JP3750601B2 - Watertight construction method - Google Patents

Watertight construction method Download PDF

Info

Publication number
JP3750601B2
JP3750601B2 JP2001390883A JP2001390883A JP3750601B2 JP 3750601 B2 JP3750601 B2 JP 3750601B2 JP 2001390883 A JP2001390883 A JP 2001390883A JP 2001390883 A JP2001390883 A JP 2001390883A JP 3750601 B2 JP3750601 B2 JP 3750601B2
Authority
JP
Japan
Prior art keywords
tool
watertight
members
aluminum
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001390883A
Other languages
Japanese (ja)
Other versions
JP2002248580A (en
Inventor
一浩 桑原
慎也 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2001390883A priority Critical patent/JP3750601B2/en
Publication of JP2002248580A publication Critical patent/JP2002248580A/en
Application granted granted Critical
Publication of JP3750601B2 publication Critical patent/JP3750601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウムまたはアルミニウム合金製からなる複数の押出形材や板材等の部材同士を接合し且つ水密構造を構成する水密施工方法に関する。
【0002】
【従来の技術】
アルミニウムまたはアルミニウム合金(以下、アルミニウムと称する)部材は、軽量であると共に耐食性にも優れているため、建築・構築用やトラック等の車両における平面状または立体状の構造に活用されている。この場合、アルミニウム部材同士の接合部における水密構造は、種々のものが考えられていた。
例えば、空間を仕切る壁面等を形成する場合、図11(A)に示すように、複数のアルミニウム製の断面が略平坦な押出形材142のL形端部144同士を重ね合わせ、その重ね合わせ部の凹溝145にシーリング146を充填することにより、上記形材142同士を接合して水密構造140を形成している。尚、各形材142は、予めネジ148により胴縁147に固定されている。
【0003】
また、図11(B)に示すように、複数のアルミニウム製の中空押出形材151同士を用いる水密構造150も広く行われている。各押出形材151は断面全体が偏平した矩形で、一方の端部に沿って底広凹溝152を、他方の端部に沿って先太凸条154を有し、且つそれらの両側に断面鋭角な段部156を有する。
そして、これら底広凹溝152と先太凸条154とを嵌合すると共に、上記段部156同士から形成される図示で上下の各側面の凹部内に、合成樹脂からなる断面台形のパッキン材158を強制的に嵌装する。水密構造150は、上記形材151同士の接合強度を雄雌嵌合部(152,154)により維持し、形材151間の水・気密(密封)性を上記パッキン材158により確保するものである。
【0004】
更に、図11(C)に示すように、断面が偏平チャンネル状を呈するアルミニウム製の押出形材162同士を用いる水密構造160も行われている。各押出形材162は、端部に直角に曲げて形成されたフランジ164同士を薄いパッキン材168を挟んで突合わせている。そして、各フランジ164に穿設した複数の通し孔にボルト166を貫通し、その各雄ネジ部にナット167をそれぞれ螺着する。水密構造160は、押出形材162間をパッキン材168とボルト166・ナット167とにより水密性を確保している。
【0005】
更に、図11(D)に示す水密構造170はカーテンオール(図中右側は屋内、左側は屋外である)の接合部を完全に水密を図る目的で開発されたもので、前記水密構造150等で示されるパッキン材158,168を利用するものを改良したものである。水密構造170は、屋内側において上下の部材172,173間にパッキン材177,178を設けて当接させ、屋外側に隙間176を形成し、パッキン材178等と隙間176間に大きな空間174を形成したものである。
この水密構造170によれば、空間174は隙間176により外気圧と同じ気圧にあり、圧力差により隙間176から空間174内に雨水が進入しない。また、運動エネルギを伴って隙間176から進入した雨水も空間174内に進入するが、パッキン材178等は隙間176から見通せない高い位置にあるのでこれらにまで達しない。更に、空間174内に進入した雨水は、該空間174内が外気圧と同じ気圧にあるので、重力により隙間176よりスムーズに排出される。これにより、空間174内でパッキン材178等の高さまで進入した水が蓄積されることがなく、これにより完全な水密が図るというものである。
【0006】
【発明が解決すべき課題】
しかしながら、前記水密構造140では、水密性の施工は容易である反面、経年変化により水密性が劣化する、という問題がある。
また、前記水密構造150は、押出形材151同士を嵌合して容易に接合できると共に、嵌合部の両側に形成される凹部内にパッキン材158を強制嵌装するだけで形成できる。しかし、形材151間に配設されるパッキン材158と各形材151とは接着されておらず、その内外(図11(B)で上下)間に風圧等により気圧の差が生じた場合、パッキン材158と形材151との間から漏水する、という問題を有する。
【0007】
更に、前記水密構造160も水密構造150と同様の問題を有する。
また、前記水密構造170では、水密のために接続される部材172,173間に隣接する部分の部材の形状が複雑になり、その形状に制限が生じると共に、経時変化によるパッキン材178等が劣化するという問題を有する。
本発明は、以上に説明した従来における各技術の問題点を解決し、事前の加工や準備作業を最小限とし、建築用や車両用等のアルミニウム製の押出形材や板材からなる部材同士間を、水密性を伴って互いに確実に且つ長期的に接合できると共に、後加工も殆んど不要とし、更には任意の接合部形状の場合にも容易に適用できる水密施工方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明は、上記の課題を解決するため、押出形材や板材同士の端部間に沿って、摩擦ピンと表面抑え部とを含む工具を用いる摩擦攪拌接合を僅かな深さで施し、表面が平坦な接合線を形成することに着想して成されたものである。
即ち、本発明の水密施工方法(請求項1)は、アルミニウムまたはアルミニウム合金からなる部材同士の表面が互いに平面状をなすように、係る部材同士の各端部を隣接させて構造材に固定し、係る端部同士間の突き合わせ部または重合部に対し、摩擦部の長さが0.5〜3.0mmで且つ摩擦部の外径が0.5〜3.0mmの摩擦ピンと、表面抑え部と、を含む工具を用いると共に、この工具を3000〜30000rpm回転数で回転しつつ上記突き合わせ部または重合部に沿って移動する摩擦攪拌接合により、上記部材同士の各端部間に水密構造を構成する接合線を形成する、ことを特徴とする。
尚、上記部材には、アルミニウムの押出形材および板材が含まれる。
【0009】
これによれば、押出形材や板材等の部材同士は、予め構造材に対し互いに隣接して固定されており、互いに突合わせ等される上記部材間の隣接する各端部に沿って、表面が平坦な浅い接合線により、金属的に隙間なく確実に接合した平面的または立体的な水密構造を容易に形成することができる。しかも、上記工具を含む接合装置を小型でハンディにできるため、各種の現場にも容易に適用できる。
上記摩擦部の長さを3.0mm以下としたのは、水密施工は一般に組立現場や、工事現場で行われるため、運搬や操作が容易で簡便な摩擦攪拌接合装置で施工可能にするためである。また、上記摩擦部の最小長さは、確実な接合が行え、水密不良を防ぐため、少なくとも0.5mmとした。
更に、摩擦部の最小外径を0.5mmとしたのは、摩擦ピンが強度上必要とする最小外径に相当するためであり、最大外径は上記接合装置の運搬や操作性の点から3.0mmとされる。即ち、摩擦攪拌接合では、摩擦ピンを押付ける力が大きな要素となるが、係る押付け力が大きくなるに連れて、その接合装置全体が大きくなり、組立現場等での利用に適さなくなるためである。
【0010】
また、本発明には、前記工具の前記突き合わせ部または重合部に沿って移動する速度は、0.02〜2m/分である、水密施工方法(請求項2)も含まれる。
更に、本発明には、前記工具に加える押し込み力は、10〜1000Nである、水密施工方法(請求項3)も含まれる。
加えて、本発明には、前記工具における表面抑え部の径は、前記摩擦ピンにおける摩擦部の外径の約2〜3倍である、水密施工方法(請求項4)も含まれる。
これらによれば、摩擦攪拌接合を小型でハンディな工具により、押出形材や板材の部材同士を確実に突合わせ状態で、水密構造を構成する接合線を確実に形成して接合できる。従って、例えば車両用や建築物の壁面または床・天井面を複数の押出形材により、水密性を付与しつつ形成することができる。
【0011】
また、本発明には、前記工具を回転する駆動源は、タービンモータである、水密施工方法(請求項5)も含まれる。これによれば、前記回転数で加点可能な工具およびこれを含む接合装置を小型でハンディにできるため、各種の現場にも容易に搬入でき且つ水密構造を要する各種の接合部に適用することが可能となる。
尚、上記タービンモータには、例えば歯科用ドリルに用いられる圧縮空気を用いたタービンモータを適用することができる。
【0012】
尚、本発明に用いる摩擦攪拌溶接(フリクション・スター・ウェルディング)の具体的な説明は、次述する実施の形態において行うが、その原理については、例えば特表平9−508073号公報を参照されたい。
【0013】
一般に、アルミニウム合金製の部材同士をMIG等のアーク溶接により溶接する場合、溶接品質が良好で密封性に優れたものとすべく、溶接条件を種々に工夫した発明が提案されている(特開平8−197255、特開平9−103884号公報参照)。
しかし、これらは、溶接ワイヤ等を別途に必要とし、且つ溶接条件を厳守して行わざるを得ないため、溶接の管理が煩雑になると共に、場合により形成された溶接ビードの頂部分を研削して除去する後加工も必要となるという問題がある。
【0014】
そこで、近年アーク溶接に比べて簡単に金属材同士を接合できる上記摩擦攪拌接合が注目され始めている。この摩擦攪拌接合は図12(A),(a)に示すように、互いに端縁を突合わせ且つ拘束された一対のアルミニウム合金製の平板180,181間の突合わせ面に沿って、回転する工具182を押圧しつつ移動させることにより行う。該工具182は、被接合材より硬度および軟化温度が高い材料からなり、回転円筒体184と、その凹んだ底面である表面抑え部186と、その中心から同軸に垂下する摩擦ピン188とからなる。そして、工具182は上記突合わせ面に沿ってやや傾けた状態で水平(左)方向に移動され、且つ垂直方向の押し込み力が付加される。尚、上記摩擦ピン188の周面には、図示しない水平方向に沿ったネジ状の摩擦攪拌翼が形成されている。
【0015】
このピン188の回転と移動とに伴って、各板180,181の突合わせ面付近のアルミニウムは、摩擦熱により加熱して可塑化されると共に、突合わせ面を挟んで各板180,181間において水平および垂直方向に流動化される。また、上記表面抑え部186は、流動化したアルミニウムの垂直方向の流動を抑制すると共に、摩擦ピン188により流動化されたアルミニウムを攪拌する。
これにより、図12(B)および(C)に示すように、上記アルミニウムは固相状態で固化した攪拌部189となる。且つ、この攪拌部189の表面は、平坦で一定の幅を有する接合線190となる。従って、従来のアーク溶接等のように盛り上がった溶接ビートがなく、後加工が容易になる。
【0016】
係る摩擦攪拌接合の従来考えられている用途は、MIG溶接等に替わる接合強度を要求される用途であった為、通常摩擦ピンの摩擦部の長さ3〜15mm、径3〜10mm、表面抑え部の径6〜25mmと比較的大きいものであった。
また、この場合、工具182の回転速度は500〜15000rpm、送り速度は0.05〜2m/分で、工具182に加える押し込み力は1kN〜20kNで行われていた。
【0017】
一方、本発明では、前記のように、工具の摩擦ピンを、摩擦部の長さ0.5〜3mm、摩擦部の径0.5〜3mmと小型化し、且つ表面抑え部の径を、摩擦ピンの外径の約2〜3倍と小径化している。
しかも、本発明では、工具の回転速度3000〜30000rpm、送り速度0.02〜2m/分で、上記工具に加える押し込み力を約10N〜1000Nで行うことにしている。上記回転数を大きくしたのは摩擦ピンの外径が小さいため、アルミニウムの軟化に必要な加熱量を得るために必要となるためである。また、押し込み力が小さくてすむのは、摩擦ピンの外径と押し込み深さが小さくなるためである。これにより小型のハンディな装置とすることが可能となり、工事現場等で使用できる可搬式の接合装置になる。
尚、摩擦ピンの寸法が上記より小さいと加工に高い精度が必要となり、ピン素材自体の寸法精度がかなり必要となって実用的でなく、且つ周面に形成する摩擦攪拌翼も十分に形成することが困難になる。また、上記寸法より大きいと上記の如く工具に大きな力が必要となり装置が大掛かりとなり、ピン素材の大きさも大きくせざるを得なくなり実用的でない。
【0018】
【発明の実施の形態】
以下において、本発明の実施に好適な形態を図面と共に説明する。
図1は、本発明の水密施工方法により形成した壁面等を構成する平面状の水密構造1に関し、図1(A)に示すように、複数の押出形材(部材)2をそれぞれの端部8で突合わせて接合するものである。
押出形材2は、アルミニウム合金JIS;A6063−T5またはT6等からなり、図示で水平な平板部3と、その下側に断面略L字形で一対の突条4,4とを左右に対称に有し、且つ平板部3の左右両端から突出するフランジ6,6の先端にはやや厚肉で断面矩形の端部8,8を一体に有し、図示で奥行き(押出)方向に長尺な形材である。上記突条4は、水密構造1が施される押出形材2,2を図示しない柱等の構造材にネジ止め等で固定するために用いられる。
【0019】
先ず、図1(A)のように、長手方向に隣接する押出形材2,2の各端部8を互いに当接させ、突合わせ部9を形成するように、条4,4を活用して形材2,2を図示しない柱等の構造材にネジ等で固定する。この状態で押出形材2,2間の突合わせ部9の上面(表面)側に沿って、図2で次述する摩擦攪拌接合を施す。
すると、図1(B),(C)に示すように、各端部8,8間に跨って、摩擦ピンの長さに応じた深さの浅い接合線Wが形成される。この接合線Wは、各端部8を形成するアルミニウムが固相状態で流動化した後に固化したものであるため、隣接する押出形材2,2を突合わせ部9に沿って金属的に接合し、確実で安定した水密構造1とすることができる。しかも、図1(C)のように、接合線Wの表面は平坦であるため、突出部もなく後加工も殆んど要しない。
尚、接合線Wを突合わせ部9の表面側に沿って形成したのは、図1(A)において各押出形材2,2を所定の位置に取付けた後で、水密施工が必要となるケースが多いためである。
【0020】
次に、上記接合線Wを形成する摩擦攪拌接合について、図2により説明する。
図2(A)および(a)に示すように、予め各形材2を端部8同士を互い突合わせて柱等に固定した後、その突合わせ部9の表面側に工具10をセットする。
係る工具10は、押出形材2より硬度および軟化温度が高い材料からなり、回転円筒体12と、その底面であって緩く湾曲して凹んだ外径4mmの表面抑え部14と、その中心から同軸にて垂下する摩擦ピン16とからなる。この摩擦ピン16は外径が1.8mm、長さが1.5mmの円柱体で、その外周面には図示しないネジ状の小さな摩擦攪拌翼が形成されている。
そして、図示のように上記円筒体12と摩擦ピン16の中心軸を、各形材2の端部8,8に対して直角から僅かに斜めにした状態で、図示しないモータにより工具10を回転させると共に、突合わせ部9に向けて下降させる。上記工具10の回転速度は、3000〜30000rpmの範囲内で適宜選択される。
【0021】
次いで、図2(B),(b)に示すように、工具10を各形材2に対し垂直方向に押圧し、上記表面抑え部14全体が各端部8の表面に達するまで摩擦ピン16を押し込む。この状態で、工具10をその傾斜した向きと反対方向の図2(b)で左方に移動させる。この送り速度は、0.05〜2メートル/分の範囲内において適宜選択される。
工具10の回転と移動に伴って、各端部8の突合わせ部9付近を形成するアルミニウムは、上記摩擦ピン16により加熱され可塑化されると共に、突合わせ部9を挟んで左右の形材2,2間において水平および垂直方向に流動化される。また、流動化されたアルミニウムは、上記抑え部14により垂直方向(表面方向)の流動に対し一定の圧力を与えられると共に、接合される各端部8の表面付近から外部に飛散することを阻止される。
【0022】
そして、図2(B)および(C)に示すように、工具10が通過した後において、流動化されたアルミニウムは流動化状態から固化して、摩擦ピン16の大きさに応じた概ね逆三角形の断面を有する前記接合線Wとなる。
図2(c)に示すように、接合線Wの表面は、表面抑え部14によりその直径の幅相当分が僅かに凹むが、突合わせ部9に沿って連続する平坦な表面Waとなる。また、接合線Wの内部には、上記抑え部14の存在により空気の巻き込みが生じないので、空孔が形成されない。
【0023】
以上の接合方法により形成される接合線Wにより複数の押出形材2を浅く接合して得られる水密構造1は、事前の加工を要さず、形材2同士を突合わせて拘束するのみで金属的な接合が突合わせ部9の全長に沿って形成されるので、平面状にした壁・床・天井面に対し、確実に水密性を長期的に安定して付与することができる。しかも、接合線Wの表面Waは平坦なため、研削等の後加工も殆ど不要である。尚、形材2の平板部3の中間を直角に折り曲げた形材か、または予め断面全体が略へ形状である形材を複数の水密構造1,1間に介在させて、上記同様の接合方法による接合線Wにて接合することにより、壁面と床面および/または天井面を連続して密封した立体的な水密構造にすることもできる。
【0024】
図3は、前記水密構造1の適用例を関し、図3(A)は建物Hの屋根部構造材Lの上下面に前記形材2を連続して配設し、これらを前記接合方法による接合線Wで互いに接合すると共に、壁部構造材Kの内外面にも前記形材2を連続して配設し、外側面のみ接合線Wで接合したものである。尚、軒先と外面側の下端には水切り片を有する端部用の形材2′を配置し、床部構造材F上には形材2,2を敷設している。
また、図3(B)は、前記水密構造1を適用したドライタイプのバン型車両Vの貨物室の縦断面図で、屋根部構造材Lの上面と壁部構造材Kの外面に沿って前記形材2を連続して配設し、これらを前記接合方法による接合線Wで互いに接合したものである。屋根部構造材Lと壁部構造材Kの出隅部にはコーナ用形材2″が、壁部構造材Kの下端には端部用の形材2′が配置されている。尚、上記建物Hや車両Vの屋根部構造材Lと壁部構造材Kが各形材2,2の支持強度を有するので、浅い接合線Wによっても充分な水密性を得ることができる。
【0025】
図4は、異なる形態の水密構造を得るための水密施工方法に関する。尚、以下において前記の形態と共通する要素には同じ符号を用いるものとする。
図4は、バン型車両等の貨物室の屋根面等を構成する平面状の水密構造20に関し、図4(A)に示すように、アルミニウム製で複数の押出形材(部材)21をそれぞれの端部24,26における係合部25,28により、その付近に形成される突合わせ部29を、前記接合方法による浅い接合線Wで接合するものである。
各押出形材21も、前記と同様の材質からなり、平板部22の図示で下側面に、断面略L字形の一対の突条23を有する。各突条23も水密構造20にした押出形材21,21をネジNで梁L等に固定される。
【0026】
図4(A)で中央の押出形材21における平板部22の左端には、厚肉且つ矩形断面の端部26と、その先端に断面L字形の係合部28とが形成される。また、平板部22の右端には、鉤形の端部24と、その先端に断面が逆L字形の係合部25とが形成されている。尚、左右に位置する形材21も同じ断面を有する。
そして、図4(B)に示すように、互いに長手方向に沿って隣接した複数の押出形材21の各係合部25,28を係合して、その付近に突合わせ部29を形成した状態で、梁Lに固定して各形材21を拘束し、上記突合わせ部29に沿ってその表面側から前記工具10を用いた摩擦攪拌接合を施す。
すると、図示のように各端部24,26に跨って、前記摩擦ピン16の大きさに応じた接合線Wが形成される。
【0027】
係る水密構造20によれば、各押出形材21は、予め係合部25,28による係合により互いに位置決めされると共に、両者間の突合わせ部29に沿って、前記接合方法による接合線Wが正確に形成されるので、各形材21の平板部22を平面状に連続させた水密性に優れた屋根面等を形成することができる。
尚、各突条23による梁L等への固定は、複数の形材21を、予め梁L等に固定した後、これらに摩擦攪拌接合を施して水密構造20を形成する。
【0028】
図5( ) ( )、参考形態の水密構造に関する。
図5(A)は、トラックの荷台における自立式の側壁(以下、アオリと称す)30のの垂直断面を示す。アオリ30はアルミニウムの押出形材からなるアッパーレール31、複数のミドルレール32、およびロアーレール33とから構成される。
各レール(部材)31,32,33は中空部35を有し、アッパーレール31とロアーレール33は、図示で右側の荷台側に開いた開口部34を有する。更に、各レール31,32,33を貫通する長尺なボルト37の両端のネジ部38は、アッパーレール31とロアーレール33の各開口部34内に位置し、座金およびダブルナット39により、各レール31,32,33を締結している。尚、各開口部34は、カバー36をリベット止め(図示せず)等することで閉塞される。
【0029】
加えて、上記各レール31,32,33間の突合わせ部には、図5(B)に示すように、それらの内外側面に沿って前記接合方法による浅い接合線Wが形成されている。この接合線Wを所望数のレール間の突合わせ部に沿って施すことにより、平面状の水密構造を有するアオリ30を形成することができる。
係るアオリ30は、複数のレール31,32,33をボルト37とナット39とで緊密に結合すると共に、内外の各目地を前記接合方法による浅い接合線Wにより接合したことにより、アオリ30の各表面が金属的に連続する。このため、従来のように、各レール31,32,33同士の嵌合部等において、連続走行に伴う摩擦によるアルミニウムの微粉末を生じることがなくなり、この粉末の酸化物にレール31,32,33間に進入した雨水が混じって黒い液体となってアオリの表面を汚したり、積み荷を損なう等の不都合を解消することができる。
【0030】
図5(C)は、本発明の水密施工方法により得られる例えば平面状の水密構造を有する間仕切40の縦断面図を示す。
間仕切40は、天井面ceと床面fに固定されるアルミニウムの押出形材41と、その間に積層される複数の形材46とから構成される。各形材(部材)41,46は断面が略矩形状の中空部43を有する。
また、上下端の各形材41からは水平なフランジ42が延在し、ボルト・ナット47により天井面ceと床面fに固定される。更に、各形材41,46の上下部の一側には上下方向に延びるフランジ44と、その反対側に位置し上下に隣接する形材の上記フランジ44を受け入れる段部45が形成されている。
【0031】
そして、各形材41,46を突合わせ、各フランジ44を対向する段部45内に挿入して嵌合し、且つ各フランジ44から段部45に向けてネジ48を螺入する。この結果、各形材41,46同士が強固に結合された間仕切40となる。
更に、図5(D)に示すように、上下の形材41,46の目地に沿って、その外側から前記工具10を用いて摩擦攪拌接合を施す。
その結果、図示のようにフランジ44と段部45とに跨って、前記接合方法による深さの浅い接合線Wが形成され、この接合線Wを所望数の形材41,46間の接続部に施すことで、所望のサイズで平面状の水密構造を有する間仕切40を形成することができる。尚、接合線Wは、各形材41,46間の何れかの表面にのみ形成しても良い。この場合、フランジ44の板厚は、前記摩擦ピン16の長さより小さくすることが必要である。
【0032】
図6(A)は、本発明の水密施工方法により得られる室内に敷設される平面状の水密構造を有する床ユニット50の一部の断面を示す。この床ユニット50は、アルミニウム製で複数の押出形材(部材)51から構成される。各押出形材51は、断面が偏平な矩形の本体52内に略矩形の中空部53を有する。
各形材51の左端部には、本体52の上面から連続して水平に突出するフランジ56と、該フランジ56先端から垂下する凸条54と、本体52の下面から水平に突出する小フランジ58が形成されている。また、各形材51の右端部には、本体52の出隅部に位置する上向きの凹溝55と、本体52の下面から水平に突出する断面略クランク形の押え条57が形成されている。
【0033】
そして、先ず図示で左側に位置する押出形材51における押え条57に桁等の床部構造材Fにから立設するアンカーボルトbを貫通し、ナット59を螺着して固定する。次に、この形材51の右側に別の形材51を配置し、その凸条54を固定済の上記形材51の凹溝55内に嵌合すると共に、その小フランジ58を上記固定済形材51の押え条57の下部に進入させる。この作業を繰り返して、複数の押出形材51を互いに結合しつつ、床部構造材F上に固定する。
更に、各形材51の上記凸条54と凹溝55との嵌合部51aに沿ってその上側から前記工具10を用いて摩擦攪拌接合を施す。
その結果、図6(B)に示すように、凸条54と凹溝55の嵌合部51aに跨って深さの浅い接合線Wが形成される。係る摩擦攪拌接合による接合線Wを、所望数の形材51間の上面側の嵌合部51aに施すことで、所望の広さで平面状の水密構造と強固な連結構造とを有する床ユニット50を形成することができる。
【0034】
図7は、異なる参考形態の水密構造に関する。
図7(A)は、アルミニウム板61同士を接合した参考形態である平面状の水密構造60に関する。各アルミニウム板(部材)61には、図示で左端にその板本体62から板厚分だけ上側に偏寄した端縁63が形成されている。そして、隣接する複数のアルミニウム板61の平坦な端部62aと上記端縁63とを重ね合わせて重合部64を形成すると共に、各アルミニウム板61の板本体62同士が同一平面内に位置するようにして、各アルミニウム板61をその長手及び幅方向に対し拘束する。そして、上記重合部59に沿って、一方の側から前記工具10を用いた前記接合方法を施す。
【0035】
その結果、図7(A)に示すように、各アルミニウム板61の端部62aと端縁63とに跨って、深さの浅い接合線Wが形成される。各アルミニウム板61の平面視における矩形の互いに隣接する2辺に上記の偏寄した端縁63を形成しておき、これらアルミニウム板61同士を上記接合線Wにより互いに全周辺を接合することにより、平面状の広い水密構造60を形成することができる。
尚、一部のアルミニウム板61の中間を直角等に折り曲げ、この曲ったアルミニウム板61を直線状にして接合し、上記の平坦な多数のアルミニウム板61同士の水密構造60の全周辺に同様にして、上記接合線Wにより垂直に接合することにより、立体的な水密構造として、水密性を確実にした貯水槽やプールを構成することもできる。
【0036】
図7(B)は、アルミニウム板66同士を接合した参考形態である平面状の水密構造65に関する。各アルミニウム板(部材)66は、その板本体67の端縁が断面略U字形状に折り曲げられた曲折縁68を有する。また、隣接する複数のアルミニウム板66の曲折縁68同士は、図示のように互いに巻付け、複数の重合部69を形成する。更に、各アルミニウム板66をその長手および幅方向に対し拘束し、何れかの重合部69に沿って、前記工具10を用いた摩擦攪拌接合を施す。
その結果、図示のように各アルミニウム板66の曲折縁68同士の厚さ方向に跨って、深さの浅い接合線Wが形成される。該接合線Wを複数のアルミニウム板66同士の全周辺における重合部69に沿って形成することにより、平面状の広い水密構造65を形成することができる。尚、一部のアルミニウム板66を前記のように折り曲げものにすることで、立体的な水密構造にすることもできる。
【0037】
図7(C)は、断面半円形にしたやや厚肉のアルミニウム板(部材)72同士を接合した参考形態の水密構造を有する円筒体70に関する。半円形に湾曲する両アルミニウム板72は、図7(c)に示すように、その端縁73同士が当接して突合わせ部74を形成する。この突合わせ部74に沿って内側から、前記工具10を用いた摩擦攪拌接合を施すと、各端縁73間に跨って深さの浅い接合線Wが形成される。係る接合線Wを両アルミニウム板72同士の各突合わせ部74に沿って形成することで、円筒体の水密構造を有する円筒体70を形成することができる。
この円筒体70は、複数の架台71上に支持され、その両端を別途に図示しないアルミニウムからなる円形の鏡板により閉塞することにより、各種の薬液や溶液等の貯蔵用または輸送用タンクとすることができる。尚、接合線Wは、タンクの仕様に応じて突合わせ部74の内外両側に沿って形成することもできる。
【0038】
図7(D)は、アルミニウムでやや厚肉の押出形材(部材)77同士を接合した参考形態の水密構造を有するパイプ75に関する。中央が湾曲する上下一対の各形材77の両端には、水平なフランジ78が外側に向けて対称に突設されている。両形材77のフランジ78同士を突合わせ、その突合わせ部78aに沿って前記工具10を用いた前記接合方法を施すと、図7(d)に示すように、各形材77の端部に跨って深さの浅い接合線Wが形成され、円筒状の密封構造を有するパイプ75が得られる。このパイプ75は、複数の架台76の湾曲部76aにその下側面を支持されると共に、左右の各フランジ78はボルト79等により、架台76左右の各中空部76bの上に固定される。即ち、各形材77同士の結合強度は、上記ボルト79等により得られるので、内側の接合線Wは浅いものにできる。
【0039】
図8は、本発明の水密施工方法により得られる複数のパネル82同士を接合した箱形状の水密構造80を示す。
各パネル85は、一対のアルミニウム板(部材)87,87と、その間に充填したグラスウール等の芯材86とからなるサンドイッチ構造を有する。また、互いに隣接する各パネル85間には、パネル85の端部同士を直線状に連結するアルミニウムの押出形材81、または直角に連結するアルミニウムの押出形材83が配置される。各形材(部材)81,83の中央に中空部82が位置し、その両側または直角方向にパネル85の端部を受け入れる凹部84が形成されている。
【0040】
各形材81,83の凹部84にパネル85の端部を挿入し、図9(A),(B)に示すように、ブラインドリベット89を打込みことにより、形材81または形材83とパネル85とを固定する。更に、各形材81,83の中空部82に沿って前記工具10を用いた前記接合方法を施すと、形材81,83とパネル85のアルミニウム板87間との重合部80aに、深さの浅い接合線Wが形成される。
係る接合線Wを形材81または形材83とパネル85に沿って順次形成することにより、箱形状の水密構造80を形成することができる。
尚、図8において大引等の床部構造材F上には、前記押出形材21と同様な断面の形材88を複数敷設し、図示しないネジ等により床部構造材Fに固定されると共に、互いに接合線Wで接合する。また、端部の形材88は、コーナ部の形材83とリベット89で固定され、且つ接合線Wが形成されている。
【0041】
図9(A),(B)に示すように、天井側の形材81に対し梁等の屋根部構造材Lからタッピングネジ90を螺入して固定したり、コーナ部の形材83に対し屋根部構造材Lから同じネジ90を螺入して固定し、水密構造80を支持しても良い。
また、図9(A)に替えて、図9(a)に示すように、形材91を梁等の屋根部構造材Lに固定することもできる。即ち、断面略工の字形の形材91の各凹部93内には芯材96とアルミニウム板97とからなるパネル95の端部が挿入され、形材91の各フランジ92からブラインド・リベット99と前記接合方法による接合線Wとが形成される。形材91の上側には圧肉のリブ94が立設し、屋根部構造材Lとボルト・ナット98によって支持される。
【0042】
更に、図9(B)に替え、図9(b)に示すように、形材100を梁等の屋根部構造材Lに固定することもできる。即ち、形材83と同様な断面を有する形材100の各凹部103内には芯材106とアルミニウム板107からなるパネル105の端部が挿入され、形材100の各フランジ101からリベット109と前記接合方法による浅い接合線Wが形成されている。形材100の上側には圧肉のリブ105が立設し、屋根部構造材Lとボルトナット108によって支持される。
尚、上記水密構造80を電磁波シールドルーム、防音室、食品加工室、または医療用手術・処置室等に適用することもできる。また、パネル85等はサンドイッチ構造に限らず、アルミニウム板87のみを箱型形状に折り曲げ加工したものを用いても良い。
【0043】
図10は、更に別の参考形態の水密構造に関する。図10(A)は、アルミニウムからなる複数の押出形材(部材)112,114,116を接合した断面角筒状の水密構造を有するダクト110を示す。
形材112は断面略チャンネル形で、その底板となる形材116との間に一対のコーナ形材114が介在されている。そして、各形材112,114,116間の突合わせ部に沿って、外側から前記工具10を用いた前記接合方法を施すと、深さの浅い接合線Wが形成され、断面略正方形の水密構造を有するダクト110を得ることができる。このダクト110は、図示のようにブラケット118上に図示しないU形ボルトとナットによって固定され、内部に装入される各種ケーブルや配管類を水密性を持たせて覆うものである。
【0044】
図10(B)は、アルミニウム製で一対の押出形材(部材)122を接合した六角筒形状の水密構造を有するケーブルカバー120を示す。各形材122は、断面略台形状で、一端に平板の端部124を、他端に厚肉で断面略L形の端部126をそれぞれ一体に有している。係る一対の形材122同士を点対称にして対向し、各端部124をL形の各端部126を当接して、一対の突合わせ部を対称に形成する。係る突合わせ部に沿って、外側から前記工具10を用いた摩擦攪拌接合、即ち本発明の接合方法を施すと、各端部124,126間に跨って深さの浅い接合線Wが形成され、断面六角形の水密構造を有するケーブルカバー120を得ることができる。尚、係る水密構造の六角柱体は、例えば給排気用ダクトや建物の間柱、或いは建具の方立材等にも使用できる。また、各形材の断面形状を変更することにより任意の多角形断面のケーブルカバー等にすることもできる。
【0045】
また、図10(C)は、アルミニウム製で一対の押出形材(部材)131を接合した円筒形の水密構造を有するパイプ130を示す。各押出形材131はやや厚肉で且つ断面半円形であり、一端に平らな端部132と、他端に断面略L字形の端部133とを有する。両形材136同士を点対称にして対向させ、L字形の各端部133に他方の各端部132を当接して、一対の突合わせ部134を対称に形成する。係る突合わせ部134に沿って、前記工具10を用いた本発明の接合方法を施すと、各端部132,133間に跨って深さの浅い接合線Wが形成され、断面円形の水密構造を有するパイプ130を得ることができる。
【0046】
更に、図10(D)は、アルミニウム製で断面が半円形の一対の押出形材(部材)136をその両端の内凸条137と外凸条138とを互いに嵌合し突合わせて接合したパイプ135の断面を示す。上記凸条138に隣接する突合わせ部139に沿って外側から、前記工具10を用いて前記接合方法を施すと、深さの浅い接合線Wが形成され、断面円形の水密構造を有するパイプ135が得られる。
上記水密構造を有するパイプ130,135は、各種の液体や気体用の低圧送給用パイプや通信ケーブルの保護カバー等に使用することができる。
【0047】
本発明は、以上に説明した各形態に限定されるものではない。
例えば、アルミニウムの押出形材とアルミニウム板材の端部同士で、突合わせ部又は重合部を形成し、これらに沿って前記接合線Wを形成することもできる。
また、アルミニウムからなる複数の押出形材(部材)を長手方向の端部同士において突合わせ部を形成し、これに沿って前記接合方法による接合線Wを形成したり、あるいは長手方向と幅方向の各端部同士を連続して接合線Wにより接合し、大型の平面状または立体状の水密構造を形成することもできる。
【0048】
更に、平面視で矩形、正五六角形、または正六角形を呈する複数のアルミニウム板材(部材)がそれぞれ所望の曲率で全方向に湾曲しており、これらのアルミニウム板材の端部同士の突合わせ部または重合部に沿って、前記接合方法による接合線Wを形成することにより、全体が球形の水密構造を形成することもできる。且つ、各アルミニウム板材の曲率を相違させることで、楕円形体を呈する水密構造を得ることも可能である。
また、比較的薄肉のアルミニウム板材(部材)の端部同士によって突合わせ部を形成する場合には、前記接合方法を施す側面と反対側の側面に別の裏当材となるアルミニウム板をロウ付け等によって予め仮止めしておくこともできる。
尚、本発明の接合方法は、前述した他に、例えば側壁と屋根材との半分を一体にした断面逆L型の荷物室ユニットを上下に開閉するウィング車両や、各種の船舶の船体や操舵室等の上部構造体等に適用することも可能である。
【0049】
【発明の効果】
以上において説明した本発明の水密施工方法(請求項1)によれば、事前の加工や準備作業を最小限にして、構造材に対し固定したアルミニウム製の複数の部材同士間に浅い接合線を形成することにより、確実且つ安定して接合することができ、且つ後加工も殆んど要しなくて済む。更に、浅い接合線によって例えば充分な水密構造を要する接合部において、摩擦ピンの小さい工具を用いるので、これを含む接合装置の軽量・簡素化にも寄与し、現場施工も容易となる。これにより、摩擦攪拌接合の技術を有効に活用することができる。しかも、複数の構築用パネルにより形成される壁面や床面等、あるいは、各種用途の部屋または室内に高い水密性を有する水密構造を与ることができる。
【0050】
また、請求項2乃至4の接合方法によれば、複数の部材同士による突合わせ部や重合部に、前記工具による接合方法を一層適切に行え、且つ上記突合わせ部等により部材間の接合強度が保たれるので、浅い接合線により確実に接合できる。
更に、請求項5の接合方法によれば、前記回転数で回転可能な工具およびこれを含む接合装置を小型でハンディにできるため、各種の現場にも容易に搬入でき且つ各種の接合部に適用することができる。
【図面の簡単な説明】
【図1】(A)は本発明の水密施工方法における押出形材同士の突合わせ状態を示す断面図、(B)は本発明の水密施工方法による接合線付近を示す部分断面図、(C)は(B)中の一点鎖線部分Cの拡大図。
【図2】(A)〜(C)および(a)〜(c)は本発明に用いる接合方法を示す部分概略図。
【図3】(A),(B)は図1の水密構造の適用例を示す部分断面図。
【図4】(A)は本発明の水密施工方法により得られる異なる形態の水密構造を示す断面図、(B)は(A)中の一点鎖線部分Bの拡大図。
【図5】(A)は参考形態の水密構造を示す断面図、 ( ) ( ) 中の一点鎖線部分Bの部分拡大図( ) は本発明の水密施工方法により得られる異なる形態の水密構造を示す断面図、 ( ) ( ) 中の一点鎖線部分Dの部分拡大図。
【図6】(A)は本発明の水密施工方法により得られる別形態の水密構造を示す部分断面図、(B)は(A)中の一点鎖線部分Bの拡大図。
【図7】(A)〜(D)は更に別の参考形態の水密構造を示す断面図、(c),(d)は(C),(D)中の部分拡大図。
【図8】本発明の水密施工方法により得られる別異の水密構造を示す部分断面図。
【図9】(A),(B)は図8中の一点鎖線部分A,Bの拡大図、(a),(b)は(A),(B)の変形形態を示す部分断面図。
【図10】(A)〜(D)は、更に別異の参考形態の水密構造を示す断面図。
【図11】(A)〜(D)は、従来の技術による水密構造を示す部分断面図。
【図12】(A),(B),(a)は一般的な摩擦攪拌接合の各工程を示す概略図、(C)は(B)中のC−C線に沿った矢視の断面図。
【符号の説明】
2,21,41,46,51,81,83,91,100…押出形材(部材)
8,24,26………………………………………………端部
9,29,39,49,59,88………………………突合わせ部
10……………………………………………………………工具
14……………………………………………………………表面抑え部
16……………………………………………………………摩擦ピン
31,32,33………………………………………………レール(部材)
87……………………………………………………………アルミニウム板(部材)
80a…………………………………………………………重合部
W………………………………………………………………接合線
[0001]
BACKGROUND OF THE INVENTION
  The present invention joins members such as a plurality of extruded shapes and plates made of aluminum or an aluminum alloy.And water-tight structureDoWatertight constructionRegarding the method.
[0002]
[Prior art]
  Aluminum or aluminum alloy (hereinafter referred to as “aluminum”) members are lightweight and excellent in corrosion resistance, and are therefore used for planar or three-dimensional structures in vehicles such as buildings and constructions and trucks. In this case, various watertight structures have been considered at the joint between the aluminum members.
  For example, when forming a wall surface or the like for partitioning a space, as shown in FIG. 11 (A), a plurality of aluminum-shaped extruded sections 142 having substantially flat cross sections are overlapped with each other, and the overlapped portions are overlapped. By filling the concave groove 145 of the part with the sealing 146, the shape members 142 are joined together to form the watertight structure 140. Each shape member 142 is fixed to the body edge 147 with a screw 148 in advance.
[0003]
  Further, as shown in FIG. 11B, a watertight structure 150 using a plurality of aluminum hollow extruded shapes 151 is widely used. Each extruded profile 151 has a flat rectangular shape in its entire cross section, and has a wide concave groove 152 along one end, a thick convex ridge 154 along the other end, and cross sections on both sides thereof. It has an acute step 156.
  Then, the bottom wide groove 152 and the thick ridge 154 are fitted, and the trapezoidal packing material made of synthetic resin is formed in the concave portions on the upper and lower side surfaces in the figure formed by the step portions 156. 158 is forcibly fitted. The watertight structure 150 maintains the joint strength between the profiles 151 by the male and female fitting portions (152, 154), and ensures the water / airtightness (sealing) between the profiles 151 by the packing material 158. is there.
[0004]
  Furthermore, as shown in FIG. 11 (C), a watertight structure 160 using aluminum extruded profiles 162 having a flat channel shape in cross section is also performed. Each extruded shape member 162 abuts flanges 164 formed at right angles to the end portions with a thin packing material 168 interposed therebetween. Then, the bolts 166 are passed through the plurality of through holes formed in the respective flanges 164, and nuts 167 are screwed to the respective male screw portions. The watertight structure 160 secures watertightness between the extruded shape members 162 by a packing material 168, bolts 166, and nuts 167.
[0005]
  Furthermore, the watertight structure 170 shown in FIG. 11D was developed for the purpose of completely watertightening the joint portion of the curtain oar (the right side is indoor and the left side is outdoor). The one using the packing materials 158 and 168 shown in FIG. In the watertight structure 170, packing materials 177 and 178 are provided and contacted between the upper and lower members 172 and 173 on the indoor side, a gap 176 is formed on the outdoor side, and a large space 174 is formed between the packing material 178 and the like and the gap 176. Formed.
  According to this watertight structure 170, the space 174 is at the same atmospheric pressure as the outside air pressure by the gap 176, and rainwater does not enter the space 174 from the gap 176 due to the pressure difference. Further, rainwater that has entered through the gap 176 with kinetic energy also enters the space 174, but the packing material 178 and the like are at a high position that cannot be seen through the gap 176, so that they do not reach these. Furthermore, rainwater that has entered the space 174 is smoothly discharged from the gap 176 by gravity because the space 174 is at the same atmospheric pressure as the outside air pressure. As a result, water that has entered the space 174 up to the height of the packing material 178 and the like is not accumulated, thereby achieving complete watertightness.
[0006]
[Problems to be Solved by the Invention]
  However, in the watertight structure 140, watertight construction is easy, but there is a problem that the watertightness deteriorates due to secular change.
  Further, the watertight structure 150 can be easily joined by fitting the extruded shapes 151 together, and can be formed simply by forcibly fitting the packing material 158 in the recesses formed on both sides of the fitting portion. However, the packing material 158 disposed between the shape members 151 and the shape members 151 are not bonded to each other, and a difference in atmospheric pressure occurs between the inside and outside (up and down in FIG. 11B) due to wind pressure or the like. There is a problem that water leaks from between the packing material 158 and the profile 151.
[0007]
  Further, the watertight structure 160 has the same problem as the watertight structure 150.
  Further, in the watertight structure 170, the shape of the member adjacent to the members 172 and 173 connected for watertightness is complicated, the shape is limited, and the packing material 178 and the like are deteriorated due to aging. Have the problem of
  The present invention solves the problems of the conventional technologies described above, minimizes prior processing and preparatory work, and between members made of aluminum extruded shapes and plates for buildings, vehicles, etc. TheWater tightnessAs a result, they can be bonded to each other reliably and for a long time, almost no post-processing is required, and can be easily applied to any joint shape.Watertight constructionIt is an object to provide a method.
[0008]
[Means for Solving the Problems]
  In order to solve the above-mentioned problems, the present invention performs friction stir welding using a tool including a friction pin and a surface restraining portion at a slight depth along the end portion between the extruded shape member and the plate member. The idea is to form a flat joint line.
  That is, the watertight construction method of the present invention (Claim 1)The ends of the members made of aluminum or aluminum alloy are fixed to the structural material so that the ends of the members are adjacent to each other so that the surfaces of the members are planar.A tool including a friction pin having a friction part length of 0.5 to 3.0 mm and an outer diameter of the friction part of 0.5 to 3.0 mm, and a surface restraining part with respect to the abutting part or the overlapping part. In addition, a joint line forming a watertight structure is formed between the end portions of the members by friction stir welding that moves along the abutting portion or the overlapping portion while rotating the tool at 3000 to 30000 rpm. It is characterized by.
  The member includes an extruded aluminum material and a plate material.
[0009]
  According to this,The members such as extruded shape members and plate members are fixed to the structural material adjacent to each other in advance, and have shallow surfaces with flat surfaces along the adjacent ends between the above-mentioned members that are abutted against each other. By lineTwo-dimensional or three-dimensionally joined securely without any metal gapWatertight structureCan be easily formed. And since the joining apparatus containing the said tool can be made small and handy, it can be easily applied to various fields.
  The length of the friction part is 3.0 mm or less.,waterThis is because the dense construction is generally performed at an assembly site or a construction site, so that it can be constructed with a simple friction stir welding apparatus that is easy to transport and operate. Also,Of the friction partMinimum length allows for reliable bonding,waterIn order to prevent dense defects, the thickness is at least 0.5 mm.
  Furthermore, the reason why the minimum outer diameter of the friction part is 0.5 mm is that it corresponds to the minimum outer diameter required for the strength of the friction pin, and the maximum outer diameter is from the viewpoint of transportation and operability of the above-mentioned joining device. 3.0 mm. That is, in the friction stir welding, the force for pressing the friction pin becomes a large factor, but as the pressing force increases, the entire joining device becomes larger and becomes unsuitable for use at an assembly site or the like. .
[0010]
  Moreover, in this invention, the speed | rate which moves along the said abutting part or superposition | polymerization part of the said tool is 0.02-2 m / min.,Watertight constructionA method (claim 2) is also included.
  Furthermore, in the present invention, the pushing force applied to the tool is 10 to 1000 N.Watertight constructionA method (claim 3) is also included.
  In addition, in the present invention, the diameter of the surface restraining portion in the tool is about 2-3 times the outer diameter of the friction portion in the friction pin.Watertight constructionA method (claim 4) is also included.
  According to these, friction stir welding can be performed with a small and handy tool in a state where the extruded shape member and the plate member are in abutment state reliably., Constituting a watertight structureBonding lines can be reliably formed and bonded. Therefore, for example, a wall surface or floor / ceiling surface of a vehicle or a building is formed by a plurality of extruded shapes.,waterIt can be formed while providing denseness.
[0011]
  In the present invention, the drive source for rotating the tool is a turbine motor.Watertight constructionA method (claim 5) is also included. According to this, since the tool capable of adding points at the number of revolutions and the joining apparatus including the tool can be made small and handy, it can be easily carried into various sites andRequires watertight structureIt can be applied to various joints.
  In addition, the turbine motor using the compressed air used for a dental drill, for example can be applied to the turbine motor.
[0012]
  The specific description of the friction stir welding (friction star welding) used in the present invention will be given in the embodiment described below. For the principle, refer to, for example, Japanese Patent Publication No. 9-508073. I want to be.
[0013]
  In general, when aluminum alloy members are welded together by arc welding such as MIG, inventions have been proposed in which welding conditions are variously devised so that the welding quality is good and the sealing performance is excellent. 8-197255, and JP-A-9-103848).
  However, these require a separate welding wire and must strictly observe the welding conditions, so that the management of welding becomes complicated and the top part of the weld bead formed in some cases is ground. There is a problem that post-processing is also required to be removed.
[0014]
  Therefore, in recent years, the friction stir welding that can easily join metal materials compared to arc welding has begun to attract attention. As shown in FIGS. 12A and 12A, this friction stir welding rotates along the abutting surface between a pair of aluminum alloy flat plates 180 and 181 whose end edges are abutted and constrained to each other. This is done by moving the tool 182 while pressing it. The tool 182 is made of a material having higher hardness and softening temperature than the material to be joined, and includes a rotating cylindrical body 184, a surface restraining portion 186 that is a concave bottom surface, and a friction pin 188 that hangs coaxially from the center thereof. . The tool 182 is moved in the horizontal (left) direction with a slight inclination along the abutting surface, and a vertical pushing force is applied. A screw-shaped friction stirrer blade (not shown) is formed on the peripheral surface of the friction pin 188 along the horizontal direction (not shown).
[0015]
  As the pin 188 rotates and moves, the aluminum in the vicinity of the abutting surfaces of the plates 180 and 181 is heated and plasticized by frictional heat, and between the plates 180 and 181 across the abutting surface. Fluidized horizontally and vertically. The surface restraining portion 186 suppresses the fluidization of the fluidized aluminum in the vertical direction, and agitates the fluidized aluminum by the friction pin 188.
  Thus, as shown in FIGS. 12B and 12C, the aluminum becomes a stirring portion 189 that is solidified in a solid phase. And the surface of this stirring part 189 becomes the joining line 190 which is flat and has a fixed width. Accordingly, there is no raised welding beat as in conventional arc welding, and post-processing becomes easy.
[0016]
  Conventionally considered use of such friction stir welding is a use requiring joint strength in place of MIG welding or the like, so that the length of the friction part of the friction pin is usually 3 to 15 mm, the diameter is 3 to 10 mm, and the surface is suppressed. The diameter of the part was relatively large, 6 to 25 mm.
  In this case, the rotation speed of the tool 182 is 500 to 15000 rpm, the feed speed is 0.05 to 2 m / min, and the pushing force applied to the tool 182 is 1 kN to 20 kN.
[0017]
  On the other hand, in the present invention, as described above, the friction pin of the tool is miniaturized to have a friction part length of 0.5 to 3 mm and a friction part diameter of 0.5 to 3 mm, and the surface holding part has a diameter of friction. The diameter is reduced to about 2 to 3 times the outer diameter of the pin.
  Moreover, in the present invention, the pushing force applied to the tool is about 10 N to 1000 N at a rotational speed of the tool of 3000 to 30000 rpm and a feed speed of 0.02 to 2 m / min. The reason why the rotational speed is increased is that the outer diameter of the friction pin is small, so that it is necessary to obtain a heating amount necessary for softening aluminum. The reason why the pushing force is small is that the outer diameter and the pushing depth of the friction pin are reduced. As a result, a small handy device can be obtained, and a portable joining device that can be used at a construction site or the like can be obtained.
  If the size of the friction pin is smaller than the above, high accuracy is required for processing, the dimensional accuracy of the pin material itself is quite necessary and impractical, and the friction stirrer blade formed on the peripheral surface is sufficiently formed. It becomes difficult. On the other hand, if the size is larger than the above dimensions, a large force is required for the tool as described above, and the apparatus becomes large, and the size of the pin material must be increased, which is not practical.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
  In the following, preferred embodiments of the present invention will be described with reference to the drawings.
  FIG. 1 illustrates the present invention.Watertight constructionAs shown in FIG. 1 (A), a plurality of extruded shape members (members) 2 are abutted and joined at respective end portions 8 with respect to a planar watertight structure 1 constituting a wall surface formed by the method. is there.
  The extruded shape member 2 is made of aluminum alloy JIS; A6063-T5 or T6, etc., and in the drawing, a horizontal flat plate portion 3 and a pair of protrusions 4 and 4 having a substantially L-shaped cross section on the lower side thereof are symmetrical in the left and right direction The flanges 6 and 6 projecting from the left and right ends of the flat plate portion 3 have end portions 8 and 8 which are slightly thick and rectangular in section, and are long in the depth (extrusion) direction in the drawing. It is a shape material. The protrusion 4 is used to fix the extruded shape members 2 and 2 to which the watertight structure 1 is applied to a structural material such as a pillar (not shown) by screwing or the like.
[0019]
  First, as shown in FIG. 1 (A), the end portions 8 of the extruded shape members 2 and 2 adjacent in the longitudinal direction are brought into contact with each other to form a butt portion 9.SuddenThe shapes 2 and 2 are fixed to a structural material such as a pillar (not shown) with screws or the like using the strips 4 and 4. In this state, the friction stir welding described below in FIG. 2 is performed along the upper surface (front surface) side of the butted portion 9 between the extruded shape members 2 and 2.
  Then, as shown in FIGS. 1 (B) and 1 (C), a joining line W having a shallow depth corresponding to the length of the friction pin is formed across the end portions 8 and 8. Since this joining line W is solidified after the aluminum forming each end 8 has been fluidized in a solid state, the adjacent extruded shapes 2 and 2 are joined metallically along the abutting portion 9. In addition, a reliable and stable watertight structure 1 can be obtained. Moreover, as shown in FIG. 1C, the surface of the joining line W is flat, so there is no protrusion and little post-processing is required.
  In addition, the reason why the joining line W is formed along the surface side of the abutting portion 9 is that watertight construction is required after the extruded shape members 2 and 2 are attached at predetermined positions in FIG. This is because there are many cases.
[0020]
  Next, the friction stir welding for forming the joining line W will be described with reference to FIG.
  As shown in FIGS. 2 (A) and 2 (a), after the end portions 8 of the respective shapes 2 are abutted against each other in advance and fixed to a pillar or the like, the tool 10 is set on the surface side of the abutting portion 9. .
  The tool 10 is made of a material whose hardness and softening temperature are higher than those of the extruded shape member 2, the rotating cylindrical body 12, the surface suppressing portion 14 having an outer diameter of 4 mm that is gently curved and recessed at the bottom surface thereof, and the center thereof. It consists of a friction pin 16 that hangs coaxially. The friction pin 16 is a cylindrical body having an outer diameter of 1.8 mm and a length of 1.5 mm, and a small screw-shaped friction stirring blade (not shown) is formed on the outer peripheral surface thereof.
  Then, the tool 10 is rotated by a motor (not shown) in a state where the central axes of the cylindrical body 12 and the friction pin 16 are slightly inclined with respect to the end portions 8 and 8 of the respective profiles 2 as shown in the figure. And is lowered toward the abutting portion 9. The rotational speed of the tool 10 is appropriately selected within a range of 3000 to 30000 rpm.
[0021]
  Next, as shown in FIGS. 2B and 2B, the tool 10 is pressed in the vertical direction against each shape member 2, and the friction pin 16 is moved until the entire surface restraining portion 14 reaches the surface of each end portion 8. Push in. In this state, the tool 10 is moved to the left in FIG. 2B in the direction opposite to the inclined direction. This feed rate is appropriately selected within the range of 0.05 to 2 meters / minute.
  As the tool 10 rotates and moves, the aluminum forming the vicinity of the abutting portion 9 of each end portion 8 is heated and plasticized by the friction pin 16, and the left and right profile members sandwiching the abutting portion 9. Fluidized between 2 and 2 in the horizontal and vertical directions. Further, the fluidized aluminum is given a constant pressure against the flow in the vertical direction (surface direction) by the restraining portion 14 and is prevented from scattering from the vicinity of the surface of each end portion 8 to be joined. Is done.
[0022]
  2 (B) and 2 (C), after the tool 10 passes, the fluidized aluminum solidifies from the fluidized state, and is generally an inverted triangle corresponding to the size of the friction pin 16. The joining line W has a cross section.
  As shown in FIG. 2 (c), the surface of the joining line W becomes a flat surface Wa that is continuous along the abutting portion 9, although the portion corresponding to the width of the diameter is slightly recessed by the surface restraining portion 14. In addition, air is not entrained in the joining line W due to the presence of the restraining portion 14, so that no void is formed.
[0023]
  The watertight structure 1 obtained by shallowly joining a plurality of extruded shape members 2 by the joining line W formed by the above joining method does not require prior processing, but only abuts and restrains the shape members 2. Since the metallic joint is formed along the entire length of the abutting portion 9, watertightness can be reliably imparted to the flat wall, floor, and ceiling surface for a long period of time. Moreover, since the surface Wa of the joining line W is flat, post-processing such as grinding is almost unnecessary. It is to be noted that a shape member in which the middle portion of the flat plate portion 3 of the shape member 2 is bent at a right angle, or a shape member having an overall cross-sectional shape substantially in advance is interposed between the plurality of watertight structures 1, 1, By joining with the joining line W by the method, a three-dimensional watertight structure in which the wall surface and the floor surface and / or the ceiling surface are continuously sealed can be obtained.
[0024]
  FIG. 3 relates to an application example of the watertight structure 1, and FIG. 3A shows that the shape 2 is continuously arranged on the upper and lower surfaces of the roof structure material L of the building H, and these are formed by the joining method. While joining together with the joint line W, the said shape material 2 is continuously arrange | positioned also to the inner and outer surface of the wall part structural material K, and only the outer surface is joined with the joint line W. In addition, the shape material 2 'for edge parts which has a drain piece is arrange | positioned at the eaves tip and the lower end of the outer surface side, and the shape materials 2 and 2 are laid on the floor structure material F.
  FIG. 3B is a longitudinal sectional view of a cargo compartment of a dry type van-type vehicle V to which the watertight structure 1 is applied, along the upper surface of the roof structural member L and the outer surface of the wall structural member K. The said shape material 2 is arrange | positioned continuously and these mutually joined by the joining line W by the said joining method. A corner shape 2 ″ is arranged at the corner of the roof structure material L and the wall structure material K, and an end shape 2 ′ is arranged at the lower end of the wall structure material K. Since the roof structural material L and the wall structural material K of the building H or the vehicle V have the supporting strength of the respective shapes 2 and 2, sufficient water tightness can be obtained even by the shallow joint line W.
[0025]
  Figure 4 shows how to obtain different forms of watertight structuresWatertight constructionRegarding the method. In the following description, the same reference numerals are used for elements common to the above-described embodiments.
  FIG. 4 relates to a planar watertight structure 20 constituting a roof surface of a cargo compartment of a van type vehicle or the like, and as shown in FIG. 4 (A), a plurality of extruded shapes (members) 21 made of aluminum are respectively provided. The abutting portions 29 formed in the vicinity of the end portions 24 and 26 at the end portions 24 and 26 are joined by the shallow joining line W by the joining method.
  Each extruded shape member 21 is also made of the same material as described above, and has a pair of protrusions 23 having a substantially L-shaped cross section on the lower side surface of the flat plate portion 22 in the drawing. Each protrusion 23 is also fixed to a beam L or the like by means of screws N with extruded profiles 21 and 21 having a watertight structure 20.
[0026]
  4A, at the left end of the flat plate portion 22 in the central extruded shape member 21, an end portion 26 having a thick and rectangular cross section and an engaging portion 28 having an L-shaped cross section are formed at the tip. Further, a hook-shaped end 24 is formed at the right end of the flat plate portion 22, and an engaging portion 25 having a reverse L-shaped cross section is formed at the tip thereof. In addition, the shape material 21 located in the right and left also has the same cross section.
  And as shown in FIG.4 (B), each engaging part 25 and 28 of the some extrusion shape material 21 adjacent along the longitudinal direction mutually engaged, and the butting | matching part 29 was formed in the vicinity. In this state, it is fixed to the beam L to restrain each shape member 21, and friction stir welding using the tool 10 is performed from the surface side along the abutting portion 29.JoinApply.
  Then, as shown in the figure, a joining line W corresponding to the size of the friction pin 16 is formed across the end portions 24 and 26.
[0027]
  According to the watertight structure 20, the extruded shape members 21 are positioned in advance by the engagement by the engagement portions 25 and 28, and the joining line W by the joining method along the abutting portion 29 therebetween. Therefore, a roof surface or the like having excellent water tightness can be formed by continuously flattening the flat plate portions 22 of the respective shapes 21.
  The protrusions 23 are fixed to the beam L or the like by fixing the plurality of shape members 21 to the beam L or the like in advance, and then performing friction stir welding to form the watertight structure 20.The
[0028]
  FIG.( A ) , ( B )Is,referenceThe form relates to a watertight structure.
  FIG. 5A shows a vertical cross section of a self-supporting side wall (hereinafter referred to as a tilt) 30 in a truck bed. The tilter 30 includes an upper rail 31 made of an extruded aluminum material, a plurality of middle rails 32, and a lower rail 33.
  Each rail (member) 31, 32, 33 has a hollow portion 35, and the upper rail 31 and the lower rail 33 have an opening 34 that opens on the right loading platform side in the drawing. Further, the screw portions 38 at both ends of the long bolt 37 that penetrates the rails 31, 32, 33 are located in the openings 34 of the upper rail 31 and the lower rail 33, and each rail is formed by a washer and a double nut 39. 31, 32, 33 are fastened. Each opening 34 is closed by riveting the cover 36 (not shown) or the like.
[0029]
  In addition, as shown in FIG. 5 (B), shallow junction lines W formed by the joining method are formed along the inner and outer surfaces of the abutting portions between the rails 31, 32, 33. By providing this joining line W along a desired number of butted portions between the rails, the tilt 30 having a planar watertight structure can be formed.
  Such a tilt 30 has a plurality of rails 31, 32, 33 that are tightly coupled with bolts 37 and nuts 39, and each joint inside and outside is joined by a shallow joining line W according to the joining method. The surface is metallic continuously. For this reason, as in the prior art, in the fitting portions of the rails 31, 32, 33, etc., fine aluminum powder due to friction associated with continuous running is not generated, and the rails 31, 32, It is possible to eliminate inconveniences such as the rainwater entering between 33 becomes a black liquid and dirty the surface of the tilt and damage the load.
[0030]
  FIG. 5 (C) shows the present invention.Watertight constructionThe longitudinal cross-sectional view of the partition 40 which has a planar watertight structure obtained by the method is shown.
  The partition 40 includes an aluminum extruded shape member 41 fixed to the ceiling surface ce and the floor surface f, and a plurality of shape members 46 laminated therebetween. Each shape member (member) 41, 46 has a hollow portion 43 having a substantially rectangular cross section.
  Further, a horizontal flange 42 extends from each of the upper and lower shape members 41 and is fixed to the ceiling surface ce and the floor surface f by bolts and nuts 47. Further, a flange 44 extending vertically is formed on one side of the upper and lower portions of each of the profiles 41 and 46, and a step 45 is formed on the opposite side to receive the flange 44 of the profile adjacent to the vertical. .
[0031]
  Then, the respective shape members 41 and 46 are brought into contact with each other, the respective flanges 44 are inserted and fitted into the opposed step portions 45, and screws 48 are screwed into the step portions 45 from the respective flanges 44. As a result, the partition 40 is formed in which the respective shape members 41 and 46 are firmly coupled to each other.
  Further, as shown in FIG. 5 (D), friction stir welding is performed using the tool 10 from the outside along the joints of the upper and lower shapes 41 and 46.JoinApply.
  As a result, a shallow joining line W is formed by the joining method across the flange 44 and the stepped portion 45 as shown in the figure, and this joining line W is connected to the desired number of the shape members 41 and 46. As a result, the partition 40 having a desired size and a planar watertight structure can be formed. The joining line W may be formed only on any surface between the shape members 41 and 46. In this case, the plate thickness of the flange 44 needs to be smaller than the length of the friction pin 16.
[0032]
  FIG. 6 (A) shows the present invention.Watertight constructionThe cross section of a part of floor unit 50 having a planar watertight structure laid in a room obtained by the method is shown. The floor unit 50 is made of aluminum and includes a plurality of extruded shapes (members) 51. Each extruded shape member 51 has a substantially rectangular hollow portion 53 in a rectangular main body 52 having a flat cross section.
  At the left end of each shape member 51, a flange 56 projecting horizontally from the upper surface of the main body 52, a ridge 54 hanging from the tip of the flange 56, and a small flange 58 projecting horizontally from the lower surface of the main body 52. Is formed. Further, at the right end of each profile 51, an upward concave groove 55 located at the protruding corner of the main body 52 and a presser bar 57 having a substantially crank-shaped cross section protruding horizontally from the lower surface of the main body 52 are formed. .
[0033]
  First, an anchor bolt b standing upright from the floor structure material F such as a girder is passed through the presser strip 57 in the extruded shape member 51 located on the left side in the drawing, and a nut 59 is screwed and fixed. Next, another shape member 51 is arranged on the right side of the shape member 51, and the protruding strip 54 is fitted into the recessed groove 55 of the fixed shape member 51, and the small flange 58 is fixed to the fixed shape. It is made to enter the lower part of the presser strip 57 of the shape member 51. This operation is repeated to fix the plurality of extruded shape members 51 on the floor structure material F while being coupled to each other.
  Further, friction stir welding is performed by using the tool 10 from above along the fitting portion 51a between the ridge 54 and the groove 55 of each profile 51.JoinApply.
  As a result, as shown in FIG. 6B, a shallow joint line W is formed across the fitting portion 51a of the ridge 54 and the groove 55. A floor unit having a planar water-tight structure and a firm connection structure with a desired width by applying the joining line W by the friction stir welding to the fitting portion 51a on the upper surface side between the desired number of the shape members 51. 50 can be formed.
[0034]
  FIG.Different referenceThe form relates to a watertight structure.
  7A, the aluminum plates 61 are joined together.Reference formThe planar watertight structure 60 is related. Each aluminum plate (member) 61 is formed with an edge 63 that is offset from the plate body 62 upward by the thickness of the plate body 62 at the left end in the drawing. Then, the flat end portions 62a of the plurality of adjacent aluminum plates 61 and the end edges 63 are overlapped to form the overlapped portion 64, and the plate bodies 62 of the aluminum plates 61 are positioned in the same plane. Thus, each aluminum plate 61 is restrained in the longitudinal direction and the width direction. Then, the joining method using the tool 10 is performed from one side along the overlapping portion 59.
[0035]
  As a result, as shown in FIG. 7A, a shallow junction line W is formed across the end 62a and the end edge 63 of each aluminum plate 61. By forming the above-mentioned offset edge 63 on the two adjacent sides of the rectangle in the plan view of each aluminum plate 61, and joining these aluminum plates 61 to each other by the joint line W, A planar wide watertight structure 60 can be formed.
  In addition, the middle of a part of the aluminum plates 61 is bent at a right angle or the like, and the bent aluminum plates 61 are joined in a straight line, and the same is applied to the entire periphery of the watertight structure 60 between the flat aluminum plates 61. Thus, by joining vertically with the joining line W, a water storage tank or a pool with a reliable watertightness can be formed as a three-dimensional watertight structure.
[0036]
  In FIG. 7B, the aluminum plates 66 are joined together.Reference formThe planar watertight structure 65 is related. Each aluminum plate (member) 66 has a bent edge 68 in which an end edge of the plate main body 67 is bent into a substantially U-shaped cross section. Further, the bent edges 68 of a plurality of adjacent aluminum plates 66 are wound around each other as illustrated to form a plurality of overlapping portions 69. Furthermore, each aluminum plate 66 is constrained with respect to the longitudinal and width directions, and the tool 10 is used along any overlapped portion 69.Friction stir weldingApply.
  As a result, as shown in the drawing, a shallow joint line W is formed across the thickness direction of the bent edges 68 of each aluminum plate 66. By forming the joining line W along the overlapping portion 69 around the entire periphery of the plurality of aluminum plates 66, a wide planar watertight structure 65 can be formed. In addition, it can also be set as a three-dimensional watertight structure by making some aluminum plates 66 bend as mentioned above.
[0037]
  FIG. 7 (C) shows the joining of slightly thick aluminum plates (members) 72 having a semicircular cross section.Reference formThe present invention relates to a cylindrical body 70 having a watertight structure. As shown in FIG. 7 (c), the two aluminum plates 72 that are curved in a semicircular shape are in contact with each other and form an abutting portion 74. The tool 10 was used from the inside along the abutting portion 74.Friction stir weldingAs a result, a shallow junction line W is formed across the end edges 73. By forming such a joining line W along each butted portion 74 between the two aluminum plates 72, the cylindrical body 70 having a cylindrical watertight structure can be formed.
  The cylindrical body 70 is supported on a plurality of pedestals 71, and both ends thereof are separately closed by a circular end plate made of aluminum (not shown) to form a tank for storing or transporting various chemical solutions and solutions. Can do. The joining line W can also be formed along both the inner and outer sides of the butting portion 74 according to the specifications of the tank.
[0038]
  FIG. 7 (D) shows a case where extruded parts (members) 77 having a slightly thick wall are joined with aluminum.Reference formThe pipe 75 has a watertight structure. At both ends of the pair of upper and lower shape members 77 whose center is curved, horizontal flanges 78 project symmetrically toward the outside. When the flanges 78 of the two shape members 77 are butted together and the joining method using the tool 10 is performed along the butted portion 78a, as shown in FIG. A pipe 75 having a cylindrical sealing structure in which a shallow joint line W is formed acrossIs obtainedThe The lower surface of the pipe 75 is supported by the curved portions 76a of the plurality of mounts 76, and the left and right flanges 78 are fixed on the left and right hollow portions 76b of the mount 76 by bolts 79 or the like. That is, since the bonding strength between the shape members 77 is obtained by the bolt 79 or the like, the inner joining line W can be shallow.
[0039]
  FIG. 8 illustrates the present invention.Watertight constructionThe box-shaped watertight structure 80 which joined several panels 82 obtained by the method is shown.
  Each panel 85 has a sandwich structure composed of a pair of aluminum plates (members) 87 and 87 and a core material 86 such as glass wool filled therebetween. Between the adjacent panels 85, an aluminum extruded shape 81 that connects the ends of the panels 85 linearly or an aluminum extruded shape 83 that is connected at right angles is disposed. A hollow portion 82 is located at the center of each of the shape members (members) 81 and 83, and a recess 84 for receiving the end portion of the panel 85 is formed on both sides or at a right angle.
[0040]
  By inserting the end portion of the panel 85 into the recess 84 of each of the profiles 81 and 83 and driving a blind rivet 89 as shown in FIGS. 9A and 9B, the profile 81 or the profile 83 and the panel 85 is fixed. Further, when the joining method using the tool 10 is performed along the hollow portion 82 of each of the profiles 81 and 83, a depth is formed in the overlapping portion 80a between the profiles 81 and 83 and the aluminum plate 87 of the panel 85. A shallow junction line W is formed.
  A box-shaped watertight structure 80 can be formed by sequentially forming such joining lines W along the shape member 81 or the shape member 83 and the panel 85.
  In FIG. 8, a plurality of cross-section members 88 having the same cross section as the extruded shape member 21 are laid on the floor structure material F such as a large drawing, and fixed to the floor structure material F by screws or the like (not shown). At the same time, they are joined together by a joining line W. Further, the end shape member 88 is fixed by a corner portion shape member 83 and a rivet 89, and a joining line W is formed.
[0041]
  As shown in FIGS. 9A and 9B, a tapping screw 90 is screwed into the ceiling-side shape member 81 from the roof structural member L such as a beam, or is fixed to the corner portion shape member 83. On the other hand, the same screw 90 may be screwed and fixed from the roof structural member L to support the watertight structure 80.
  Further, instead of FIG. 9A, as shown in FIG. 9A, the shape member 91 can be fixed to the roof structural member L such as a beam. That is, the end portion of the panel 95 made of the core material 96 and the aluminum plate 97 is inserted into each concave portion 93 of the profile 91 having a substantially cross-sectional shape, and the blind rivet 99 and the flange 92 of the profile 91 are inserted. A joining line W is formed by the joining method. A compact rib 94 is erected on the upper side of the profile 91 and is supported by the roof structural member L and bolts and nuts 98.
[0042]
  Furthermore, instead of FIG. 9B, as shown in FIG. 9B, the shape member 100 can be fixed to the roof structural member L such as a beam. That is, the end portion of the panel 105 made of the core member 106 and the aluminum plate 107 is inserted into each recess 103 of the shape member 100 having the same cross section as the shape member 83, and the rivet 109 is connected to each flange 101 of the shape member 100. A shallow bonding line W is formed by the bonding method. A compact rib 105 is erected on the upper side of the profile 100 and supported by the roof structural member L and the bolt nut 108.
  The watertight structure 80 can also be applied to an electromagnetic shielding room, a soundproof room, a food processing room, a medical operation / treatment room, or the like. Further, the panel 85 or the like is not limited to the sandwich structure, and an aluminum plate 87 that is bent into a box shape may be used.
[0043]
  FIG., Yet another referenceThe form relates to a watertight structure. FIG. 10 (A) shows a duct 110 having a watertight structure with a rectangular cross-sectional shape in which a plurality of extruded shapes (members) 112, 114, 116 made of aluminum are joined.
  The profile 112 has a substantially channel shape in cross section, and a pair of corner profiles 114 are interposed between the profile 116 serving as a bottom plate. And if the said joining method using the said tool 10 is given from the outer side along the abutting part between each shape material 112,114,116, the shallow joint line W will be formed and the watertight of a cross-sectional substantially square shape will be formed. A duct 110 having a structure can be obtained. The duct 110 is fixed on the bracket 118 by a U-shaped bolt and nut (not shown) as shown in the figure, and covers various cables and pipes inserted therein with watertightness.
[0044]
  FIG. 10B shows a cable cover 120 made of aluminum and having a hexagonal cylindrical watertight structure in which a pair of extruded shapes (members) 122 are joined. Each shape member 122 has a substantially trapezoidal cross section, and integrally has a flat end 124 at one end and a thick end L 126 with a thick wall at the other end. The pair of shape members 122 are opposed to each other with point symmetry, and each end portion 124 is in contact with each L-shaped end portion 126 to form a pair of butted portions symmetrically. When the friction stir welding using the tool 10 from the outside, that is, the joining method of the present invention is performed along the abutting portion, a joining line W having a shallow depth is formed between the end portions 124 and 126. The cable cover 120 having a watertight structure with a hexagonal cross section can be obtained. In addition, the hexagonal column body having such a watertight structure can be used for, for example, a duct for air supply / exhaust, a middle column of a building, or a standing material for joinery. Moreover, it can also be set as the cable cover etc. of arbitrary polygonal cross sections by changing the cross-sectional shape of each shape member.
[0045]
  FIG. 10C shows a pipe 130 made of aluminum and having a cylindrical watertight structure in which a pair of extruded shapes (members) 131 are joined. Each extruded section 131 is slightly thick and has a semicircular cross section, and has a flat end 132 at one end and an end 133 having a substantially L-shaped cross section at the other end. The two shape members 136 are opposed to each other with point symmetry, and the other end portions 132 are brought into contact with the L-shaped end portions 133 to form a pair of butting portions 134 symmetrically. When the joining method of the present invention using the tool 10 is performed along the abutting portion 134, a shallow joint line W is formed between the end portions 132 and 133, and a water-tight structure having a circular cross section. Can be obtained.
[0046]
  Further, FIG. 10D shows a pair of extruded shapes (members) 136 made of aluminum and having a semicircular cross section, and the inner ridges 137 and the outer ridges 138 at both ends thereof are fitted to each other and abutted and joined. The cross section of the pipe 135 is shown. When the joining method is performed using the tool 10 from the outside along the abutting portion 139 adjacent to the ridge 138, a pipe 135 having a watertight structure with a shallow joint line W is formed. Is obtained.
  The pipes 130 and 135 having the watertight structure can be used for low-pressure feeding pipes for various liquids and gases, protective covers for communication cables, and the like.
[0047]
  The present invention is not limited to the embodiments described above.
  For example, an abutting portion or a superposed portion can be formed by the end portions of the aluminum extruded shape member and the aluminum plate material, and the joining line W can be formed along these.
  Further, a plurality of extruded shape members (members) made of aluminum are formed with abutting portions at end portions in the longitudinal direction, and a joining line W by the joining method is formed along this, or the longitudinal direction and the width direction are formed. These end portions can be continuously joined together by a joining line W to form a large planar or three-dimensional watertight structure.
[0048]
  Furthermore, a plurality of aluminum plate members (members) exhibiting a rectangular shape, regular pentagonal shape, or regular hexagonal shape in plan view are curved in all directions with a desired curvature, and the abutting portions between the end portions of these aluminum plate materials Alternatively, by forming the joining line W by the joining method along the overlapped portion, a spherical watertight structure as a whole can be formed. And it is also possible to obtain the watertight structure which exhibits an ellipsoid by making the curvature of each aluminum plate material different.
  In addition, when the abutting portion is formed by the ends of a relatively thin aluminum plate material (member), an aluminum plate as another backing material is brazed to the side surface opposite to the side surface to which the joining method is applied. It is also possible to temporarily fix it in advance.
  In addition to the above, the joining method according to the present invention includes, for example, a wing vehicle that opens and closes an L-shaped luggage compartment unit having an inverted cross-section in which half of a side wall and a roof material are integrated, a hull of various ships, and steering It is also possible to apply to an upper structure such as a chamber.
[0049]
【The invention's effect】
  Of the present invention described above.Watertight constructionAccording to the method (Claim 1), prior processing and preparatory work are minimized,Fixed against structural materialBy forming a shallow bonding line between a plurality of aluminum members, it is possible to bond reliably and stably, and little post-processing is required.MoreFor example, a tool having a small friction pin is used in a joint portion that requires a sufficient water-tight structure due to a shallow joint line, which contributes to lightening and simplification of a joining apparatus including the same, and also facilitates on-site construction. Thereby, the technique of friction stir welding can be utilized effectively. Moreover, a watertight structure having high watertightness can be given to a wall surface or floor surface formed by a plurality of construction panels, or a room or room for various uses.
[0050]
  According to the joining method of claims 2 to 4, the joining method by the tool can be more appropriately performed on the abutting portion or the overlapping portion by a plurality of members, and the joining strength between the members by the abutting portion or the like. Therefore, it is possible to reliably join with a shallow joining line.
  Furthermore, according to the joining method of claim 5, since the tool which can be rotated at the number of revolutions and the joining apparatus including the tool can be made small and handy, it can be easily carried into various sites and applied to various joining parts. can do.
[Brief description of the drawings]
FIG. 1 (A) isIn the watertight construction method of the present inventionSectional view showing the butted state of extruded profiles, (B)For the watertight construction methodFIG. 4C is a partial cross-sectional view showing the vicinity of the joining line, and FIG. 5C is an enlarged view of a one-dot chain line portion C in FIG.
FIG. 2 (A) to (C) and (a) to (c) represent the present invention.Used forThe partial schematic diagram which shows the joining method.
FIGS. 3A and 3B are partial cross-sectional views showing an application example of the watertight structure of FIG.
FIG. 4 (A) shows the present invention.Watertight constructionSectional drawing which shows the watertight structure of the different form obtained by a method, (B) is an enlarged view of the dashed-dotted line part B in (A).
FIG. 5 (A) isSectional drawing which shows the watertight structure of a reference form, ( B ) Is ( A ) Partial enlarged view of the alternate long and short dash line part B,( C ) Is a cross-sectional view showing different forms of watertight structures obtained by the watertight construction method of the present invention, ( D ) Is ( C ) Dash-dot part DFIG.
FIG. 6 (A) shows the present invention.Watertight constructionThe fragmentary sectional view which shows the watertight structure of another form obtained by the method, (B) is an enlarged view of the dashed-dotted line part B in (A).
FIG. 7 (A) to (D)Yet another referenceSectional drawing which shows the watertight structure of form, (c), (d) is the elements on larger scale in (C), (D).
FIG. 8 shows the present invention.Watertight constructionThe fragmentary sectional view which shows another watertight structure obtained by the method.
9A and 9B are enlarged views of alternate long and short dash lines A and B in FIG. 8, and FIGS. 9A and 9B are partial cross-sectional views showing modifications of (A) and (B).
FIG. 10 (A) to (D)In another reference formSectional drawing which shows a watertight structure.
11A to 11D are partial cross-sectional views showing a watertight structure according to a conventional technique.
FIGS. 12A, 12B, and 12A are schematic views showing respective steps of general friction stir welding, and FIG. 12C is a cross-sectional view taken along line CC in FIG. 12B. Figure.
[Explanation of symbols]
  2, 21, 41, 46, 51, 81, 83, 91, 100 ... extruded profile (member)
  8, 24, 26 ……………………………………………… End
  9, 29, 39, 49, 59, 88 ……………………….
  10 …………………………………………………………… Tools
  14 …………………………………………………………… Surface suppressor
  16 ……………………………………………………………… Friction pin
  31,32,33 ……………………………………………… Rail (member)
  87 …………………………………………………………… Aluminum plate (member)
  80a ………………………………………………………… Polymerization Department
  W ……………………………………………………………… Joint line

Claims (5)

アルミニウムまたはアルミニウム合金からなる部材同士の表面が互いに平面状をなすように、係る部材同士の各端部を隣接させて構造材に固定し、係る端部同士間の突き合わせ部または重合部に対し、
摩擦部の長さが0.5〜3.0mmで且つ摩擦部の外径が0.5〜3.0mmの摩擦ピンと、表面抑え部と、を含む工具を用いると共に、この工具を3000〜30000rpm回転数で回転しつつ上記突き合わせ部または重合部に沿って移動する摩擦攪拌接合により、
上記部材同士の各端部間に水密構造を構成する接合線を形成する、
ことを特徴とする水密施工方法。
Adhering each end of such members adjacent to each other and fixing them to the structural material so that the surfaces of the members made of aluminum or aluminum alloy are planar, with respect to the butted portion or overlapping portion between such ends ,
While using a tool including a friction pin having a friction part length of 0.5 to 3.0 mm and an outer diameter of the friction part of 0.5 to 3.0 mm, and a surface restraining part, the tool is used at 3000 to 30000 rpm. By friction stir welding that moves along the abutting part or overlapping part while rotating at the rotational speed,
Forming a joining line constituting a watertight structure between the end portions of the members;
A watertight construction method characterized by that.
前記工具の前記突き合わせ部または重合部に沿って移動する速度は、0.02〜2m/分である、
ことを特徴とする請求項1に記載の水密施工方法。
The moving speed of the tool along the abutting portion or overlapping portion is 0.02 to 2 m / min.
The watertight construction method according to claim 1.
前記工具に加える押し込み力は、10〜1000Nである、
ことを特徴とする請求項1または2に記載の水密施工方法。
The pushing force applied to the tool is 10 to 1000 N.
The watertight construction method according to claim 1 or 2.
前記工具における表面抑え部の径は、前記摩擦ピンにおける摩擦部の外径の約2〜3倍である、
ことを特徴とする請求項1乃至3の何れかに記載の水密施工方法。
The diameter of the surface restraining portion in the tool is about 2-3 times the outer diameter of the friction portion in the friction pin.
The watertight construction method according to any one of claims 1 to 3.
前記工具を回転する駆動源は、タービンモータである、
ことを特徴とする請求項1乃至4の何れかに記載の水密施工方法。
The drive source for rotating the tool is a turbine motor.
The watertight construction method according to any one of claims 1 to 4, wherein the watertight construction method is provided.
JP2001390883A 2001-12-25 2001-12-25 Watertight construction method Expired - Fee Related JP3750601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001390883A JP3750601B2 (en) 2001-12-25 2001-12-25 Watertight construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001390883A JP3750601B2 (en) 2001-12-25 2001-12-25 Watertight construction method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15819098A Division JP3506173B2 (en) 1998-06-05 1998-06-05 Watertight structure

Publications (2)

Publication Number Publication Date
JP2002248580A JP2002248580A (en) 2002-09-03
JP3750601B2 true JP3750601B2 (en) 2006-03-01

Family

ID=19188455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001390883A Expired - Fee Related JP3750601B2 (en) 2001-12-25 2001-12-25 Watertight construction method

Country Status (1)

Country Link
JP (1) JP3750601B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109202270A (en) * 2017-11-24 2019-01-15 中国航空制造技术研究院 Double helix stirring means and agitating device in increasing material manufacturing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109202270A (en) * 2017-11-24 2019-01-15 中国航空制造技术研究院 Double helix stirring means and agitating device in increasing material manufacturing
CN109202270B (en) * 2017-11-24 2021-06-08 中国航空制造技术研究院 Double-helix stirring method and stirring device in additive manufacturing

Also Published As

Publication number Publication date
JP2002248580A (en) 2002-09-03

Similar Documents

Publication Publication Date Title
US4589565A (en) Portable liquid storage tank
JP2008055445A (en) Method for manufacturing structure, and such structure
EP0568213A1 (en) Space frame connector of an automotive vehicle
WO2018099349A1 (en) Rail vehicle body structure and rail vehicle provided with same
JP2000202651A (en) Friction welding method
JP3506173B2 (en) Watertight structure
JPH1170877A (en) Structure using extruded light metallic section and composite panel
JPS62158692A (en) Manufacture of large-sized vessel, partition segment used for said method and aligning tool thereof
JP3750601B2 (en) Watertight construction method
JP2002294883A (en) Watertight structure of wall face or roof face
US20110100860A1 (en) Modular Storage Container
JP3750602B2 (en) Watertight structure
JP2008056214A (en) Railway vehicle
JP3224097B2 (en) Friction joining method
JP2008056216A (en) Railway vehicle
JP3179758B2 (en) Friction joining method and structure
JP3084998B2 (en) Construction method of residential area in ship
JP3233395B2 (en) Friction joining method
JPH10169023A (en) Panel jointing structure
JPH0885478A (en) Packing box by bonded structure
JP3229283B2 (en) Friction joining method and structure
JP4346631B2 (en) Friction welding method and panel structure
JP2023086364A (en) Vehicle and vehicle manufacturing method
JP2008056213A (en) Method for manufacturing structure, and structure
JPS6344047A (en) Seal structure of outer wall panel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees