JP3752238B2 - Structure construction method and structure - Google Patents

Structure construction method and structure Download PDF

Info

Publication number
JP3752238B2
JP3752238B2 JP2003126885A JP2003126885A JP3752238B2 JP 3752238 B2 JP3752238 B2 JP 3752238B2 JP 2003126885 A JP2003126885 A JP 2003126885A JP 2003126885 A JP2003126885 A JP 2003126885A JP 3752238 B2 JP3752238 B2 JP 3752238B2
Authority
JP
Japan
Prior art keywords
ground
improved body
foundation
prevention plate
improved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003126885A
Other languages
Japanese (ja)
Other versions
JP2004332281A (en
Inventor
篤 林
一樹 小林
岳峰 山田
道孝 岡本
武志 村上
知治 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
East Japan Railway Co
Original Assignee
Kajima Corp
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, East Japan Railway Co filed Critical Kajima Corp
Priority to JP2003126885A priority Critical patent/JP3752238B2/en
Publication of JP2004332281A publication Critical patent/JP2004332281A/en
Application granted granted Critical
Publication of JP3752238B2 publication Critical patent/JP3752238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、構造物の構築方法および構造物に関するものである。
【0002】
【従来の技術】
従来、直接基礎構造の構造物では、沈下防止板である基礎を地盤上に直接形成する。また、地盤の表層が軟弱で、支持層が軟弱な層の下方にある場合、地盤の表層に改良体を形成し、改良体上に柱を立設する方法が提案されている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2001−81862号公報
【0004】
【発明が解決しようとする課題】
しかしながら、地盤上に単純な直接基礎タイプの構造物(橋梁基礎、橋台、擁壁など)を設置した場合、大規模地震の際に水平耐力が不足する可能性がある。
【0005】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、地盤の表層が軟弱な場合にも地盤強度を最大限に活用でき、経済性や施工性に優れた直接基礎構造の構造物の構築方法および構造物を提供することにある。
【0006】
【課題を解決するための手段】
前述した目的を達成するための第1の発明は、地盤の表層に、前記地盤より強度が大きく、前記地盤と一体となって変形する改良体を設置する工程(a)と、工程(a)の後、前記改良体の上面に、基礎を、下面に設けた凸部を前記改良体に貫入させて設置する工程(b)と、を具備することを特徴とする構造物の構築方法である。
【0007】
地盤は、例えば、砂質系地盤や粘性土地盤である。改良体は、ポリマー系、水ガラス系、セメント系または石灰系等の固化材を土砂に混練して形成される。基礎の下面、すなわち改良体と接する面には、必要に応じて複数の凸部が設けられる。基礎上には、例えば、線路間を跨ぐ仮設構台の脚部を設置する。
【0008】
第1の発明では、強度が地盤より大きく変形係数が地盤と同等程度の改良体を地盤の表層に設置し、改良体と地盤との境界面の最大せん断力を地盤のせん断強度より大きくすることで、地盤がせん断破壊するまで地盤と改良体とを一体となって変形させる。また、改良体のせん断強度を大きくすることで、基礎と改良体との間の付着を増大させる。なお、基礎の下面に凸部を設けて改良体に貫入することにより、付着がさらに高まる。
【0009】
第2の発明は、第1の発明の構造物の構築方法により構築された構造物である。第2の発明の構造物は、地盤の表層に設けられた、強度が地盤より大きく、地盤と一体となって変形する改良体と、改良体の上面に設置された基礎とを具備する。
【0010】
【発明の実施の形態】
以下、図面に基づいて、本発明の実施例を詳細に説明する。図1は、構造物Aの断面図を示す。図1に示すように、構造物Aは、改良体5、沈下防止板7、仮設構台脚15、仮設構台19、桟橋21等からなる。改良体5は、地盤1の表層部に形成される。沈下防止板7は、改良体5の上面に設置される。仮設構台脚15は、沈下防止板7を基礎として設置される。仮設構台19は、仮設構台脚15と桟橋21とで支持される。
【0011】
次に、構造物Aの構築方法を述べる。図1に示すように、構造物Aでは、線路23の間の地盤1上に仮設構台脚15が設置される。図2は、改良体5を設置した地盤1の断面図である。図2は、仮設構台脚15の設置予定位置(図1のBに示す部分)付近を示す図である。
【0012】
地盤1は、ローム地盤である。このとき、改良体5を設置するには、まず、改良体5との置換対象範囲の地盤1を掘削して、土砂を除去する。掘削は、掘削量が少ない場合には人力掘削で、多い場合には小型バックホウ、或いはその他の汎用機械などを用いて行う。
【0013】
地盤1を掘削した後、掘削面3を乱して少量の固化材を塗布し、固化材と骨材の混合体を流し込んで、改良体5を形成する。改良体5の厚さは、直接基礎を設置する場合の砕石厚さを参考値として決定され、例えば100mm程度とする。
【0014】
固化材と骨材の混合体は、硬化後の改良体5の変形係数が地盤1と同等程度で、強度が地盤1より大きくなるように、骨材(土砂や、アスファルトガラ、コンクリートガラ等を利用した再生骨材等)に固化材を混入して作成される。骨材と固化材をミキサーで混練することにより、比較的均一性の高い混合体を得ることができる。
【0015】
図3は、実験から判定した各種固化材の適用性を示す表である。実験では、骨材として現場外から調達した砂や、砂とロームを混合したものを、固化材としてセメント系、石灰系、水ガラス系、ポリマー系のものを用いて改良体を形成し、比較的軟質なローム地盤への適用性を判断した。変形係数、強度については、改良体5の条件(変形係数が地盤1に近いこと、強度が地盤1より大きいこと)を判定基準とした。
【0016】
図3に示すように、変形係数が比較的軟質なローム地盤に最も近いものは、ポリマー系の固化材を用いた改良体である。また、強度が充分に大きいのは、水ガラス系、ポリマー系の固化材を用いた改良体である。他に、施工性、経済性も含めて総合評価すると、比較的軟質なローム地盤に改良体を形成する際には、注入系工法で使用されるポリマー系の固化材を用いるのが望ましい。
【0017】
図4は、ポリマー改良体(豊浦砂とポリマー系の固化材を混練した改良体)とローム(神奈川県で採取したもの)の応力−ひずみ関係を示す図、図5は、ポリマー改良体とロームの一面せん断試験(定圧)の結果を示す図である。砂とポリマー系の固化材を適切な分量で混ぜ合わせることにより、図4に示すように剛性がロームと概ね等しく、図5に示すようにせん断強度τ(=c+σtanφ)がロームを大きく上回るポリマー改良体を得ることができる。
【0018】
図6は、沈下防止板7を設置した状態での断面図、図7は、沈下防止板7の斜視図である。地盤1に改良体5を造成した後、図6に示すように、改良体5の上に、構造物の基礎となる沈下防止板7を設置する。
【0019】
図6、図7に示すように、沈下防止板7は、例えば、板状の本体13と、凸部を形成する複数の角棒14からなる。本体13は、鋼板等であり、角棒14は角鋼である。沈下防止板7の下面には、本体13に角棒14を所定の間隔で溶接することにより、波型処理9が施される。波型処理9に角棒14を用いると、丸鋼と比較して、本体13への溶接が容易である。また、沈下防止板7から伝達される荷重を面で分担するため、丸鋼を用いた場合より破壊しにくい構造となる。
【0020】
沈下防止板7は、波型処理9を施した面が改良体5に接触するように設置される。改良体5のせん断強度を大きくすることにより、波型処理9を施さない場合でも、改良体5と沈下防止板7との付着が確保され、沈下防止板7と改良体5との接着が外れて水平支持力が喪失する現象を回避できるが、角棒14を改良体5内部に貫入することにより、沈下防止板7と改良体5の付着をより高めることができる。
【0021】
図8は、沈下防止板7上に仮設構台脚15を設置した状態での断面図である。改良板5の上に沈下防止板7を設置した後、図1、図5に示すように、沈下防止板7上に仮設構台脚15を設置する。そして、仮設構台脚15に仮設構台19の架台25の片側を支持させる。図1に示すように、線路23の側方には、線路23に沿って、作業用の桟橋21が設置される。架台25は、線路23を跨いで配置され、仮設構台脚15に支持されない側の辺は、桟橋21に取り付けられる。
【0022】
次に、ローム地盤上に設置した沈下防止板の水平支持力を確認するための模型実験について述べる。図9は、実験模型である対策型基礎27の断面図を示す。図9に示すように、対策型基礎27は、ローム地盤1aの表層に改良体5aを形成し、改良体5aの上に波型処理9aを施した沈下防止板7a設置したものである。実験模型は、図9に示す対策型基礎27と、改良体5を形成しないローム地盤1aの上に波型処理9aを施さない本体13aのみの沈下防止板を設置した無対策基礎の2種類を製作した。
【0023】
なお、ローム地盤1aは、模型土槽(W×L×H=400×2800×400mm)内に図4に示すローム(締固め度90%)を設置したものである。改良体5aは、図4に示すポリマー改良体(W×L×H=400×2800×100mm)を用いて形成した。沈下防止板7aは、鉄板の本体13a(W×L=400×400mm)の下面に100mピッチで角鋼(28×28mm)を溶接して波形処理9aを施したものである。
【0024】
沈下防止板7aの本体13a上には、鉛直荷重をかけるための載荷盤31を載置し、本体13aの側部33には、水平荷重を付与するための2本のワイヤ29が取り付けられる。実験では、図9に示すように、載荷盤31を介して、矢印Aに示す方向に、地震時に予想される上載圧(σ=約42.7kPa)をかけつつ、ワイヤ29を介して矢印Bに示す方向から段階的に水平荷重を付与し、沈下防止板7aの水平変位等の計測を行った。
【0025】
図10は、水平荷重と水平変位の関係を示す図である。図10の横軸は正規化した水平変位を、縦軸は水平荷重を段階的に増加させたときの応力を示す。実線35は対策型基礎の、破線37は無対策基礎の計測結果である。図10に示すように、水平抵抗は、無対策基礎では限界水平抵抗まで上昇した後、一定値に収束する傾向を示す。それに対し、対策型基礎27では、限界水平抵抗まで上昇した後さらに漸増し、最大水平抵抗に達した後、漸減する。
【0026】
図11は、基礎形式と水平抵抗の増加率を示す図である。図11に示すように、対策型基礎27では、限界水平抵抗、最大水平抵抗とも無対策基礎の1.9倍まで増加した。なお、無対策基礎では、沈下防止板がローム地盤上を滑動するモードでの破壊が確認されたが、対策型基礎では、せん断が、改良体5aとローム地盤1aの境界ではなく、ローム地盤1aの内部で生じた。
【0027】
本実施の形態では、図6に示す構造において、改良体5の強度を地盤1の強度より大きくして改良体5と沈下防止板7との付着力を高め、改良体5のせん断強度τ>基礎である沈下防止板7と改良体5の境界面の最大せん断応力τBI>地盤のせん断強度τとする。また、改良体5の変形係数Eと地盤1の変形係数Eをほぼ同程度とし、改良体5と地盤1の境界面の最大せん断応力τIE>地盤のせん断強度τとする。これにより、基礎の最大せん断応力τがτとなり、大規模地震の際、沈下防止板7を上載した改良体5と地盤1とが一体として挙動し、図8に示すように、せん断面17、17aが地盤1内を通る。
【0028】
従来の直接基礎では、地盤のせん断強度τが基礎と地盤の境界面の最大せん断応力τBEより大きい場合、基礎の最大せん断応力τがτBEとなり、基礎と地盤の水平抵抗問題が生じるが、本実施の形態では、図10、図11の実験結果に示すように、沈下防止板等の基礎の水平耐力を向上させることができる。
【0029】
但し、図6において、例えばモルタルなどを用いて極端に剛性が高い改良体5を造成して改良体5の変形係数E>>沈下防止板7の変形係数Eとし、地盤のせん断強度τ>改良体5と地盤1の境界面の最大せん断応力τIEとなると、基礎の最大せん断応力τがτIEとなり、従来の地盤と基礎の摩擦の問題が地盤1と改良体5との摩擦の問題に置き変わるだけで、水平抵抗問題の本質は解決しない。そのため、改良体の配合や仕様の決定は慎重に行う。
【0030】
なお、本実施の形態では、ローム地盤である地盤1を掘削し、固化材と骨材を混練した混合体を流し込んで改良体5を造成したが、地盤1内で固化材を混練する現地撹拌により改良体5を造成してもよい。この場合、狭隘な箇所への施工重機の進入、施工速度、撹拌混合の均一性などの問題点を解決する必要がある。また、固化材と骨材の混合体を撒き出し、転圧して改良体を造成してもよい。
【0031】
また、地盤1は、ローム地盤に限らず、砂質系の地盤や軟岩等でもよい。図3では、改良体5を造成する際に用いる固化材として、ポリマー系の評価が高かったが、地盤条件によっては、本実施の形態と同様の条件を有する改良体を形成するために、薬液注入工法で使用される水ガラス系、浅層または深層混合処理工法で使用されるセメント系、または、軟弱地盤対策工で使用される石灰系等の他の固化材が有効な場合もある。例えば、地盤が軟岩の場合にはエポキシ系の固化材を用いることが考えられる。
【0032】
図7等に示す沈下防止板7の下面に凸部を形成する角棒14は、せん断強度の大きい改良体5を用いることで確保される基礎と改良体との間の付着をより高めるためのものであり、必須のものではない。また、沈下防止板7等の基礎の下面には、角棒14以外の部材を用いて凸部を設けてもよい。
【0033】
図12は他の基礎39の斜視図である。図12の基礎39に示すように、凸部は、本体41に単尺杭43、駒形の部材45等を溶接して形成してもよい。なお、凸部の長さ45は、通常2〜3cm、最大で5cm程度とするのが望ましい。
【0034】
本実施の形態では、線路杭打ち工法での仮設構台脚15の基礎である沈下防止板7を例にとって説明したが、改良体5上に構築する構造物はこれに限らない。例えば、橋梁基礎、橋台、擁壁等、滑動に関する検討が必要な他の構造物にも適用できる。
【0035】
【発明の効果】
以上、詳細に説明したように、本発明によれば、地盤の表層が軟弱な場合にも地盤強度を最大限に活用でき、経済性や施工性に優れた直接基礎構造の構造物の構築方法および構造物を提供できる。
【図面の簡単な説明】
【図1】構造物Aの断面図
【図2】改良体5を設置した地盤1の断面図
【図3】実験から判定した各種固化材の適用性を示す表
【図4】ポリマー改良体とロームの応力−ひずみ関係を示す図
【図5】ポリマー改良体とロームの一面せん断試験(定圧)の結果を示す図
【図6】沈下防止板7を設置した状態での断面図
【図7】沈下防止板7の斜視図
【図8】沈下防止板7上に仮設構台脚15を設置した状態での断面図
【図9】実験模型である対策型基礎27の断面図
【図10】水平荷重と水平変位の関係を示す図
【図11】基礎形式と水平抵抗の増加率を示す図
【図12】他の基礎39の斜視図
【符号の説明】
1………地盤
5、5a………改良体
7、7a………沈下防止板
9、9a………波型処理
13、13a………本体
14………角棒
17………せん断面
23………線路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure construction method and a structure.
[0002]
[Prior art]
Conventionally, in a structure having a direct foundation structure, a foundation that is a settlement prevention plate is directly formed on the ground. In addition, when the surface layer of the ground is soft and the support layer is below the soft layer, a method has been proposed in which an improved body is formed on the surface layer of the ground and a column is erected on the improved body (for example, a patent Reference 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-81862
[Problems to be solved by the invention]
However, if a simple direct foundation type structure (bridge foundation, abutment, retaining wall, etc.) is installed on the ground, the horizontal strength may be insufficient during a large-scale earthquake.
[0005]
The present invention has been made in view of such problems, and the purpose of the present invention is to directly utilize the strength of the ground even when the surface layer of the ground is soft, and is excellent in economic efficiency and workability. An object of the present invention is to provide a method for constructing a structure of a foundation structure and a structure.
[0006]
[Means for Solving the Problems]
1st invention for achieving the objective mentioned above is the process (a) which installs the improvement body which is stronger than the said ground and deform | transforms integrally with the said ground on the surface layer of the ground, and a process (a) And a step (b) of installing a foundation on the upper surface of the improved body and a projecting portion provided on the lower surface penetrating into the improved body. .
[0007]
The ground is, for example, sandy ground or viscous ground. The improved body is formed by kneading a solid material such as a polymer, water glass, cement, or lime into earth and sand. A plurality of convex portions are provided on the lower surface of the foundation, that is, the surface in contact with the improved body, as necessary. On the foundation, for example, a leg portion of a temporary gantry straddling between the tracks is installed.
[0008]
In the first invention, an improved body having a strength greater than that of the ground and having a deformation coefficient equivalent to that of the ground is installed on the surface layer of the ground, and the maximum shear force of the boundary surface between the improved body and the ground is made larger than the shear strength of the ground. Then, the ground and the improved body are integrally deformed until the ground shears and breaks. Moreover, the adhesion between the foundation and the improved body is increased by increasing the shear strength of the improved body. In addition, adhesion is further increased by providing a convex portion on the lower surface of the foundation and penetrating the improved body.
[0009]
The second invention is a structure constructed by the construction method of the structure of the first invention. The structure of 2nd invention comprises the improvement body which was provided in the surface layer of the ground, the intensity | strength is larger than a ground, and deform | transforms integrally with the ground, and the foundation installed in the upper surface of the improvement body.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a cross-sectional view of the structure A. As shown in FIG. 1, the structure A includes an improved body 5, a settlement prevention plate 7, a temporary gantry leg 15, a temporary gantry 19, a jetty 21, and the like. The improved body 5 is formed on the surface layer portion of the ground 1. The settlement prevention plate 7 is installed on the upper surface of the improved body 5. The temporary gantry base 15 is installed on the basis of the settlement prevention plate 7. The temporary gantry 19 is supported by the temporary gantry legs 15 and the jetty 21.
[0011]
Next, a construction method of the structure A will be described. As shown in FIG. 1, in the structure A, temporary gantry legs 15 are installed on the ground 1 between the tracks 23. FIG. 2 is a cross-sectional view of the ground 1 on which the improved body 5 is installed. FIG. 2 is a view showing the vicinity of the planned installation position of the temporary gantry leg 15 (portion shown by B in FIG. 1).
[0012]
The ground 1 is a loam ground. At this time, in order to install the improved body 5, first, the ground 1 in the range to be replaced with the improved body 5 is excavated to remove the earth and sand. The excavation is performed by manual excavation when the excavation amount is small, and by using a small backhoe or other general-purpose machines when the excavation amount is large.
[0013]
After excavating the ground 1, the excavation surface 3 is disturbed to apply a small amount of solidified material, and a mixture of the solidified material and aggregate is poured into the improved body 5. The thickness of the improved body 5 is determined using the crushed stone thickness when the foundation is directly installed as a reference value, for example, about 100 mm.
[0014]
The mixture of solidified material and aggregate is made of aggregate (sand, sand, asphalt glass, concrete glass, etc.) so that the deformation coefficient of the improved body 5 after hardening is about the same as that of the ground 1 and the strength is larger than that of the ground 1. It is created by mixing solidified material with the recycled aggregates used. By kneading the aggregate and the solidified material with a mixer, a mixture with relatively high uniformity can be obtained.
[0015]
FIG. 3 is a table showing applicability of various solidification materials determined from experiments. In the experiment, sand was procured from outside the field as an aggregate, or a mixture of sand and loam, and a cement, lime, water glass, or polymer was used as a solidifying material, and an improved body was formed. The applicability to soft and soft loam ground was judged. Regarding the deformation coefficient and strength, the conditions of the improved body 5 (the deformation coefficient is close to the ground 1 and the strength is larger than the ground 1) were used as criteria.
[0016]
As shown in FIG. 3, the closest to the loam ground having a relatively soft deformation coefficient is an improved body using a polymer-based solidified material. Further, the strength is sufficiently high in an improved body using a water glass-based or polymer-based solidifying material. In addition, from a comprehensive evaluation including workability and economic efficiency, it is desirable to use a polymer-based solidified material used in the injection system construction method when forming an improved body on a relatively soft loam ground.
[0017]
FIG. 4 is a diagram showing a stress-strain relationship between a polymer improved body (an improved body obtained by kneading Toyoura sand and a polymer-based solidified material) and ROHM (collected in Kanagawa Prefecture), and FIG. 5 shows a polymer improved body and a ROHM. It is a figure which shows the result of a one surface shear test (constant pressure). By mixing sand and polymer-based solidified material in an appropriate amount, the rigidity is almost equal to ROHM as shown in FIG. 4, and the shear strength τ (= c + σ V tanφ) is significantly higher than ROHM as shown in FIG. A polymer modification can be obtained.
[0018]
FIG. 6 is a cross-sectional view in a state in which the settlement prevention plate 7 is installed, and FIG. 7 is a perspective view of the settlement prevention plate 7. After the improved body 5 is formed on the ground 1, as shown in FIG. 6, a settlement prevention plate 7 that is the foundation of the structure is installed on the improved body 5.
[0019]
As shown in FIGS. 6 and 7, the settlement prevention plate 7 includes, for example, a plate-shaped main body 13 and a plurality of square bars 14 that form convex portions. The main body 13 is a steel plate or the like, and the square bar 14 is a square steel. A corrugated treatment 9 is performed on the lower surface of the settlement prevention plate 7 by welding square bars 14 to the main body 13 at predetermined intervals. When the square bar 14 is used for the corrugation 9, welding to the main body 13 is easy as compared with round steel. In addition, since the load transmitted from the settlement prevention plate 7 is shared by the surface, the structure is less likely to break than when round steel is used.
[0020]
The subsidence prevention plate 7 is installed such that the surface subjected to the corrugation 9 is in contact with the improved body 5. By increasing the shear strength of the improved body 5, adhesion between the improved body 5 and the subsidence prevention plate 7 is ensured even when the corrugated treatment 9 is not performed, and the adhesion between the subsidence prevention plate 7 and the improved body 5 comes off. The phenomenon that the horizontal supporting force is lost can be avoided, but by attaching the square bar 14 to the inside of the improved body 5, the adhesion between the settlement prevention plate 7 and the improved body 5 can be further increased.
[0021]
FIG. 8 is a cross-sectional view in a state in which the temporary gantry base 15 is installed on the settlement prevention plate 7. After the settlement preventing plate 7 is installed on the improved plate 5, the temporary gantry base 15 is installed on the settlement preventing plate 7 as shown in FIGS. 1 and 5. Then, one side of the gantry 25 of the temporary gantry 19 is supported by the temporary gantry leg 15. As shown in FIG. 1, a work pier 21 is installed along the track 23 on the side of the track 23. The gantry 25 is disposed across the track 23, and the side not supported by the temporary gantry leg 15 is attached to the pier 21.
[0022]
Next, a model experiment for confirming the horizontal supporting force of the settlement prevention plate installed on the loam ground will be described. FIG. 9 shows a cross-sectional view of the countermeasure-type foundation 27 that is an experimental model. As shown in FIG. 9, the countermeasure-type foundation 27 is obtained by forming an improved body 5a on the surface layer of the loam ground 1a and installing a subsidence prevention plate 7a on which the corrugated treatment 9a is applied. There are two types of experimental models: a countermeasure-type foundation 27 shown in FIG. 9 and a non-measurement foundation in which a subsidence prevention plate of only the main body 13a not subjected to the corrugated treatment 9a is installed on the loam ground 1a not forming the improved body 5. Produced.
[0023]
The loam ground 1a is obtained by installing the loam (consolidation degree 90%) shown in FIG. 4 in a model soil tank (W × L × H = 400 × 2800 × 400 mm). The improved body 5a was formed using the polymer improved body (W × L × H = 400 × 2800 × 100 mm) shown in FIG. The subsidence prevention plate 7a is formed by welding a square steel (28 × 28 mm) at a pitch of 100 m to the lower surface of a main body 13a (W × L = 400 × 400 mm) of an iron plate and applying a waveform processing 9a.
[0024]
A loading board 31 for applying a vertical load is placed on the main body 13a of the settlement prevention plate 7a, and two wires 29 for applying a horizontal load are attached to the side portion 33 of the main body 13a. In the experiment, as shown in FIG. 9, the arrow 29 is applied via the wire 29 while applying the expected upper pressure (σ V = about 42.7 kPa) in the direction indicated by the arrow A through the loading board 31 in the direction indicated by the arrow A. A horizontal load was applied step by step from the direction shown in B, and the horizontal displacement of the settlement prevention plate 7a was measured.
[0025]
FIG. 10 is a diagram showing the relationship between horizontal load and horizontal displacement. The horizontal axis in FIG. 10 indicates normalized horizontal displacement, and the vertical axis indicates stress when the horizontal load is increased stepwise. The solid line 35 is the measurement result of the countermeasure-type foundation, and the broken line 37 is the measurement result of the non-measurement foundation. As shown in FIG. 10, the horizontal resistance tends to converge to a constant value after increasing to the limit horizontal resistance on the non-measure basis. On the other hand, in the countermeasure-type foundation 27, it further increases after rising to the limit horizontal resistance, and gradually decreases after reaching the maximum horizontal resistance.
[0026]
FIG. 11 is a diagram showing the basic form and the rate of increase in horizontal resistance. As shown in FIG. 11, in the countermeasure-type foundation 27, the limit horizontal resistance and the maximum horizontal resistance both increased to 1.9 times that of the countermeasure-free foundation. In the non-measure foundation, it was confirmed that the subsidence prevention plate slides on the loam ground. However, in the countermeasure type foundation, the shear is not the boundary between the improved body 5a and the loam ground 1a, but the loam ground 1a. Occurred inside.
[0027]
In the present embodiment, in the structure shown in FIG. 6, the strength of the improved body 5 is made greater than the strength of the ground 1 to increase the adhesion between the improved body 5 and the settlement prevention plate 7, and the shear strength τ i of the improved body 5. > Maximum shear stress τ BI at the boundary surface between the subsidence prevention plate 7 which is the foundation and the improved body 5> Shear strength τ E of the ground. Further, the deformation coefficient E i and deformation coefficient E E of the ground 1 of the improved body 5 is substantially the same level, the maximum shear stress tau IE> shear strength of ground tau E boundary surfaces of the improved body 5 and the ground 1. As a result, the maximum shear stress τ f of the foundation becomes τ E , and in the event of a large-scale earthquake, the improved body 5 on which the subsidence prevention plate 7 is mounted and the ground 1 behave as one body. As shown in FIG. 17 and 17a pass through the ground 1.
[0028]
In the conventional direct foundation, when the ground shear strength τ E is larger than the maximum shear stress τ BE at the interface between the foundation and the ground, the maximum shear stress τ f of the foundation becomes τ BE and the horizontal resistance problem between the foundation and the ground arises. However, in this embodiment, as shown in the experimental results of FIGS. 10 and 11, the horizontal proof stress of the foundation such as the settlement prevention plate can be improved.
[0029]
However, in FIG. 6, for example, the extreme deformation coefficient of deformation coefficient E i >> subsidence prevention plate 7 of the improved body 5 to construct a modified body 5 has a high rigidity E E using mortar, shear strength of the soil τ E > When the maximum shear stress τ IE at the boundary surface between the improved body 5 and the ground 1 is reached, the maximum shear stress τ f of the foundation is τ IE , and the conventional ground-foundation friction problem is between the ground 1 and the improved body 5. It simply replaces the problem of friction and does not solve the essence of the horizontal resistance problem. Therefore, carefully determine the formulation and specifications of the improved product.
[0030]
In this embodiment, the ground 1 which is a loam ground is excavated and the mixture 5 in which the solidified material and the aggregate are mixed is poured into the improved body 5, but the field agitation in which the solidified material is mixed in the ground 1. Thus, the improved body 5 may be formed. In this case, it is necessary to solve problems such as the approach of heavy construction equipment into narrow spaces, construction speed, and uniformity of stirring and mixing. Alternatively, a mixture of a solidified material and an aggregate may be squeezed out and rolled to create an improved body.
[0031]
The ground 1 is not limited to the loam ground but may be sandy ground or soft rock. In FIG. 3, the evaluation of the polymer system was high as the solidifying material used when creating the improved body 5. However, depending on the ground conditions, the chemical solution is used to form the improved body having the same conditions as in the present embodiment. Other solidification materials such as water glass used in the pouring method, cement used in the shallow or deep mixed processing method, or lime used in soft ground countermeasures may be effective. For example, when the ground is soft rock, it is conceivable to use an epoxy-based solidifying material.
[0032]
The square bar 14 that forms a convex portion on the lower surface of the settlement prevention plate 7 shown in FIG. 7 and the like is for increasing adhesion between the foundation secured by using the improved body 5 having a high shear strength and the improved body. It is a thing, it is not essential. Moreover, you may provide a convex part in the lower surface of foundations, such as the subsidence prevention board 7, using members other than the square bar 14. FIG.
[0033]
FIG. 12 is a perspective view of another foundation 39. As shown in the foundation 39 in FIG. 12, the convex portion may be formed by welding a single pile 43, a piece-shaped member 45, etc. to the main body 41. In addition, it is desirable that the length 45 of the convex portion is usually 2 to 3 cm and about 5 cm at the maximum.
[0034]
In the present embodiment, the subsidence prevention plate 7 that is the basis of the temporary gantry base 15 in the rail pile driving method has been described as an example, but the structure constructed on the improved body 5 is not limited thereto. For example, the present invention can also be applied to other structures that need to be studied for sliding, such as bridge foundations, abutments, and retaining walls.
[0035]
【The invention's effect】
As described above in detail, according to the present invention, even when the surface layer of the ground is soft, the ground strength can be utilized to the maximum, and the construction method of the structure of the direct foundation structure that is excellent in economic efficiency and workability. And can provide structure.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a structure A. FIG. 2 is a cross-sectional view of a ground 1 on which an improved body 5 is installed. FIG. 3 is a table showing applicability of various solidification materials determined from experiments. Fig. 5 is a diagram showing the relationship between stress and strain of ROHM. Fig. 5 is a diagram showing the results of a one-surface shear test (constant pressure) of the improved polymer and ROHM. FIG. 8 is a cross-sectional view of the subsidence prevention plate 7 with the temporary base 15 installed thereon. FIG. 9 is a cross-sectional view of the experimental base 27 as an experimental model. FIG. 10 is a horizontal load. FIG. 11 is a diagram showing the relationship between the horizontal displacement and FIG. 11 is a diagram showing the basic form and the rate of increase in horizontal resistance. FIG. 12 is a perspective view of another foundation 39.
DESCRIPTION OF SYMBOLS 1 ......... Ground 5, 5a ......... Improvement bodies 7, 7a ......... Settling prevention plates 9, 9a ...... Wave processing 13, 13a ......... Main body 14 ......... Square bar 17 ......... Shear surface 23 ……… Track

Claims (4)

地盤の表層に、前記地盤より強度が大きく、前記地盤と一体となって変形する改良体を設置する工程(a)と、
工程(a)の後、前記改良体の上面に、基礎を、下面に設けた凸部を前記改良体に貫入させて設置する工程(b)と、
を具備することを特徴とする構造物の構築方法。
A step (a) of installing an improved body on the surface layer of the ground that is stronger than the ground and deforms integrally with the ground; and
After the step (a), on the upper surface of the improved body, a step (b) of installing a foundation penetrating the improved body with a base provided on the lower surface;
A structure construction method characterized by comprising:
前記改良体は、水ガラス系の固化材を用いて形成されることを特徴とする請求項1記載の構造物の構築方法。The method for constructing a structure according to claim 1, wherein the improved body is formed using a water glass-based solidifying material . 前記基礎上に、線路間を跨ぐ仮設構台の脚部を設置する工程(c)をさらに具備することを特徴とする請求項1記載の構造物の構築方法。  The method of constructing a structure according to claim 1, further comprising a step (c) of installing a leg portion of a temporary gantry straddling between the tracks on the foundation. 請求項1から請求項3のいずれかに記載された構造物の構築方法により構築された構造物。  The structure constructed | assembled by the construction method of the structure described in any one of Claims 1-3.
JP2003126885A 2003-05-02 2003-05-02 Structure construction method and structure Expired - Fee Related JP3752238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003126885A JP3752238B2 (en) 2003-05-02 2003-05-02 Structure construction method and structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003126885A JP3752238B2 (en) 2003-05-02 2003-05-02 Structure construction method and structure

Publications (2)

Publication Number Publication Date
JP2004332281A JP2004332281A (en) 2004-11-25
JP3752238B2 true JP3752238B2 (en) 2006-03-08

Family

ID=33503634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003126885A Expired - Fee Related JP3752238B2 (en) 2003-05-02 2003-05-02 Structure construction method and structure

Country Status (1)

Country Link
JP (1) JP3752238B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984215B2 (en) * 2006-06-07 2012-07-25 株式会社 ▲高▼▲橋▼監理 Dissimilar settlement prevention method by iron plate footing method
CN115012430B (en) * 2021-12-27 2024-03-01 德州市公路工程总公司 Prestressed anchor cable frame type protective structure and construction method thereof

Also Published As

Publication number Publication date
JP2004332281A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP6166264B2 (en) How to build a retaining wall
WO2011114507A1 (en) Method of constructing underground structure to be newly built
JP5146117B2 (en) Retaining wall structure consisting of ground improvement body and its construction method
JP3752238B2 (en) Structure construction method and structure
JP7149919B2 (en) Improvement structure and improvement method of existing wharf
CN110258600B (en) Vertical cofferdam construction method suitable for deepwater area
CN210369031U (en) Slurry anchor lap joint type prefabricated retaining wall unit and prefabricated retaining wall
JP3486602B2 (en) Pier foundation method and pier foundation structure
JP3804943B2 (en) Reinforced earth structure and wall block
JP3515567B1 (en) Seismic reinforcement structure of structures
KR20090098201A (en) Method for enhancing bearing power of existing bridges using the a pile
JPS62178619A (en) Reinforcing work of deep ground layer by mixing and solidification
CN110777818A (en) Construction method of pile hole protecting wall of manually excavated slide-resistant pile
JPH0552366B2 (en)
JP3230448B2 (en) Construction method of building foundation on cohesive ground
CN110387910B (en) Method for uplift static load test of foundation anchor rod of constructional engineering
CN211057843U (en) Semi-prefabricated counterfort retaining wall
JP6860895B2 (en) Retaining wall and its construction method
KR20040034555A (en) Abutment and pier using composite pile and sheet pile of a bridge, and it's construction method
KR100493516B1 (en) Micro pile and assembly foundation reinforcement structure member and its method for pier
JP3832845B2 (en) Steel sheet pile combined direct foundation and construction method of steel sheet pile combined direct foundation
JP2876471B2 (en) Lateral flow countermeasure structure
JP3678290B2 (en) High earthquake resistance foundation
KR100348794B1 (en) A method of repair on the base of a bridge
JP7096469B1 (en) Small cross-section underground continuous wall

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees