JP3751255B2 - Insulating film etchant - Google Patents
Insulating film etchant Download PDFInfo
- Publication number
- JP3751255B2 JP3751255B2 JP2002057481A JP2002057481A JP3751255B2 JP 3751255 B2 JP3751255 B2 JP 3751255B2 JP 2002057481 A JP2002057481 A JP 2002057481A JP 2002057481 A JP2002057481 A JP 2002057481A JP 3751255 B2 JP3751255 B2 JP 3751255B2
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- etching
- etching agent
- phosphoric acid
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Weting (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、絶縁膜のエッチングに用いられるリン酸水溶液に関し、特に、半導体製造工程におけるウェットエッチング技術に関する。
【0002】
【従来の技術】
大規模集積回路(ULSI)を形成するにあたって、トランジスタの高速化・低消費電力化などを目的として、近年、回路の微細化や、それに伴うHigh-kゲート絶縁膜などの新材料の導入が進行している。
【0003】
現在、素子間分離構造を形成する際、マスク材としてシリコン窒化膜を使用しており、これをエッチングする際には160℃程度に加温したリン酸水溶液、いわゆる“ホットリン酸”が使用されている。しかし、本プロセスでは、シリコン窒化膜エッチング時に露出したシリコン部分が腐食して荒れる、いわゆるSi表面荒れが生じるため、回路の微細化に伴いSi表面荒れの影響が大きくなってデバイスの歩留まりや信頼性を大きく低下させる可能性があることが問題視されている。
【0004】
一方、近年、回路の微細化に伴いゲート絶縁膜の極薄化が進行しているが、その際生じるゲートリーク電流が無視できなくなっている。そこで、現在、ゲート絶縁膜に用いているSiO2の代替として、SiO2よりも誘電率が高いAl2O3、ZrO2、HfO2などのいわゆる“High-k材”を用いて、ゲート絶縁膜を形成するケースが増えてきた。絶縁膜のキャパシタンスは誘電率に比例し膜厚に反比例するため、High-k材を用いると、SiO2を用いた場合に比べ電気的な実効膜厚を変えずに物理膜厚を厚くでき、その結果、リーク電流を少なくできる。このようなHigh-k絶縁膜はエッチングがしにくく、HF希釈液や上記のホットリン酸でしかエッチングできない。しかし、このエッチングの際にHF希釈液を用いると、エッチング対象ではない箇所のSiO2がエッチングされてしまい、一方、ホットリン酸を用いるとSi表面が荒れてしまい問題となっている。
【0005】
【発明が解決しようとする課題】
以上説明したように、ULSI製造プロセスにおいて、さらなる高性能化を目指した微細化や新材料の導入に当たり、シリコン窒化膜のエッチング剤として活用されてきたホットリン酸にも問題が生じてきた。その問題は大きく分けて2つ存在し、1つ目は微細化に伴うシリコン窒化膜エッチングの正確性の向上と同時に問題となるSi表面荒れの問題で、2つ目は新材料としてのHigh-k絶縁膜のエッチングとその際のSi表面荒れである。すなわち、回路微細化時のシリコン窒化膜エッチングやHigh-kゲート絶縁膜エッチングに対しては、Si表面荒れが激しいため、従来技術であるホットリン酸プロセスを適用できなくなっている。
【0006】
そのため、シリコン窒化膜やHigh-k材をエッチングでき、しかもSiに対する表面荒れを防止できるように改良されたホットリン酸が市場より切望されているわけである。そこで、本発明では上記2つの課題を、ホットリン酸とほぼ同じプロセスで行うことができ、Si表面荒れを効果的に抑制しながらシリコン窒化膜あるいはHigh-k絶縁膜をエッチングできるエッチング剤を市場に提供することを目的とする。
【0007】
【課題を解決するための手段】
このような目的は、下記(1)〜(7)のいずれかの構成により達成される。
(1) リン酸水溶液に、添加剤としてポリビニル系高分子である水溶性高分子、カチオン性界面活性剤、およびフッ化アルキル基を持つ界面活性剤から選択される少なくとも1種の化合物を含有し、この添加剤の濃度が1質量%以下であり、
シリコン窒化物、Al2O3およびHfO2から選択される材料をエッチングする絶縁膜エッチング剤。
(2) 前記ポリビニル系高分子がポリビニルピロリドンである上記(1)の絶縁膜エッチング剤。
(3) 前記ポリビニルピロリドンの重量平均分子量が5000以上である上記(2)の絶縁膜エッチング剤。
(4) 前記界面活性剤がカチオン性界面活性剤である上記(1)の絶縁膜エッチング剤。
(5) 前記界面活性剤がフッ化アルキル基を疎水部として有する上記(1)の絶縁膜エッチング剤。
(6) 前記添加剤の濃度が0.005質量%以上である上記(1)〜(5)のいずれかの絶縁膜エッチング剤。
(7) 前記リン酸水溶液の濃度が40〜90質量%である上記(1)〜(6)のいずれかの絶縁膜エッチング剤。
【0008】
【発明の実施の形態】
本発明では、リン酸水溶液によるSi表面荒れを防止するために、Siの表面の性質を利用する。SiはSi−H末端となって存在する場合、表面が疎水性を保っている。そのため、リン酸のような親水性の高い溶媒に疎水部を持つ界面活性剤や水溶性高分子などを少量添加することにより、疎水性表面となっているSi表面にこれら疎水部を持つ分子を選択的に吸着させることができる。このことを利用すれば、Siに対するリン酸分子のアタックを吸着分子により妨げることができ、一方、疎水部をもつ上記の分子が相対的に吸着し難い親水性表面をもつSi窒化膜やHigh-k膜のエッチングは従来どおり行うことができる。
【0009】
疎水部をもつこれらの分子に要求される性質は、高濃度のリン酸水溶液中で安定に分散し、160℃という高温かつ強酸条件下で長時間分解しないことである。しかし、一般的な界面活性剤や水溶性高分子はそのような条件下では炭化などの分解を受け、安定に存在するとはできない。そこで、このような条件下で安定に溶解状態を保てる化合物として、ポリビニル系の水溶性高分子、カチオン性界面活性剤、フッ化アルキル基、好ましくはパーフルオロアルキル基を持つ界面活性剤の3種が抽出された。
【0010】
まず、ビニル系の水溶性高分子は主鎖がすべて共有結合であるC−C結合で構成されているため、高温かつ強酸条件下でも主鎖が分裂することがなく安定であるが、さらに側鎖にもピロリドン骨格などの安定な官能基でかつ親水性の官能基を有するものが必要である。また、ポリビニルアルコールやポリアクリル酸などの反応性のある官能基を側鎖に有するものや分解を受けやすい芳香環を有するものは好ましくない。以上から、ビニル系の水溶性高分子としては、ポリビニルピロリドン、水溶性のポリアクリルアミド誘導体、ポリビニルマレイミドなどが好ましい。
【0011】
リン酸水溶液にポリビニルピロリドンを添加する場合、ポリビニルピロリドンの重量平均分子量がエッチング速度およびSi表面荒れに与える影響は小さい。ただし、重量平均分子量が小さすぎると、高温かつ強酸条件下での安定性が低下して本発明の効果が阻害されるため、ポリビニルピロリドンの重量平均分子量は5000以上であることが好ましい。一方、重量平均分子量が大きすぎると、粘度が高く取り扱いにくくなり、また、リン酸水溶液に対する溶解性が減少するため、ポリビニルピロリドンの重量平均分子量は1000万以下であることが好ましい。
【0012】
次に、カチオン性の界面活性剤はカチオン基がリン酸と塩を形成するため、水溶性の官能基が比較的安定化される。さらに、疎水部が脂肪族であれば、全体が安定となるので使用が可能となる。このような化合物としては、4級アンモニウム系のトリメチルラウリルアンモニウムクロライド、テトラブチルアンモニウムクロライドなどが例として挙げられる。
【0013】
最後に、パーフルオロアルキル基を疎水部としてもつ界面活性剤であるが、パーフルオロアルキルの高温での耐酸性の観点から安定であると考えられる。例としては、パーフルオロアルキルスルホン酸、パーフルオロアルキル4級アンモニウムなどが挙げられる。なお、パーフルオロアルキル基を疎水部としてもつ界面活性剤におけるパーフルオロアルキル基の炭素数は特に限定されないが、一般に3〜12程度である。
【0014】
なお、本発明では添加剤を2種以上併用してもよい。
【0015】
本発明のエッチング剤は、Siウェーハ上に形成する大規模集積回路(LSI)やガラス基板上に形成する液晶用薄膜トランジスタ(TFT)において、シリコン窒化膜を素子間分離などのパターン形成時のマスクとして使用した後の除去工程や、High-kゲート絶縁膜上にゲート電極を形成後に不要となった部分のゲート絶縁膜を除去する工程に適用される。具体的には、シリコン窒化膜をSi基板上にCVDにて成膜し、それをフォトリソグラフィー及びドライエッチングにてパターニング後、残ったシリコン窒化膜をマスクにして部分酸化していわゆる“LOCOS”(local oxidation of silicon )構造を形成するか、あるいは素子分離構造を形成する際に基板Siをドライエッチングして、いわゆる“STI”(shallow trench isolation )構造を形成するためのSiO2を埋め込む溝を形成するかした後に、不要となったシリコン窒化膜を除去する工程に本発明のエッチング剤は用いられる。また、本発明のエッチング剤は、Si基板上にHigh-k材を成膜しゲート電極を形成後、不要な部分のHigh-k膜を除去する工程にも適用することができる。
【0016】
なお、本明細書においてHigh-k材とは、SiO2より誘電率の高い金属酸化物を意味し、例えばAl2O3、ZrO2、HfO2、Ta2O5、TiO2、La2O3が挙げられ、これらのうち本発明が特に有効なのはAl2O3、ZrO2、HfO2である。これらのHigh-k材は、ゲート絶縁膜に用いられる。
【0017】
本発明のエッチング剤を使用するための装置は、スプレー式枚葉装置、ディップ式バス装置、スプレー式バッチ装置などのいずれでもよいが、高温を使用するためディップ式バス装置が最も好ましい。
【0018】
本発明のエッチング剤において、リン酸濃度は好ましくは40〜90質量%、より好ましくは60〜85質量%であり、添加剤濃度は1質量%以下、好ましくは0.005〜1質量%、さらに好ましくは0.01〜0.2質量%である。リン酸濃度の低下はエッチング剤の沸騰やエッチング速度の低下を招き、リン酸濃度の増大もエッチング速度の低下を招く。添加剤濃度の増大は粘度上昇による取扱い上の問題点やエッチング速度の低下を招き、添加剤濃度の低下はSiの表面荒れの原因ともなりうる。
【0019】
なお、本発明のエッチング剤に用いるリン酸は、オルトリン酸(H3PO4)である。
【0020】
エッチング処理の際の条件は、エッチング対象物が十分にエッチングでき、かつ、エッチング対象物以外へのダメージを防げるように適宜設定すればよいが、通常、シリコン窒化膜、High-k膜のいずれに対してもエッチング剤の液温を100〜160℃とし、処理時間を1〜30分程度とすることが好ましい。
【0021】
エッチング剤による処理後は直接水にてリンスすることが可能であるが、添加剤が基板上に残存することを防ぐため、リンスは15分以上行うことが好ましい。循環式のフィルターラインを有する装置を使用する場合には、本発明のエッチング剤はくり返し使用することが可能であり、その際、エッチング剤中の水分含量を一定に保つことにより安定したエッチング速度を得ることが可能となる。
【0022】
【実施例】
以下に実施例を示し、具体的な発明の実施形態を説明する。
【0023】
実施例1(添加剤の高温での安定性)
電子工業用グレード85%リン酸水溶液100g に対して、表1に示した添加剤の5%水溶液を1g 混合してエッチング剤を調製した。次いで、これらのエッチング剤を予め160℃に設定しておいたオイルバス中にて加温し、5時間そのまま放置した。放置後のエッチング剤の性状を、表1に示す。
【0024】
【表1】
【0025】
表1に示すように、ポリビニル系の水溶性高分子であるポリビニルピロリドン、カチオン性界面活性剤であるトリメチルラウリルアンモニウムクロライド、さらにはパーフルオロアルキル基が疎水部となっているパーフルオロアルキルスルホン酸の3種のいずれかを添加した系のみ無色透明の状態を維持し安定であり、その他の成分の添加系では着色したり不溶物が析出したりして変質したと考えられる。
【0026】
実施例2(Si表面荒れの抑制効果)
実施例1と同様に85%リン酸水溶液に種々の添加剤を添加して、エッチング剤を調製した。また、HF処理を施すことにより自然酸化膜を除去した(100)P伝導型シリコンチップを用意した。次いで、150℃に加温したエッチング剤にチップを浸漬し、1.5時間後に各チップを取り出し、その表面状態を走査型電子顕微鏡(SEM)にて観察した。結果を表2に示す。
【0027】
【表2】
【0028】
表2から、リン酸水溶液に水溶性高分子または界面活性剤を添加することにより、Si表面荒れを抑制できることがわかる。また、添加剤としてポリビニルピロリドン、トリメチルラウリルアンモニウムクロライドまたはパーフルオロアルキルスルホン酸を用いた場合には、シリコンチップは平坦な状態を保っており、一方、その他の添加剤を添加したものではシリコンの一部が酸化されてウォータマークが生成していた。
【0029】
表1の結果とあわせて考えると、ポリビニルピロリドン、トリメチルラウリルアンモニウムクロライドおよびパーフルオロアルキルスルホン酸は、高温かつ強酸条件下でも変質しないために、Si表面荒れ防止効果が十分に実現したものと考えられる。
【0030】
実施例3(シリコン窒化膜のエッチング)
シリコン基板上にシリコン窒化膜を約100nmの厚さで積層したチップを用意し、実施例2と同様に85%リン酸水溶液に添加剤を加えたエッチング剤(150℃)に上記チップを10分間浸漬した。その処理前後でのシリコン窒化膜の膜厚を反射率分光測定法にて計測し、得られたシリコン窒化膜の膜べり(エッチング)量を表3に示す。
【0031】
【表3】
【0032】
ポリビニルピロリドン(重量平均分子量=300万)を0.05質量%添加した場合には、エッチング量が添加剤なしのリン酸水溶液と変わらないが、濃度を0.5質量%とするとエッチング量が半減してしまい、大量の添加剤の添加はエッチングを阻害してしまうことがわかる。また、ポリビニルピロリドン、トリメチルラウリルアンモニウムクロライド、パーフルオロアルキルスルホン酸の三者を比較すると、ポリビニルピロリドン以外の2成分では若干エッチング量が低下する傾向が認められた。なお、ポリビニルピロリドンの分子量による影響は小さかった。
【0033】
実施例4( High-k 材料のエッチング)
(100)P伝導型シリコンウェーハ上に、CVD法によりAl2O3またはHfO2を約5nmの厚さに積層し、これを平面寸法2cm×2cmの正方形にカットして、チップを作製した。このチップを実施例3と同様にリン酸水溶液に添加剤を加えたエッチング剤(150℃)に5分間浸漬した後、取り出した。次いで、エッチング剤を放冷後、エッチング剤中に溶出したAlおよびHfの濃度を誘導結合プラズマ質量分析装置(ICP−MS)にて定量することで、膜べり(エッチング)量を計算したほか、処理後のチップをSEM観察し、二次電子線の反射具合から表面にこれらの膜が存在するか否かと、シリコン表面に荒れがあるか否かとを調べた。結果を表4にまとめて示す。
【0034】
【表4】
【0035】
表4において、SEM観察結果が「平坦・BareSiと同じ」とあるのは、チップ表面での二次電子線の反射具合がSi表面でのそれと同じであって、かつ、チップ表面に荒れがなく平坦であったという意味である。表4から、ポリビニルピロリドン(重量平均分子量=300万)を0.05質量%の濃度で含むリン酸水溶液を用いてチップを150℃、5分間処理すると、High-k材が全量エッチングされてなくなり、Si表面が露出したと考えられる。しかも、露出したSi表面は、荒れがなく平坦であったことがわかる。
【0036】
実施例5
電子工業用グレードの85%リン酸水溶液に、重量平均分子量20万のポリビニルピロリドンをそれぞれ0.001質量%から0.07質量%添加したエッチング剤を調製し、125℃、3時間処理後におけるシリコンチップの表面の様子と、処理時間10〜30分でのシリコン窒化膜の膜減り量とを測定した。これらの結果を表5に示す。なお、表5には、膜減り量から求めたシリコン窒化膜のエッチングレートを示してある。
【0037】
【表5】
【0038】
表5に示すように、添加剤濃度0.005質量%でも効果が認められ、0.01質量%以上の添加濃度であればシリコンチップ表面に荒れが生じなくなることがわかった。一方、シリコン窒化膜の膜減り量から計算されたエッチングレートは同じ表5に示すとおり、添加量0.005質量%から0.07質量%の間でほとんど変化しないことがわかった。
【0039】
【発明の効果】
本発明のエッチング剤を用いることにより、シリコン窒化膜のエッチング時やエッチングされ難いHigh-k絶縁膜のエッチング時に一部露出してしまうSi基板の表面荒れ(腐食)を防止できるので、回路を微細化した場合においても高い歩留まりが達成されるようになる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aqueous phosphoric acid solution used for etching an insulating film, and particularly to a wet etching technique in a semiconductor manufacturing process.
[0002]
[Prior art]
In the formation of large-scale integrated circuits (ULSI), in recent years, the introduction of new materials such as high-k gate insulating films has progressed with the miniaturization of circuits in order to increase the speed and reduce power consumption of transistors. is doing.
[0003]
Currently, when forming an element isolation structure, a silicon nitride film is used as a mask material, and when etching this, a phosphoric acid aqueous solution heated to about 160 ° C., so-called “hot phosphoric acid” is used. Yes. However, in this process, the silicon portion exposed during the etching of the silicon nitride film is corroded and roughened, so-called roughening of the Si surface occurs. Therefore, the influence of the roughening of the Si surface increases with circuit miniaturization, and the device yield and reliability are increased. It is regarded as a problem that there is a possibility of greatly reducing
[0004]
On the other hand, in recent years, with the miniaturization of circuits, the gate insulating film has been extremely thinned, but the gate leakage current generated at that time cannot be ignored. Therefore, as an alternative to SiO 2 currently used for the gate insulating film, gate insulation is performed by using a so-called “High-k material” such as Al 2 O 3 , ZrO 2 , and HfO 2 having a dielectric constant higher than that of SiO 2. The number of cases where films are formed has increased. Since the capacitance of the insulating film is proportional to the dielectric constant and inversely proportional to the film thickness, using a high-k material can increase the physical film thickness without changing the electrical effective film thickness compared to using SiO 2 . As a result, the leakage current can be reduced. Such a high-k insulating film is difficult to etch and can only be etched with HF dilute solution or hot phosphoric acid. However, if an HF diluting solution is used in this etching, the SiO 2 in the portion that is not the etching target is etched, whereas if hot phosphoric acid is used, the Si surface becomes rough, which is a problem.
[0005]
[Problems to be solved by the invention]
As described above, in the ULSI manufacturing process, there has been a problem with hot phosphoric acid that has been used as an etchant for silicon nitride films when miniaturization and introduction of new materials aiming at higher performance. There are two major problems. The first is the problem of surface roughness of the Si, which is a problem at the same time as the accuracy of silicon nitride film etching increases with miniaturization. The second is the high- This is etching of the k insulating film and roughening of the Si surface at that time. That is, the silicon phosphor film etching and the high-k gate insulating film etching at the time of circuit miniaturization are severely roughened on the Si surface, making it impossible to apply the conventional hot phosphoric acid process.
[0006]
Therefore, hot phosphoric acid improved so as to etch a silicon nitride film and a high-k material and prevent surface roughness against Si is eagerly desired by the market. Therefore, in the present invention, an etching agent that can perform the above two problems in almost the same process as hot phosphoric acid and can etch a silicon nitride film or a high-k insulating film while effectively suppressing Si surface roughness is put on the market. The purpose is to provide.
[0007]
[Means for Solving the Problems]
Such an object is achieved by any one of the following configurations (1) to (7).
(1) The aqueous phosphoric acid solution contains at least one compound selected from a water-soluble polymer that is a polyvinyl polymer, a cationic surfactant, and a surfactant having a fluorinated alkyl group as an additive. The concentration of this additive is 1% by weight or less,
An insulating film etchant for etching a material selected from silicon nitride, Al 2 O 3 and HfO 2 .
(2) The insulating film etching agent according to (1), wherein the polyvinyl polymer is polyvinylpyrrolidone.
(3) The insulating film etching agent according to (2), wherein the polyvinyl pyrrolidone has a weight average molecular weight of 5000 or more.
(4) The insulating film etching agent according to (1), wherein the surfactant is a cationic surfactant.
(5) The insulating film etching agent according to (1), wherein the surfactant has a fluorinated alkyl group as a hydrophobic portion.
(6) The insulating film etching agent according to any one of (1) to (5), wherein the concentration of the additive is 0.005% by mass or more.
(7) The insulating film etching agent according to any one of (1) to (6), wherein the concentration of the phosphoric acid aqueous solution is 40 to 90% by mass.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the property of the surface of Si is used in order to prevent the Si surface from being roughened by the phosphoric acid aqueous solution. When Si is present at the Si-H end, the surface remains hydrophobic. Therefore, by adding a small amount of a surfactant having a hydrophobic part or a water-soluble polymer to a highly hydrophilic solvent such as phosphoric acid, molecules having these hydrophobic parts are formed on the Si surface which is a hydrophobic surface. It can be selectively adsorbed. If this is utilized, the attack of the phosphoric acid molecule with respect to Si can be prevented by the adsorbed molecule, while the above-mentioned molecule having a hydrophobic portion is relatively difficult to adsorb and a Si nitride film having a hydrophilic surface or a high- The k film can be etched as usual.
[0009]
The properties required for these molecules having a hydrophobic portion are that they are stably dispersed in a high concentration phosphoric acid aqueous solution and do not decompose for a long time at a high temperature of 160 ° C. and strong acid conditions. However, general surfactants and water-soluble polymers are subject to decomposition such as carbonization under such conditions and cannot exist stably. Therefore, as a compound that can stably maintain a dissolved state under such conditions, there are three types of surfactants: a polyvinyl-based water-soluble polymer, a cationic surfactant, a fluoroalkyl group, preferably a perfluoroalkyl group. Was extracted.
[0010]
First, vinyl-based water-soluble polymers are composed of C—C bonds, all of which are covalent bonds, so that the main chain is stable even under high temperature and strong acid conditions. The chain also needs to have a stable functional group such as a pyrrolidone skeleton and a hydrophilic functional group. Further, those having a reactive functional group such as polyvinyl alcohol or polyacrylic acid in the side chain and those having an aromatic ring that is susceptible to decomposition are not preferred. From the above, as the vinyl-based water-soluble polymer, polyvinyl pyrrolidone, a water-soluble polyacrylamide derivative, polyvinyl maleimide and the like are preferable.
[0011]
When polyvinylpyrrolidone is added to the phosphoric acid aqueous solution, the influence of the weight average molecular weight of polyvinylpyrrolidone on the etching rate and Si surface roughness is small. However, if the weight average molecular weight is too small, the stability under high temperature and strong acid conditions is lowered and the effect of the present invention is inhibited. Therefore, the weight average molecular weight of polyvinylpyrrolidone is preferably 5000 or more. On the other hand, if the weight average molecular weight is too large, the viscosity is high and the handling becomes difficult, and the solubility in an aqueous phosphoric acid solution is reduced. Therefore, the weight average molecular weight of polyvinylpyrrolidone is preferably 10 million or less.
[0012]
Next, in the cationic surfactant, since the cationic group forms a salt with phosphoric acid, the water-soluble functional group is relatively stabilized. Furthermore, if the hydrophobic part is aliphatic, the whole is stable and can be used. Examples of such compounds include quaternary ammonium trimethyllauryl ammonium chloride and tetrabutyl ammonium chloride.
[0013]
Finally, it is a surfactant having a perfluoroalkyl group as a hydrophobic part, but is considered to be stable from the viewpoint of acid resistance of perfluoroalkyl at high temperatures. Examples include perfluoroalkyl sulfonic acid and perfluoroalkyl quaternary ammonium. In addition, the carbon number of the perfluoroalkyl group in the surfactant having a perfluoroalkyl group as a hydrophobic portion is not particularly limited, but is generally about 3 to 12.
[0014]
In the present invention, two or more additives may be used in combination.
[0015]
The etching agent of the present invention is used as a mask for pattern formation such as element separation in a large scale integrated circuit (LSI) formed on a Si wafer or a liquid crystal thin film transistor (TFT) formed on a glass substrate. It is applied to a removal process after use or a process of removing a portion of the gate insulating film that is no longer necessary after forming a gate electrode on the high-k gate insulating film. Specifically, a silicon nitride film is formed on a Si substrate by CVD, patterned by photolithography and dry etching, and then partially oxidized using the remaining silicon nitride film as a mask, so-called “LOCOS” ( When forming a local oxidation of silicon) structure, or forming an element isolation structure, the substrate Si is dry-etched to form a trench embedding SiO 2 for forming a so-called “STI” (shallow trench isolation) structure After that, the etching agent of the present invention is used in the step of removing the silicon nitride film that is no longer needed. The etching agent of the present invention can also be applied to a process of removing an unnecessary portion of the high-k film after forming a high-k material on a Si substrate and forming a gate electrode.
[0016]
In this specification, the high-k material means a metal oxide having a dielectric constant higher than that of SiO 2 , for example, Al 2 O 3 , ZrO 2 , HfO 2 , Ta 2 O 5 , TiO 2 , La 2 O. 3 and the like, the present invention among these is particularly effective is Al 2 O 3, ZrO 2, HfO 2. These high-k materials are used for the gate insulating film.
[0017]
The apparatus for using the etching agent of the present invention may be any of a spray-type single wafer apparatus, a dip-type bath apparatus, a spray-type batch apparatus, etc., but a dip-type bath apparatus is most preferable because it uses a high temperature.
[0018]
In the etching agent of the present invention, the phosphoric acid concentration is preferably 40 to 90 mass%, more preferably 60 to 85 mass%, and the additive concentration is 1 mass% or less, preferably 0.005 to 1 mass%, Preferably it is 0.01-0.2 mass%. A decrease in phosphoric acid concentration causes boiling of the etching agent and a decrease in etching rate, and an increase in phosphoric acid concentration also causes a decrease in etching rate. An increase in the additive concentration causes a problem in handling due to an increase in viscosity and a decrease in the etching rate, and a decrease in the additive concentration may cause a surface roughness of Si.
[0019]
Incidentally, phosphoric acid used in the etching agent of the present invention is orthophosphoric acid (H 3 PO 4).
[0020]
The conditions for the etching process may be set as appropriate so that the object to be etched can be etched sufficiently, and damage to other than the object to be etched can be prevented, but in general, either silicon nitride film or high-k film is used. In contrast, it is preferable that the liquid temperature of the etching agent is 100 to 160 ° C. and the processing time is about 1 to 30 minutes.
[0021]
Although it is possible to rinse directly with water after the treatment with the etching agent, the rinse is preferably performed for 15 minutes or longer in order to prevent the additive from remaining on the substrate. When an apparatus having a circulation type filter line is used, the etching agent of the present invention can be used repeatedly. In this case, a stable etching rate can be obtained by keeping the moisture content in the etching agent constant. Can be obtained.
[0022]
【Example】
Examples are given below to describe specific embodiments of the invention.
[0023]
Example 1 (Stability of additive at high temperature)
An etching agent was prepared by mixing 1 g of a 5% aqueous solution of the additive shown in Table 1 with 100 g of 85% phosphoric acid aqueous solution for electronic industry. Next, these etching agents were heated in an oil bath set at 160 ° C. in advance, and left for 5 hours. Table 1 shows the properties of the etching agent after standing.
[0024]
[Table 1]
[0025]
As shown in Table 1, polyvinyl pyrrolidone, which is a polyvinyl-based water-soluble polymer, trimethyl lauryl ammonium chloride, which is a cationic surfactant, and perfluoroalkyl sulfonic acid having a perfluoroalkyl group as a hydrophobic portion. Only the system to which any of the three types is added maintains a colorless and transparent state and is stable. In the system to which other components are added, it is considered that the system has been altered due to coloring or insoluble precipitates.
[0026]
Example 2 (Suppression effect of Si surface roughness)
In the same manner as in Example 1, various additives were added to the 85% phosphoric acid aqueous solution to prepare an etching agent. In addition, a (100) P conductive silicon chip from which a natural oxide film was removed by HF treatment was prepared. Next, the chips were immersed in an etching agent heated to 150 ° C., and each chip was taken out after 1.5 hours, and the surface state thereof was observed with a scanning electron microscope (SEM). The results are shown in Table 2.
[0027]
[Table 2]
[0028]
From Table 2, it can be seen that Si surface roughness can be suppressed by adding a water-soluble polymer or surfactant to the phosphoric acid aqueous solution. In addition, when polyvinyl pyrrolidone, trimethyl lauryl ammonium chloride or perfluoroalkyl sulfonic acid is used as an additive, the silicon chip is kept flat, while other additives are added to silicon. The part was oxidized and a watermark was generated.
[0029]
Considering together with the results in Table 1, it is considered that polyvinylpyrrolidone, trimethyllauryl ammonium chloride and perfluoroalkylsulfonic acid did not change even under high temperature and strong acid conditions, and thus the Si surface roughening preventing effect was sufficiently realized. .
[0030]
Example 3 (etching of silicon nitride film)
A chip was prepared by laminating a silicon nitride film with a thickness of about 100 nm on a silicon substrate. Similar to Example 2, the chip was placed in an etching agent (150 ° C.) obtained by adding an additive to an 85% aqueous phosphoric acid solution for 10 minutes. Soaked. The film thickness of the silicon nitride film before and after the treatment was measured by reflectance spectroscopy, and the amount of film slip (etching) of the obtained silicon nitride film is shown in Table 3.
[0031]
[Table 3]
[0032]
When 0.05% by mass of polyvinylpyrrolidone (weight average molecular weight = 3 million) is added, the etching amount is the same as that of an aqueous phosphoric acid solution without an additive, but when the concentration is 0.5% by mass, the etching amount is halved. Thus, it can be seen that the addition of a large amount of additive hinders etching. In addition, when the three of polyvinyl pyrrolidone, trimethyl lauryl ammonium chloride, and perfluoroalkyl sulfonic acid were compared, the etching amount of the two components other than polyvinyl pyrrolidone was slightly decreased. The influence of the molecular weight of polyvinylpyrrolidone was small.
[0033]
Example 4 ( etching of high-k material)
On a (100) P-conductivity type silicon wafer, Al 2 O 3 or HfO 2 was laminated to a thickness of about 5 nm by a CVD method, and this was cut into a square with a plane size of 2 cm × 2 cm to produce a chip. This chip was taken out for 5 minutes in an etching agent (150 ° C.) obtained by adding an additive to an aqueous phosphoric acid solution in the same manner as in Example 3 and then taken out. Next, after allowing the etchant to cool, the amount of Al and Hf eluted in the etchant was quantified with an inductively coupled plasma mass spectrometer (ICP-MS) to calculate the amount of film slip (etching). The treated chip was observed with an SEM, and it was examined whether or not these films were present on the surface and whether or not the silicon surface was rough based on the reflection of the secondary electron beam. The results are summarized in Table 4.
[0034]
[Table 4]
[0035]
In Table 4, the SEM observation result is “same as flat / BareSi” because the secondary electron beam reflection on the chip surface is the same as that on the Si surface and the chip surface is not rough. It means that it was flat. From Table 4, when a chip is treated at 150 ° C. for 5 minutes using an aqueous phosphoric acid solution containing polyvinyl pyrrolidone (weight average molecular weight = 3 million) at a concentration of 0.05 mass%, the high-k material is not etched completely. It is considered that the Si surface was exposed. Moreover, it can be seen that the exposed Si surface was flat with no roughness.
[0036]
Example 5
An etching agent prepared by adding 0.001% by mass to 0.07% by mass of polyvinylpyrrolidone having a weight average molecular weight of 200,000 to an electronic industrial grade 85% phosphoric acid aqueous solution and treating the silicon after treatment at 125 ° C. for 3 hours. The state of the surface of the chip and the amount of reduction of the silicon nitride film in the processing time of 10 to 30 minutes were measured. These results are shown in Table 5. Table 5 shows the etching rate of the silicon nitride film obtained from the amount of film reduction.
[0037]
[Table 5]
[0038]
As shown in Table 5, the effect was recognized even at an additive concentration of 0.005% by mass, and it was found that if the additive concentration was 0.01% by mass or more, the surface of the silicon chip was not roughened. On the other hand, as shown in Table 5, the etching rate calculated from the reduction amount of the silicon nitride film was found to hardly change between 0.005 mass% and 0.07 mass%.
[0039]
【The invention's effect】
By using the etching agent of the present invention, it is possible to prevent the surface roughness (corrosion) of the Si substrate that is partially exposed when etching a silicon nitride film or a high-k insulating film that is difficult to be etched. Even in such a case, a high yield can be achieved.
Claims (7)
シリコン窒化物、Al2O3およびHfO2から選択される材料をエッチングする絶縁膜エッチング剤。The phosphoric acid aqueous solution contains, as an additive, at least one compound selected from a water-soluble polymer that is a polyvinyl polymer, a cationic surfactant, and a surfactant having a fluorinated alkyl group. The concentration of the agent is 1% by mass or less,
An insulating film etchant for etching a material selected from silicon nitride, Al 2 O 3 and HfO 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002057481A JP3751255B2 (en) | 2002-03-04 | 2002-03-04 | Insulating film etchant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002057481A JP3751255B2 (en) | 2002-03-04 | 2002-03-04 | Insulating film etchant |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003257952A JP2003257952A (en) | 2003-09-12 |
JP3751255B2 true JP3751255B2 (en) | 2006-03-01 |
Family
ID=28667729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002057481A Expired - Lifetime JP3751255B2 (en) | 2002-03-04 | 2002-03-04 | Insulating film etchant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3751255B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI282814B (en) * | 2002-09-13 | 2007-06-21 | Daikin Ind Ltd | Etchant and etching method |
JP4229762B2 (en) | 2003-06-06 | 2009-02-25 | Necエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
WO2012043830A1 (en) * | 2010-10-01 | 2012-04-05 | 和光純薬工業株式会社 | Etching agent and etching method |
JP6486879B2 (en) * | 2016-09-26 | 2019-03-20 | 株式会社東芝 | Etching solution and substrate processing method |
CN116855251B (en) * | 2023-06-30 | 2024-07-09 | 浙江奥首材料科技有限公司 | High-selectivity semiconductor chip silicon dioxide etching solution, preparation method and application thereof |
-
2002
- 2002-03-04 JP JP2002057481A patent/JP3751255B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003257952A (en) | 2003-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110777381B (en) | Composition for TiN hardmask removal and etch residue cleaning | |
EP2798669B1 (en) | Compositions and methods for selectively etching titanium nitride | |
JP4642001B2 (en) | Composition for removing photoresist residue and polymer residue | |
US6303514B1 (en) | Composition and method for selectively etching a silicon nitride film | |
KR102315310B1 (en) | Selectively removing titanium nitride hard mask and etch residue removal | |
JP4904111B2 (en) | Insulating film removal method | |
KR101380487B1 (en) | Etching solution for silicon nitride layer | |
KR20160133550A (en) | Etching composition | |
JP4988165B2 (en) | Photoresist stripping composition and method for stripping photoresist | |
KR20050080729A (en) | Composition for cleaning a semiconductor substrate, method of cleaning and method for manufacturing a conductive structure using the same | |
IL247182A (en) | Liquid composition for cleaning semiconductor device and method for cleaning semiconductor device | |
US6787293B2 (en) | Photoresist residue remover composition | |
JP5037442B2 (en) | Titanium nitride removing liquid, method for removing titanium nitride film, and method for producing titanium nitride removing liquid | |
US20130200040A1 (en) | Titanium nitride removal | |
KR20120140481A (en) | Etchant for metal interconnects and method for preparing liquid crystal display devices using the same | |
KR101156490B1 (en) | Cleaning composition for semiconductor device and cleaning method of semiconductor device using the same | |
EP3787008B1 (en) | Aqueous composition and cleaning method using same | |
JP3751255B2 (en) | Insulating film etchant | |
KR101132084B1 (en) | Cleaning compositions with very low dielectric etch rates | |
JP4758187B2 (en) | Photoresist residue and polymer residue remover | |
KR102636997B1 (en) | Composition for manufacturing polysilicon etchant and polysilicon etchant comprising the same | |
KR101829399B1 (en) | photosensitive-resin remover composition and method of fabricating semiconductor device using the same | |
KR20190131911A (en) | Insulation layer etchant composition comprising the silane compound and method of forming pattern using the same | |
TW202346542A (en) | Silicon nitride etching liquid composition | |
CN105543008A (en) | Detergent composition for cleaning treatment of low-K dielectric material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040709 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040713 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050817 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050922 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051014 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051026 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20051031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051206 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3751255 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081216 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091216 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091216 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101216 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101216 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111216 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121216 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121216 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131216 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |