JP3750569B2 - Method for modifying fluorine resin and wear-resistant fluorine resin powder - Google Patents

Method for modifying fluorine resin and wear-resistant fluorine resin powder Download PDF

Info

Publication number
JP3750569B2
JP3750569B2 JP2001203468A JP2001203468A JP3750569B2 JP 3750569 B2 JP3750569 B2 JP 3750569B2 JP 2001203468 A JP2001203468 A JP 2001203468A JP 2001203468 A JP2001203468 A JP 2001203468A JP 3750569 B2 JP3750569 B2 JP 3750569B2
Authority
JP
Japan
Prior art keywords
fluororesin
fluorine resin
radiation
irradiation treatment
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001203468A
Other languages
Japanese (ja)
Other versions
JP2003012815A (en
Inventor
甫 西
悦夫 福地
康彰 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001203468A priority Critical patent/JP3750569B2/en
Publication of JP2003012815A publication Critical patent/JP2003012815A/en
Application granted granted Critical
Publication of JP3750569B2 publication Critical patent/JP3750569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、弗素樹脂の改質方法および耐摩耗性弗素樹脂粉末に関し、特に、微細な粉砕加工を容易に行えるようになる弗素樹脂の改質方法と、これより得られる微細かつ耐摩耗性に優れた弗素樹脂粉末に関する。
【0002】
【従来の技術】
弗素樹脂は、耐熱性、耐薬品性、耐溶剤性あるいは電気的特性等に優れた性質を有するため、これらの特徴を活かして、内面コーティング材、電線被覆材あるいは流体移送用チューブ等の用途に広く使用されている。また、γ線の照射により低分子量化させた弗素樹脂粉末の利用も行われており、たとえば、エンジニアリングプラスティツクス用の固体潤滑材あるいはコーティング材などとして多用されている。
【0003】
このように優れた特質を有し、従って、広く活用されている弗素樹脂ではあるが、一面においては、低レベルの水準にとどまる性質があり、その代表的な特性として耐摩耗性を挙げることができる。耐摩耗性を改善するための一般的な方法としては、放射線の照射による改質が知られており、この方法は、有効な手段として評価されている。
【0004】
放射線の照射によって改質された弗素樹脂は、粉砕化され、粉末状にされて使用されるのが普通であり、たとえば、未照射の弗素樹脂中に混合されることによって摺動性と耐摩耗性に富む複合素材として利用されている。
【0005】
【発明が解決しようとする課題】
しかし、従来の放射線による改質方法によると、放射線の照射によって弗素樹脂に分子間凝集およびゴム弾性化が生ずるため、この樹脂を粉末化するに際しての粉砕加工に困難をきたし、このため、粉砕粒径が大きくなって他樹脂内への分散性が低下し、得られる成型品の表面平滑性に悪影響を与えることがある。
【0006】
従って、本発明の目的は、微細な粉砕加工を容易に行えるようになる弗素樹脂の改質方法と、これより得られる微細かつ耐摩耗性に優れた弗素樹脂粉末を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、上記の目的を達成するため、弗素樹脂に放射線を照射することによって耐摩耗性を改善する弗素樹脂の改質方法において、
弗素樹脂に、前記弗素樹脂の融点以上および10torr以下の酸素濃度のもとで吸収線量が100kGyとなるように放射線を照射する第1の照射処理を施し、
得られた照射弗素樹脂に、常温および空気中において50kGy以下の放射線を照射する第2の照射処理を施すことを特徴とする弗素樹脂の改質方法を提供するものである。
【0008】
また、本発明は、上記の目的を達成するため、放射線を照射された弗素樹脂の粉末より成る耐摩耗性弗素樹脂粉末において、
前記弗素樹脂の粉末は、その融点以上および10torr以下の酸素濃度のもとで吸収線量が100kGyとなるように放射線が照射される第1の照射処理と、常温および大気中において50kGy以下の放射線が照射される第2の照射処理が順に施された後に所定の粒径に粉砕されたものであることを特徴とする耐摩耗性弗素樹脂粉末を提供するものである。
【0009】
上記の弗素樹脂としては、ポリテトラフルオロエチレン(以下、PTFEという)、テトラフルオロエチレンーフルオロ(アルキルビニルエーテル)系共重合体(以下PFAという)、テトラフルオロエチレンーエチレン系共重合体(以下、FEPという)、テトラフルオロエチレンーエチレン系共重合体、ポリビニリデンフルオライド、ポリクロロトリフルオロエチレン、クロロトリフルオロエチレンーエチレン系共重合体あるいはポリビニルフルオライド等が挙げられ、これらは、それぞれが単独あるいは互いに混合されて使用される。
【0010】
なお、これらの弗素樹脂には、たとえば、パーフルオロ(アルキルビニルエーテル)、ヘキサフルオロプロピレン、(パーフルオロアルキル)エチレンあるいはクロロトリフルオロエチレン等を共重合させたPTFEに代表されるような、他の弗素系モノマを共重合させた弗素樹脂類も含まれる。また、その共重合量としては、多くの場合、1.0モル%以下に設定される。
【0011】
本発明の改質方法において、第1の照射処理における弗素樹脂の温度を融点以上に設定する理由は、弗素樹脂の主鎖の分子運動を活発化させ、これによって分子間の架橋反応を効率化させるためである。その温度は、多くの場合、融点よりも10〜30℃高く設定される。設定温度がこれより低くなると、架橋効率に充分なものが得られず、一方、これより高温になると、分子主鎖の切断と分解を招くようになるので好ましくない。
【0012】
なお、上記にいう融点は、20℃/分で昇温させたときの示差走査熱量計(DSC)による吸熱ピークの測定によって求めることができ、たとえば、PTFEの場合で327℃、PFAの場合で310℃、FEPの場合で275℃となる。
【0013】
本発明の改質方法において、第1の照射処理における放射線の照射を酸素濃度10torr以下の条件のもとで行う理由は、酸素濃度がこれより多くなると、材料の酸化劣化が生ずるためであ
【0014】
改質された弗素樹脂は架橋構造によりゴム弾性を有するため、粉砕が困難になる。本発明においては、第2の照射処理を常温下および空気中において行うことにより分子鎖を切断して粉砕しやすくしている。この場合の照射量を50kGy以下に限定する理由は、照射量がこれを超えると、分子鎖を切断しすぎて、伸び等の低下が著しくなるためである。
【0015】
本発明の改質によって得られる耐摩耗性弗素樹脂粉末においては、当該樹脂粉末の効用性を高めるため、結晶化熱量、融点、平均粒径および最大粒径をそれぞれ50J/g以下、330℃以下、20μm以下および100μm以下に設定することが望まれる。
【0016】
特に、これらのうち結晶化熱量は、分子量に逆比例する性質があり、樹脂中に放射線の照射による分子主鎖の切断とそれによる架橋反応が生ずると、主鎖の分枝を原因とした向上を示すようになる。従って、良好な架橋度合を得るためには、この結晶化熱量を一定以下に抑制することが望ましく、前述した50J/gは、そのための好ましい最大値となる。
【0017】
なお、本発明にいう結晶化熱量とは、20℃/分での降温時における発熱ピークをDSCによって測定したとき、曲線がベースラインより離れる点とベースラインに戻る点を直線で結ぶことによって定められるピーク面積に基づいて求められるものである。
【0018】
上記に示した弗素樹脂粉末の特性のうち、融点は、架橋による結晶の小サイズ化に伴って低下する傾向があり、従って、そのレベルの程度は、放射線の照射量によって調整することが可能となる。放射線としては、多くの場合、γ線、電子線、X線、中性子線あるいは高エネルギーイオン等の電離性放射線が使用される。
【0019】
本発明の改質方法において、第1と第2の照射処理を施される弗素樹脂は、放射線照射の効率性と均一性を高めるために、粉末状であることが好ましく、さらに、両照射処理を施された後に所定の粒径に再粉砕される形態とすることが好ましい。なお、この場合、第1の照射処理後の弗素樹脂は、40J/g以下の結晶化熱量、325℃以下の融点、50μm以下の平均粒径および150μm以下の最大粒径を有しているのが普通となる。
【0020】
【発明の実施の形態】
次に、本発明による弗素樹脂の改質方法および耐摩耗性弗素樹脂粉末の実施の形態を説明する。
【0021】
【実施例1】
平均粒径が40μmのPTFEモールディングパウダ(旭硝子社製Gー163)を準備し、これに、酸素濃度が0.5torrの真空下および335℃の加熱温度のもとで吸収線量が100kGyとなるように電子線による第1の照射処理を施した。
【0022】
次いで、これを、平均粒径が27μmおよび最大粒径が176μmとなるまでジェットミルによって粉砕し、得られた粉末に対して常温および空気中において10kGyのγ線を照射する第2の照射処理を施した後、ジェットミルで再粉砕することによって所定のPTFE粉末を得た。
【0023】
【実施例2】
実施例1において、第2の照射処理におけるγ線の照射線量を30kGyに設定するとともに、他を同一条件に設定することによって所定のPTFE粉末を得た。
【0024】
【実施例3】
実施例1において、第2の照射処理におけるγ線の照射線量を50kGyに設定するとともに、他を同一条件に設定することによって所定のPTFE粉末を得た。
【0025】
【従来例】
実施例1において、第2の照射処理を省略するとともに,他を同一条件に設定することによって所定のPTFE粉末を得た。
【0026】
【比較例】
実施例1において、第2の照射処理におけるγ線の照射線量を100kGyに設定するとともに、他を同一条件に設定することによって所定のPTFE粉末を得た。
【0027】
表1は、以上の実施例、従来例および比較例によって得られたPTFE粉末の特性試験結果を示したものである。
【0028】
【表1】

Figure 0003750569
【0029】
なお、各特性の試験方法は、以下による。
・粒径 :粒度分布測定器により測定。
・結晶化熱量:
【0017】に述べた測定方法による。
【0030】
・比摩耗量 :各例のPTFE粉末と未照射のPTFE粉末(前述のGー163)を重量比で前者20に対して後者が80となるように混合し、この混合粉末を350℃下に圧縮成型することによって得られたロッドを0.5mmの厚さのシートにスライスし、このシートを使用して行った摺動試験の結果である。
【0031】
摺動試験には、リングオンディスク型摩擦摩耗試験器(JISK 7218)を使用し、相手材には、表面粗さが0.2μmのSUS304を使用した。なお、測定は、面圧を0.39MPaおよび周速を125m/分に設定して行った。
【0032】
表1によれば、実施例によるPTFE粉末が、平均粒径8〜15μmおよび最大粒径37〜88μmという微細な粒径に加工されているのに比べ、従来例の場合には、平均および最大値とも実施例より格段に粗い粒径にとどまっている。
【0033】
これは、実施例がPTFEの融点以上および低酸素濃度下において第1の照射処理を施し、さらに、常温下および空気中において第2の照射処理を施した後に最終の粉砕加工を行っているのに対し、従来例の場合が第2の照射処理を欠いているためであり、この差が最終粉砕時の粒径の違いとなって現れているものである。
【0034】
この粒径の差は、当該粉末を混合した成型品に表面平滑性の良否として現れることとなり、品質上、大きな格差を生むことになる。そして、実施例により得られたPTFE粉末は、小さな比摩耗量に見られるように耐摩耗性においても優れた特質を備えているものであり、その実用性を高く評価することができる。
【0035】
なお、比較例が比摩耗試験において低水準の結果を示しているのは、高い結晶化熱量に見られるように、第2の照射処理での照射量過剰なために劣化が進行したことに起因しているものである。従って、このことより、本発明においては、放射線の線量を規定されたレベルに設定することが重要となる。
【0036】
【発明の効果】
以上説明したように、本発明によれば、融点以上および10torr以下の酸素濃度のもとで吸収線量が100kGyとなるように放射線を照射する第1の照射処理と、常温および空気中において50kGy以下の放射線を照射する第2の照射処理を施すことによって微細な粉砕加工を容易に行えるようになる弗素樹脂の改質方法と、これより得られる微細かつ耐摩耗性に優れた弗素樹脂粉末を提供するものであり、その有用性は大である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluororesin modification method and wear-resistant fluororesin powder, and in particular, to a fluororesin reformation method that enables easy fine pulverization, and the fine and wear resistance obtained thereby. It relates to an excellent fluororesin powder.
[0002]
[Prior art]
Fluororesin has excellent properties such as heat resistance, chemical resistance, solvent resistance, and electrical characteristics. Therefore, taking advantage of these characteristics, it can be used in applications such as inner surface coating materials, wire coating materials, and fluid transfer tubes. Widely used. In addition, the use of fluorine resin powder having a low molecular weight by irradiation with γ-rays is also being used. For example, it is frequently used as a solid lubricant or coating material for engineering plastics.
[0003]
Although it has such excellent characteristics and is therefore a widely used fluororesin, it has the property of staying at a low level on one side, and its typical characteristic is wear resistance. it can. As a general method for improving the wear resistance, modification by irradiation with radiation is known, and this method is evaluated as an effective means.
[0004]
Fluorine resin modified by irradiation with radiation is usually used after being pulverized and powdered. For example, it can be mixed in unirradiated fluorine resin to improve slidability and wear resistance. It is used as a composite material rich in nature.
[0005]
[Problems to be solved by the invention]
However, according to the conventional modification method using radiation, radiation irradiation causes intermolecular aggregation and rubber elasticity in the fluororesin, which makes it difficult to pulverize the resin. The diameter increases and the dispersibility in other resins decreases, which may adversely affect the surface smoothness of the resulting molded product.
[0006]
Accordingly, an object of the present invention is to provide a method for modifying a fluororesin that makes it easy to perform a fine pulverization process, and a fluororesin powder that is obtained from the process and that is fine and excellent in wear resistance.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for modifying a fluororesin that improves the wear resistance by irradiating the fluororesin with radiation.
The fluorine resin is subjected to a first irradiation treatment in which radiation is irradiated so that the absorbed dose is 100 kGy under an oxygen concentration not lower than the melting point of the fluorine resin and not higher than 10 torr,
The present invention provides a method for modifying a fluororesin, characterized in that the obtained irradiated fluororesin is subjected to a second irradiation treatment for irradiating radiation of 50 kGy or less at room temperature and in air.
[0008]
In order to achieve the above object, the present invention provides an abrasion-resistant fluororesin powder comprising a fluororesin powder irradiated with radiation.
The fluororesin powder has a first irradiation treatment in which radiation is irradiated so that an absorbed dose becomes 100 kGy under an oxygen concentration not lower than its melting point and not higher than 10 torr, and radiation not higher than 50 kGy at normal temperature and in the atmosphere. The present invention provides an abrasion-resistant fluororesin powder characterized by being subjected to the second irradiation treatment to be irradiated in order and then pulverized to a predetermined particle size.
[0009]
Examples of the fluororesin include polytetrafluoroethylene (hereinafter referred to as PTFE), tetrafluoroethylene-fluoro (alkyl vinyl ether) copolymer (hereinafter referred to as PFA), and tetrafluoroethylene-ethylene copolymer (hereinafter referred to as FEP). Tetrafluoroethylene-ethylene copolymer, polyvinylidene fluoride, polychlorotrifluoroethylene, chlorotrifluoroethylene-ethylene copolymer, polyvinyl fluoride, etc., and these may be used alone or Used mixed with each other.
[0010]
These fluorine resins include other fluorines such as PTFE copolymerized with perfluoro (alkyl vinyl ether), hexafluoropropylene, (perfluoroalkyl) ethylene or chlorotrifluoroethylene. Also included are fluororesins obtained by copolymerizing monomeric monomers. Further, the copolymerization amount is set to 1.0 mol% or less in many cases.
[0011]
In the modification method of the present invention, the reason for setting the temperature of the fluororesin in the first irradiation treatment to be equal to or higher than the melting point is to activate the molecular motion of the main chain of the fluororesin, thereby increasing the efficiency of the cross-linking reaction between molecules. This is to make it happen. The temperature is often set to 10 to 30 ° C. higher than the melting point. If the set temperature is lower than this, a product having sufficient crosslinking efficiency cannot be obtained. On the other hand, if the temperature is higher than this, the molecular main chain is cleaved and decomposed, which is not preferable.
[0012]
The melting point mentioned above can be obtained by measuring an endothermic peak with a differential scanning calorimeter (DSC) when the temperature is raised at 20 ° C./min. For example, in the case of PTFE, it is 327 ° C., and in the case of PFA. It becomes 275 ° C. in the case of 310 ° C. and FEP.
[0013]
In the reforming process of the present invention, reasons for irradiation of radiation in the first irradiation treatment under the following conditions the oxygen concentration 10torr, when the oxygen concentration is more than this, Ru der the oxidation degradation of the material occurs .
[0014]
Since the modified fluororesin has rubber elasticity due to the cross-linked structure, it becomes difficult to grind. In the present invention, the second irradiation treatment is performed at room temperature and in the air so that the molecular chains are easily cut and pulverized. The reason for limiting the irradiation dose in this case to 50 kGy or less is that if the irradiation dose exceeds this, the molecular chain is cut too much, and the elongation and the like are significantly reduced.
[0015]
In the wear-resistant fluorine resin powder obtained by the modification of the present invention, the crystallization heat amount, melting point, average particle size and maximum particle size are 50 J / g or less and 330 ° C. or less, respectively, in order to enhance the utility of the resin powder. , 20 μm or less and 100 μm or less are desired.
[0016]
In particular, the amount of heat of crystallization has a property that is inversely proportional to the molecular weight. When the molecular main chain is cleaved by radiation and a cross-linking reaction is caused in the resin, it is improved due to branching of the main chain. Will come to show. Therefore, in order to obtain a good degree of crosslinking, it is desirable to suppress the amount of heat of crystallization to a certain value or less, and the above-mentioned 50 J / g is a preferable maximum value.
[0017]
The heat of crystallization referred to in the present invention is determined by connecting a point where the curve is separated from the base line and a point returning to the base line by a straight line when the exothermic peak at a temperature drop of 20 ° C./min is measured by DSC. It is calculated | required based on the peak area obtained.
[0018]
Among the characteristics of the fluororesin powder shown above, the melting point tends to decrease as the crystal size is reduced by crosslinking, and therefore the level can be adjusted by the radiation dose. Become. In many cases, ionizing radiation such as γ-rays, electron beams, X-rays, neutron beams or high-energy ions is used as the radiation.
[0019]
In the modification method of the present invention, the fluororesin subjected to the first and second irradiation treatments is preferably in the form of a powder in order to improve the efficiency and uniformity of radiation irradiation. It is preferable to make it a form that is re-pulverized to a predetermined particle size after being applied. In this case, the fluororesin after the first irradiation treatment has a crystallization heat amount of 40 J / g or less, a melting point of 325 ° C. or less, an average particle size of 50 μm or less, and a maximum particle size of 150 μm or less. Becomes normal.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the fluorine resin modification method and wear-resistant fluorine resin powder according to the present invention will be described.
[0021]
[Example 1]
A PTFE molding powder (G-163 manufactured by Asahi Glass Co., Ltd.) having an average particle size of 40 μm is prepared, and the absorbed dose is 100 kGy under a vacuum with an oxygen concentration of 0.5 torr and a heating temperature of 335 ° C. The 1st irradiation process by an electron beam was given to.
[0022]
Then, this is pulverized by a jet mill until the average particle size becomes 27 μm and the maximum particle size becomes 176 μm, and the obtained powder is subjected to a second irradiation treatment in which 10 kGy γ rays are irradiated at room temperature and in air. After the application, a predetermined PTFE powder was obtained by re-grinding with a jet mill.
[0023]
[Example 2]
In Example 1, a predetermined PTFE powder was obtained by setting the irradiation dose of γ rays in the second irradiation treatment to 30 kGy and setting the other conditions to the same conditions.
[0024]
[Example 3]
In Example 1, a predetermined PTFE powder was obtained by setting the irradiation dose of γ-rays in the second irradiation treatment to 50 kGy and setting the others to the same conditions.
[0025]
[Conventional example]
In Example 1, a predetermined PTFE powder was obtained by omitting the second irradiation treatment and setting the others to the same conditions.
[0026]
[Comparative example]
In Example 1, a predetermined PTFE powder was obtained by setting the irradiation dose of γ rays in the second irradiation treatment to 100 kGy and setting the other conditions to the same conditions.
[0027]
Table 1 shows the characteristic test results of the PTFE powders obtained in the above examples, conventional examples, and comparative examples.
[0028]
[Table 1]
Figure 0003750569
[0029]
The test method for each characteristic is as follows.
-Particle size: Measured with a particle size distribution meter.
・ Crystalization heat:
According to the measurement method described above.
[0030]
Specific wear amount: PTFE powder of each example and unirradiated PTFE powder (the above-mentioned G-163) are mixed so that the latter is 80 with respect to the former 20 by weight ratio, and this mixed powder is kept at 350 ° C. It is the result of the sliding test performed by slicing a rod obtained by compression molding into a sheet having a thickness of 0.5 mm and using this sheet.
[0031]
For the sliding test, a ring-on-disk type frictional wear tester (JISK 7218) was used, and SUS304 having a surface roughness of 0.2 μm was used as the mating material. The measurement was performed with the surface pressure set to 0.39 MPa and the peripheral speed set to 125 m / min.
[0032]
According to Table 1, in the case of the conventional example, the average and maximum PTFE powders according to the examples are processed into fine particles having an average particle size of 8 to 15 μm and a maximum particle size of 37 to 88 μm. Both values are much coarser than the examples.
[0033]
This is because the example performs the first irradiation treatment above the melting point of PTFE and under a low oxygen concentration, and further performs the final pulverization process after the second irradiation treatment at room temperature and in air. On the other hand, the case of the conventional example lacks the second irradiation treatment, and this difference appears as a difference in particle size at the time of final pulverization.
[0034]
This difference in particle diameter will appear as a quality of surface smoothness in a molded product in which the powder is mixed, resulting in a large disparity in quality. And the PTFE powder obtained by an Example is equipped with the characteristic which was excellent also in abrasion resistance so that it may be seen in the small specific wear amount, and its practicality can be evaluated highly.
[0035]
In addition, the comparative example shows a low level result in the specific wear test, as seen in the high crystallization heat amount, because the irradiation amount in the second irradiation treatment is excessive and the deterioration has progressed. It is the cause. Therefore, in this invention, it is important to set the radiation dose to a prescribed level.
[0036]
【The invention's effect】
As described above, according to the present invention, 50 kGy or less in the first and irradiation treatment, cold and in the air under absorbed dose of less oxygen than and 10torr melting point is irradiated so as to 100kGy Provides a method for modifying a fluororesin that makes it easy to carry out a fine pulverization process by applying a second irradiation treatment to irradiate the radiation, and a fluororesin powder having excellent fineness and abrasion resistance obtained therefrom. And its usefulness is great.

Claims (5)

弗素樹脂に放射線を照射することによって耐摩耗性を改善する弗素樹脂の改質方法において、
弗素樹脂に、前記弗素樹脂の融点以上および10torr以下の酸素濃度のもとで吸収線量が100kGyとなるように放射線を照射する第1の照射処理を施し、
得られた照射弗素樹脂に、常温および空気中において50kGy以下の放射線を照射する第2の照射処理を施すことを特徴とする弗素樹脂の改質方法。
In a method of modifying a fluororesin that improves wear resistance by irradiating the fluororesin with radiation,
The fluorine resin is subjected to a first irradiation treatment in which radiation is irradiated so that the absorbed dose becomes 100 kGy under an oxygen concentration not lower than the melting point of the fluorine resin and not higher than 10 torr,
A method for modifying a fluororesin, which comprises subjecting the obtained irradiated fluororesin to a second irradiation treatment in which radiation of 50 kGy or less is applied at room temperature and in air.
前記第1および第2の照射処理のステップは、粉末状の前記弗素樹脂を対象にして行われ、前記粉末状の弗素樹脂は、前記第2の照射処理後に所定の粒径に粉砕されることを特徴とする請求項1項記載の弗素樹脂の改質方法。  The steps of the first and second irradiation treatments are performed on the powdery fluorine resin, and the powdery fluorine resin is pulverized to a predetermined particle size after the second irradiation treatment. The method for modifying a fluorine resin according to claim 1. 前記第1および第2の照射処理のステップは、ポリテトラフルオロエチレン、テトラフルオロエチレンーフルオロ(アルキルビニルエーテル)系共重合体、テトラフルオロエチレンーヘキサフルオロプロピレン系共重合体、テトラフルオロエチレンーエチレン系共重合体、ポリビニリデンフルオライド、ポリクロロトリフルオロエチレン、クロロトリフルオロエチレンーエチレン系共重合体およびポリビニルフルオライドより選択される前記弗素樹脂を対象として行われることを特徴とする請求項1項記載の弗素樹脂の改質方法。  The first and second irradiation treatment steps include polytetrafluoroethylene, tetrafluoroethylene-fluoro (alkyl vinyl ether) -based copolymer, tetrafluoroethylene-hexafluoropropylene-based copolymer, tetrafluoroethylene-ethylene-based 2. The method according to claim 1, wherein the fluororesin is selected from a copolymer, polyvinylidene fluoride, polychlorotrifluoroethylene, chlorotrifluoroethylene-ethylene copolymer, and polyvinyl fluoride. The method for modifying a fluorine resin as described. 放射線を照射された弗素樹脂の粉末より成る耐摩耗性弗素樹脂粉末において、
前記弗素樹脂の粉末は、その融点以上および10torr以下の酸素濃度のもとで吸収線量が100kGyとなるように放射線が照射される第1の照射処理と、常温および大気中において50kGy以下の放射線が照射される第2の照射処理が順に施された後に所定の粒径に粉砕されたものであることを特徴とする耐摩耗性弗素樹脂粉末。
In abrasion-resistant fluororesin powder composed of fluororesin powder irradiated with radiation,
The fluororesin powder has a first irradiation treatment in which radiation is irradiated so that an absorbed dose is 100 kGy under an oxygen concentration not lower than its melting point and not higher than 10 torr, and radiation not higher than 50 kGy at normal temperature and in the atmosphere. A wear-resistant fluororesin powder characterized by being subjected to a second irradiation treatment to be irradiated in order and then pulverized to a predetermined particle size.
前記弗素樹脂の粉末は、50J/g以下の結晶化熱量、330℃以下の融点、20μm以下の平均粒径、および100μm以下の最大粒径を有することを特徴とする請求項4項記載の耐摩耗性弗素樹脂粉末。  5. The resistance to resistance according to claim 4, wherein the fluororesin powder has a heat of crystallization of 50 J / g or less, a melting point of 330 ° C. or less, an average particle size of 20 μm or less, and a maximum particle size of 100 μm or less. Abrasive fluorine resin powder.
JP2001203468A 2001-07-04 2001-07-04 Method for modifying fluorine resin and wear-resistant fluorine resin powder Expired - Fee Related JP3750569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001203468A JP3750569B2 (en) 2001-07-04 2001-07-04 Method for modifying fluorine resin and wear-resistant fluorine resin powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001203468A JP3750569B2 (en) 2001-07-04 2001-07-04 Method for modifying fluorine resin and wear-resistant fluorine resin powder

Publications (2)

Publication Number Publication Date
JP2003012815A JP2003012815A (en) 2003-01-15
JP3750569B2 true JP3750569B2 (en) 2006-03-01

Family

ID=19040100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001203468A Expired - Fee Related JP3750569B2 (en) 2001-07-04 2001-07-04 Method for modifying fluorine resin and wear-resistant fluorine resin powder

Country Status (1)

Country Link
JP (1) JP3750569B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2858327A1 (en) * 2003-07-28 2005-02-04 Atofina Oxidation of fluorinated polymer by gamma- or beta-irradiation in presence of oxygen, giving product useful in structures with other materials, e.g. polyolefins, having good barrier properties, e.g. to gasoline
US9266984B2 (en) 2008-09-30 2016-02-23 Raytech Corporation Polytetrafluoroethylene resins that can be processed by shaping, shaped products thereof, and processes for producing the resins and shaped products
JP5087791B2 (en) * 2008-10-28 2012-12-05 住友金属鉱山株式会社 Method for cross-linking polymer

Also Published As

Publication number Publication date
JP2003012815A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
JP5967181B2 (en) Modified fluorine-containing copolymer and fluororesin molded product
JPH09278907A (en) Sliding part material
CN101942162B (en) Modified fluorocarbon resin composition and molded products
EP3348610B1 (en) Method for manufacturing polytetrafluoroethylene molded body, and polytetrafluoroethylene molded body
JP5962873B2 (en) Method for producing modified molded product of fluororesin
US6465575B1 (en) Product having reduced friction and improved abrasion resistance
JP3750569B2 (en) Method for modifying fluorine resin and wear-resistant fluorine resin powder
JP2020070326A (en) Uncrosslinked fluororubber composition and rubber product produced using the same
JP3672428B2 (en)   Modified fluoroplastic molding
JP3750326B2 (en) Insulated wires and hoses
CN107922638B (en) Polytetrafluoroethylene molded article and method for producing same
JP2003253073A (en) Abrasion-resistant resin composition
JP2004331814A (en) Modified fluororesin composition and modified fluororesin molded product
JP3731536B2 (en) Crosslinked tetrafluoroethylene / hexafluoropropylene copolymer fine powder and method for producing the same
JPH11116623A (en) Modified fluororesin and molded form
JP3952865B2 (en) COATING MATERIAL AND METHOD FOR FORMING COATING FILM USING COATING MATERIAL
JP2002080672A (en) Modified fluororesin molding
JP2003026883A (en) Abrasion-resistant fluororesin composition and member for sliding
JP2002114883A (en) Fluororesin composition and its molded article
JP2003253007A (en) Method for producing modified fluororesin
JP3903547B2 (en) Oriented fluororesin molded body and method for producing the same
JP2002114882A (en) Fluororesin composition having high abrasion resistance
JP2004018816A (en) Coating material for forming water-repellent coating film
JP3624730B2 (en) Modified fluororesin
JP7367088B2 (en) Thermal conductive sheet and method for manufacturing the thermally conductive sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Effective date: 20051019

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20081216

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20091216

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20101216

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees