator and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025601 WO2023281653A1 (en) 2021-07-07 2021-07-07 Accumulator and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023281653A1 true WO2023281653A1 (en) 2023-01-12

Family

ID=84800470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025601 WO2023281653A1 (en) 2021-07-07 2021-07-07 Accumulator and refrigeration cycle device

Country Status (4)

Country Link
EP (1) EP4368920A1 (en)
JP (1) JPWO2023281653A1 (en)
CN (1) CN117581070A (en)
WO (1) WO2023281653A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249549A (en) * 1992-03-27 1994-09-06 Mitsubishi Heavy Ind Ltd Accumulator
JP2014203736A (en) 2013-04-08 2014-10-27 株式会社デンソー Battery temperature adjustment device
JP6366742B2 (en) * 2015-01-23 2018-08-01 三菱電機株式会社 Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249549A (en) * 1992-03-27 1994-09-06 Mitsubishi Heavy Ind Ltd Accumulator
JP2014203736A (en) 2013-04-08 2014-10-27 株式会社デンソー Battery temperature adjustment device
JP6366742B2 (en) * 2015-01-23 2018-08-01 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
CN117581070A (en) 2024-02-20
JPWO2023281653A1 (en) 2023-01-12
EP4368920A1 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
US7775057B2 (en) Operational limit to avoid liquid refrigerant carryover
EP1884725A2 (en) Two-stage expansion refrigerating device
JP2007155230A (en) Air conditioner
US20130213084A1 (en) Two-stage compression refrigeration cycle device
US9328742B2 (en) Ejector
JP2006250479A (en) Air conditioner
JP5625610B2 (en) TECHNICAL FIELD The present invention relates to an ejector refrigeration cycle including an ejector.
JP2009276049A (en) Ejector type refrigeration cycle
JP7174299B2 (en) refrigeration equipment
JP6972780B2 (en) Refrigeration cycle device
WO2017221300A1 (en) Air conditioner
CN111051793A (en) Air conditioning apparatus
JP2007010220A (en) Refrigerating unit and refrigerator comprising the same
JP2009139041A (en) Air conditioner
CN105283331A (en) Air-conditioner system for vehicle and method for controlling same
JP2018132224A (en) Binary refrigeration system
WO2023281653A1 (en) Accumulator and refrigeration cycle device
CN114341568B (en) Outdoor unit and refrigeration cycle device
KR100802623B1 (en) Apparatus and method for controlling electronic expansion apparatus of air conditioning system
WO2016143292A1 (en) Ejector-type refrigeration cycle
JP2661781B2 (en) Refrigeration cycle control method for multi air conditioner
JP7150193B2 (en) refrigeration cycle equipment
WO2016143291A1 (en) Ejector and ejector-type refrigeration cycle
WO2019159638A1 (en) Refrigeration cycle apparatus
JPH11337234A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949287

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18561074

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023532944

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180100033.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021949287

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021949287

Country of ref document: EP

Effective date: 20240207

NENP Non-entry into the national phase

Ref country code: DE