JP3750481B2 - Vacuum insulation and insulation panel - Google Patents

Vacuum insulation and insulation panel Download PDF

Info

Publication number
JP3750481B2
JP3750481B2 JP2000097096A JP2000097096A JP3750481B2 JP 3750481 B2 JP3750481 B2 JP 3750481B2 JP 2000097096 A JP2000097096 A JP 2000097096A JP 2000097096 A JP2000097096 A JP 2000097096A JP 3750481 B2 JP3750481 B2 JP 3750481B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
core material
vacuum heat
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000097096A
Other languages
Japanese (ja)
Other versions
JP2001280583A (en
Inventor
尚孝 山本
誠一路 木藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2000097096A priority Critical patent/JP3750481B2/en
Publication of JP2001280583A publication Critical patent/JP2001280583A/en
Application granted granted Critical
Publication of JP3750481B2 publication Critical patent/JP3750481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Landscapes

  • Building Environments (AREA)
  • Panels For Use In Building Construction (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は真空断熱材および真空断熱材を用いた断熱パネルに関する。
【0002】
【従来の技術】
従来、冷凍、冷蔵、保冷車等の、温度管理を必要とする移動用保管庫の断熱壁において、壁面には主に断熱材としてウレタン発泡材、スチレン発泡材が使用されている。
表面材と断熱材を積層した従来の壁構造は、次に示す構造がある。
構造A・・・図10参照
スラブ断熱材5の両側表面にアルミ合金製の薄板(表面材)3(あるいはFRP製の薄板)を接着剤4で貼り付けて形成するパネル構造。・・(a)参照
スラブ材よりなる断熱材5’を積み上げ、接着4して断熱層を形成し、その両面に表面材3を接着4し配設するパネル構造。・・(b)参照
この形成方法は、表面材3、または発泡材よりなる断熱材5、5’に接着剤4を塗布し並べ置いた後、プレスして全体を接着する。
【0003】
構造B・・・図11参照
FRPまたはFRPと合板の一体成形した薄板を表面材3として注入用ウレタン材を注入してパネルにする構造。
間隔設定のためのスラブ材6を介して表面材3を定盤プレス内にセットし、その後、仕上げ寸法厚さの枠材7をパネル周囲にセット。注入ノズル8から間隙にウレタンを注入して、ウレタン層5aを形成する。この場合、ウレタンは自己接着性を有するので、接着剤は不要である。
構造C・・・図12参照
吹き付け用ウレタン材を吹き付けて充填した後、内板を取り付けて断熱箱にする構造。
予め作られた外板と補強材を積層した表面材3の内側に、木製の断熱厚さの桁材9をセットし、吹きつけ手段81により吹き付け用ウレタンを数層に分けて吹き付ける。
必要があれば削って所定の厚さにした後、他の面の表面材3をタッピング2、あるいは接着剤にて取付ける。
【0004】
以上、断熱材としてウレタンフォ−ムを使用した断熱パネルの構造を説明したが、断熱材として真空断熱材を使用する場合を説明する。
まず、真空断熱材10の構造を図13により説明する。
ウレタン連通フォーム材やスチレン連通フォーム材等のプラスチック製連通材(コア材)11と真空度劣化防止のガス吸着剤12を、ガスの透過性がない、またはガスの透過性が低いフィルム13の袋に入れ、真空状態で密封し真空断熱材10を製作する。
このとき、コア材11をフィルム 内に袋づめする際や、真空状態で密封シールする場合、フィルムの袋には余裕寸法が必要となる。この余裕寸法分を含んだシール部15が完成後真空断熱材の側面に露出する。
余裕分を少なめにしたとしても、完成後余裕寸法分+シール部の長さLは片側15mmから30mmとなる。
【0005】
このような真空断熱材10を断熱部材としてパネル構造に使用した場合、余裕寸法を含めたシール部15に起因する下記のような問題点が各々の工法で発生する。
▲1▼ 上記構造Aに示すスラブ断熱材に変えて真空断熱材を使用した場合
・真空断熱材10を並設するとき真空断熱材10のシール部15を損傷しないように小型のスラブ材16で挾み込む構造となり、積層数、部品が多くなり構造が複雑となる。・・・図14参照
・シール部15は真空断熱材10の厚さ寸法に対して一定位置となるものではないため、スラブ材16の積層間隙に無理に挾み込まねばならない。この為、引張られたフィルム13が破損13’し、この部分が真空破れの原因になる。・・・図15参照
【0006】
▲2▼ 上記構造Bに示す注入ウレタンを使用したパネルにおいて、真空断熱材を使用した場合
・シール部15のために隣接する真空断熱材10同士の間に隙間17を設け、その隙間17を注入ウレタンフォ−ムで埋める。この場合、隙間17が小さいため、注入ウレタンは全域に充填され難く、注入ウレタンの密度が高くなってしまう部分17’ができる。例えば、通常密度40Kgのところ、部分17’は密度50Kgとなる。・・・図16参照
・狭い箇所に注入ノズルを挿入するため、フィルムに接触し破損させる危険性がある。
▲3▼ 上記構造Cに示すウレタンを吹き付けるパネルにおいて、真空断熱材を使用した場合
・吹き付けにおいてシール部15の下部にはウレタンが入り難く、ウレタンが充填されない部分18ができてしまう。・・・図17参照
【0007】
【発明が解決しようとする課題】
上記問題点に鑑みて、断熱パネルを構成する真空断熱材において、本出願人はコア材に凹欠溝を形成し、合成樹脂フィルムのシール部を凹欠溝に収容する構成を特願平11−225942号に提案している。
このコア材および溝の加工を図18、19により説明する。
真空断熱材のコア材30はその側壁面にシールの収容凹欠溝31を形成している。この溝31の形成に際し、溝加工をルータ20という特殊な切削加工具により行っていた。ルータ20は部材21に切削刃23を回転自在に取り付け、コア材30の切削面にガイド25を介して当接させ、所望する深さの溝31を切削して形成するものである。
上記の形成方法において約1m平方板のコア材の溝加工に要する時間は、約5分であった。また、この切削加工時に発生する切削粉は作業スペース周辺に飛散し、汚染の原因となってしまった。そこで、この切削粉を屋外に排出するためには、大型の排気装置の設置、及び作業者が粉塵を吸い込まないように防塵マスクの着用が必須であった。
このように、溝形成のために特別な設備が必要となり、コア材の製造装置を大掛かりなものとしていた。
そこで、本発明は上記問題点を解決するため、断熱パネルを構成する真空断熱材の真空状態の長期間維持を可能とすると共に、真空断熱材のコア材の製造において、切削加工を必要としないシール収容スペースの形成、装置の小型化の達成、および製作工程の省力化を目的とする。
【0008】
【課題を解決するための手段】
本発明の真空断熱材は、断熱材よりなるコア材の合成樹脂フィルムのシール部に対応する部分に凹部を形成し、合成樹脂フィルムのフィルム端縁のシール部を該凹部に収容させる構成を具備する。コア材は複数枚の板状断熱材を積層して形成されているが、積層方向中央部に位置する板状断熱材のサイズを他の板状断熱材のサイズより小型とし、積層したとき、コア材の積層方向中央部分の端縁に板状断熱材のサイズの差寸法の凹部を形成している。
本発明の断熱材を表面材で挟持した断熱パネルは断熱材の一部に、シール部を凹部に収容させた真空断熱材を使用し、隣接する真空断熱材同士は間隙なく並設されている構成を具備している。
【0009】
本発明の真空断熱材の製造方法は、複数枚の板状断熱材を積層してコア材を形成するコア材形成工程と、合成樹脂フィルム端縁をシールするシール工程と、コア材に合成樹脂フィルムを被覆する被覆工程と、減圧環境内でフィルム内を減圧させる減圧工程とを有し、コア材形成工程で積層する板状断熱材は他の板状断熱材に比較して小型の板状断熱材を含み、該小型の板状断熱材は積層方向中央部分に位置させて、コア材の積層方向中央部分端縁に凹部を形成し、減圧工程においてフィルムのシール部は、コア材の凹部内に収容される構成を具備する。
本発明の断熱材を表面材で挟持した断熱パネルの製造方法は、表面材上に断熱材を配置する断熱材配置工程と、配置された断熱材の上に表面材を配置して断熱材を表面材で挟持する挟持工程とを有し、断熱材配置工程で配置される断熱材の一部はシール部を凹部に収容させた真空断熱材を使用し、隣接する真空断熱材同士は間隙なく並設される構成を具備する。
【0010】
【発明の実施の形態】
次に図面を参照して本発明の実施の形態を説明する。
図1は本発明に係る真空断熱材の断面図、図2は構成説明図である。
真空断熱材50はウレタン連通フォ−ム材、またはスチレン連通フォ−ム材等のプラスチック製の連通フォ−ム材よりなる断熱コア材51と、断熱コア材51を被覆するプラスチックフィルム53と、減圧された真空断熱材50中に進入してくるガスを吸着固定するガス吸着剤55で構成されている。
【0011】
本発明に係る断熱コア材51は、例えば図2に示すように、矩形状の板体である第1のコア材51A,第2のコア材51B,第3のコア材51Cを積層して構成されている。
第1のコア材51A,第2のコア材51Bは同一サイズの矩形状の板体である。第3のコア材51Cは第1・第2コア材51A,Bより各辺の寸法が寸法m短い寸法とする矩形状の板板である。
そして、第1のコア材51Aと第2のコア材51Bとで第3のコア材51Cを挟持して断熱コア材51を構成する。
積層断熱コア材51は積層方向に垂直に第1、第2のコア材51A,51Bと第3のコア材51Cとの寸法差、深さ寸法mの凹部520が形成される。
積層されたコア材51はプラスチックフィルムで被覆される。
【0012】
被覆するプラスチックフィルムは予め三辺をシールしてシール部530を形成した袋体53とする。そして、プラスチック袋体53の開口部535から積層されたコア材51を挿入、真空チャンバー内にて真空状態とし、開口部535をシールして、真空断熱材50を形成する。・・・図3参照
このとき、各コア材は単に重ね合せただけでは第1のコア材51Aと第2のコア材51Bとの間で第3のコア材51Cが移動して、図4(a)に示すように、第1、第2のコア材51A,Bと第3のコア材51Cとの周縁の間隙が、間隙s>間隙tとなってしまったり、(b)に示すように、第1のコア材51Aがずれて、第2のコア材51Bに対して第1のコア材51Aが寸法u突出した形状となってしまう。
【0013】
そこで、この発明に係るコア材51は以下の方法により位置決め(仮固定)を行い、第1・第2、及び第3のコア材51A,B,Cを積層している。
(1)第2のコア材51Bと第3のコア材51Cの中心位置Oを合致させてピン510止する。そして、第3のコア材51C上に第1のコア材51Aをピン510で止めて重合する。・・・図4(c)参照
(2)ピンに換えて両面接着テープ511を介在させて仮接着する。・・・図4(d)参照
(3)ピンに換えて接着剤512を塗布し、点接着させる。・・・図4(e)参照
【0014】
このように、各コア材間を仮止して、動きを規制された状態で積層されたコア材51はプラスチックフィルムで被覆される。
プラスチックフィルム製の袋53内にコア材51を収容し、全体を真空チャンバ−などに収容して脱気処理を施し、内部を減圧した状態で残りの1辺をシールする。このとき、プラスチックフィルム の袋体53をコア材51の表面の大きさとほぼ等しい、あるいは僅かに大きく構成することにより、シール部530はコア材51の凹部520内に引込まれた状態で被覆される。
【0015】
このように構成される真空断熱材50により断熱パネルを構成する。
(1)・・・図5参照
アルミ合金製の薄板(表面材)60に、従来例で説明したスラブ材5を接着剤4で貼り付け、並設した真空断熱材50を挟持させ、断熱パネル500を構成する。
この断熱パネル500は真空断熱材50のシール部530がコア材51の凹部520内に収容されているので、真空断熱材50を並設するとき、真空断熱材50を間隙なく配設できる。また、隣接する真空断熱材50の間に間隙を形成する場合には、間隙には間隙に合致する大きさのスラブ材5を介在させることで断熱パネル500が形成できる。
【0016】
このように断熱パネル500を構成するとき、真空断熱材50のシール部530は凹部に収容されているので、隣接するスラブ材5、真空断熱材50の存在に注意する必要がない。そして、真空断熱材50にスラブ材5を単に積み重ねることにより形成でき、従来のようなシール部を介在させるため、分割したスラブ材を接着させる接着工程を削減させることができ、より簡単で確実に断熱効果がある断熱パネルを形成できる。
このように、この断熱パネル500は複雑な構造がなくなりスラブ材のレンガ積み方式と同様に接着工数を減らすことができる。
【0017】
(2)・・・図6参照
表面材60上に真空断熱材50を間隙90を空けて配置する。そして、この間隙90にウレタンを注入する。
この場合も、真空断熱材50のシール部は凹部に収容されているので注入ウレタンを遮蔽することがなく、間隙90内には均一にウレタンが注入され、断熱効率の高い断熱パネル510が形成できる。また、パネル端部周辺の広い箇所へのみ注入することになり、狭い隙間への注入が廃止でき、真空断熱材同士を突き合わせるかスラブ材を挿入接着するなどが可能となって、注入ウレタンの密度の高い部分ができたり、真空断熱材のフィルムを破る危険性も減る。
【0018】
(3)・・・図7参照
表面材60上に真空断熱材50を配置する。そして、厚さを一定とするための桁材65を介して表面材60を配置し、間隙95内にウレタンを吹き付けにより充填する。このとき、真空断熱材50は桁材65との間に間隙を設けておいても、間隙がないように配設してもよい。何れも間隙95内には従来の真空断熱材が端縁に突出させていたシール部は凹部に収容されているので、吹き付けによってウレタンが充填されない部分がなく、断熱効率の高い断熱パネル515となる。また、木製の桁材との間に隙間を空けても密着させても吹き付けウレタンの入らない箇所はなくなる。
【0019】
上記実施の形態において、コア材は3枚の板状断熱材で形成した例を示したが、コア材を構成する板状断熱材は3枚以上であっても良い。このとき、積層方向中央部に位置する板状断熱材を他の板状断熱材より小さいサイズ(小型)とすることにより積層工程でコア材の周縁に凹部を形成することができる。
【0020】
(実施例)
次に、実施例により、本発明による真空断熱材を使用したパネルと、従来の真空断熱材を使用した断熱パネルとを比較する。
図8は本発明に係る真空断熱材を使用した実施例を示し、図9は従来の真空断熱材を使用した断熱パネルの実施例を示している。
(1)本発明の真空断熱材50による断熱パネル。
a.アルミ板をカットして表面材70Aを形成する。更に、スラブ材80をカットして間隙に配設するスラブ部品801を形成する。
b.アルミ板70A上の周縁にスラブ部品801を配置する。そして、スラブ部品801で囲まれた範囲に、隣接する真空断熱材50同士を接触させて配置する。
c.真空断熱材50の上にアルミ板70Aを置き、全体を接着固定する。
この工程により、断熱パネル700Aは完成する。
この断熱パネルは接着工程が少なくて済み、断熱パネルの面積に占める真空断熱材の割合が大きくできる。
【0021】
(2)従来の真空断熱材10による断熱パネルの実施例。
a.アルミ板をカットして、表面材70Aと同一面積の表面材70Bを形成する。更に、スラブ材80をカットして間隙に配設するスラブ部品802,803を形成する。
b.アルミ板70B上の周縁にスラブ部品802を配置する。
さらに、スラブ部品802で囲まれた中央部分に、スラブ部品803を配置する。このスラブ部品803は真空断熱材10のシール部15を載置する部品となる。
c.スラブ部品802とスラブ部品803で囲まれた部分に真空断熱材10を配置する。このとき、シール部15はスラブ部品803に乗せる。
d.2枚目のアルミ板70Bにスラブ部品802.803を1枚目と同様に接着固定する。
e.スラブ部品802.803、および真空断熱材10を載置したアルミ板70B上に、スラブ部品802.803を貼り付けたアルミ板70Bを置き、全体を接着固定する。このとき、真空断熱材10のシール部15をスラブ部品803で挟持させている。
この工程により、断熱パネル700Bが完成する。
【0022】
ここで、(1)に示す本発明に係る真空断熱材による製造工程に比較して、(2)に示す従来の真空断熱材による製造工程は、c.dの工程が多く必要となり、かつ、eの工程においても真空断熱材10のシール部15の扱いが大変となる。
また、パネル内に配設される真空断熱材の全体の面積に占める割合は、シール部を介在させるスラブ部品を必要とする(2)の従来の真空断熱材10を使用するパネルに対して、本発明の真空断熱材50を使用するパネルはシール部を介在させるスラブ部品の面積分高い割合(約10%向上)とすることができる。
また、スラブ部品配設工程、および接着工程が少ない(1)記載の本発明に係る真空断熱材による製造方法は、製造時間を短縮(約半分)させることができる。
【0023】
【発明の効果】
以上説明したように、本発明は、真空断熱材の取り扱いが容易となり、真空断熱材の使用面積率を上げることができる。
さらに、確実な断熱効力の長期維持が達成される。また、断熱パネルとしての構造上の取り扱いはスラブ材と同様にでき、輸送の際の取り扱い、梱包も手間がかからなくなる。
また、真空断熱材のコア材は、板形状のコア材の積層により形成するので、切削加工による粉塵の発生がなく、排気装置などの設備を必要としない小型の製造装置とすることができる。
【図面の簡単な説明】
【図1】本発明に係る真空断熱材の断面図。
【図2】コア材の構成説明図。
【図3】真空断熱材の構成説明図。
【図4】コア材の積層状態説明図。
【図5】本発明に係る断熱パネルの断面図。
【図6】断熱パネルの他の例を示す断面図。
【図7】断熱パネルの他の実施例を示す斜視図。
【図8】本発明に係る断熱パネルの実施例を示す説明図。
【図9】従来の断熱パネルを示す説明図。
【図10】従来の断熱パネルの実施例を示す断面図。
【図11】従来の断熱パネルの他の実施例を示す説明図。
【図12】従来の断熱パネルの他の実施例を示す説明図。
【図13】従来の真空断熱材の断面図。
【図14】従来の断熱パネルの他の実施例を示す断面図。
【図15】従来の断熱パネルの欠陥状態を示す説明図。
【図16】従来の断熱パネルの欠陥状態を示す説明図。
【図17】従来の断熱パネルの欠陥状態を示す説明図。
【図18】従来の真空断熱材のコア材を示す斜視図。
【図19】従来の真空断熱材のコア材の溝形成状態を示す説明図。
【符号の説明】
5 スラブ材
50 真空断熱材
51 コア材
51A 第1のコア材
51B 第2のコア材
51C 第3のコア材
53 合成樹脂フィルムの袋体
55 ガス吸着剤
60 表面材
70 桁材
500 断熱パネル
520 凹部
530 シール部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum heat insulating material and a heat insulating panel using the vacuum heat insulating material.
[0002]
[Prior art]
Conventionally, in a heat insulating wall of a moving storage that requires temperature control, such as a refrigerator, a refrigerator, a cold car, and the like, a urethane foam material and a styrene foam material are mainly used as the heat insulating material on the wall surface.
A conventional wall structure in which a surface material and a heat insulating material are laminated has the following structure.
Structure A: Refer to FIG. 10 A panel structure in which a thin plate (surface material) 3 made of aluminum alloy (or a thin plate made of FRP) is attached to both side surfaces of the slab heat insulating material 5 with an adhesive 4. (A) A panel structure in which a heat insulating material 5 'made of a reference slab material is stacked, bonded 4 to form a heat insulating layer, and a surface material 3 is bonded 4 on both sides thereof. (B) Reference In this forming method, the adhesive 4 is applied to the surface material 3 or the heat insulating materials 5 and 5 'made of a foam material, and then placed, and then pressed to bond the whole.
[0003]
Structure B: see FIG. 11 A structure in which an injection urethane material is injected into a panel by using FRP or a thin plate integrally formed of FRP and plywood as a surface material 3.
The surface material 3 is set in the surface plate press through the slab material 6 for setting the interval, and then the frame material 7 having a finished dimension thickness is set around the panel. Urethane is injected into the gap from the injection nozzle 8 to form the urethane layer 5a. In this case, since urethane has self-adhesive properties, no adhesive is required.
Structure C: Refer to FIG. 12 A structure in which a urethane material for spraying is sprayed and filled, and then an inner plate is attached to form a heat insulating box.
A girder 9 having a heat insulation thickness is set inside a surface material 3 in which a prefabricated outer plate and a reinforcing material are laminated, and spraying urethane is sprayed into several layers by a spraying means 81.
If necessary, the surface material 3 on the other surface is attached by tapping 2 or an adhesive after shaving to a predetermined thickness.
[0004]
As mentioned above, although the structure of the heat insulation panel which used the urethane foam as a heat insulating material was demonstrated, the case where a vacuum heat insulating material is used as a heat insulating material is demonstrated.
First, the structure of the vacuum heat insulating material 10 will be described with reference to FIG.
Plastic communication material (core material) 11 such as urethane continuous foam material and styrene continuous foam material and gas adsorbent 12 for preventing deterioration of vacuum degree, a bag of a film 13 having no gas permeability or low gas permeability And sealed in a vacuum state to produce the vacuum heat insulating material 10.
At this time, when the core material 11 is packaged in the film or when hermetically sealing is performed in a vacuum state, a margin for the film bag is required. The seal part 15 including the margin dimension is exposed on the side surface of the vacuum heat insulating material after completion.
Even if the margin is reduced, the margin dimension after completion + the length L of the seal portion is 15 mm to 30 mm on one side.
[0005]
When such a vacuum heat insulating material 10 is used for a panel structure as a heat insulating member, the following problems caused by the seal portion 15 including a margin dimension occur in each method.
(1) When a vacuum heat insulating material is used instead of the slab heat insulating material shown in the above structure A. When installing the vacuum heat insulating material 10 in parallel, a small slab material 16 is used so as not to damage the seal portion 15 of the vacuum heat insulating material 10. The structure becomes squeezed, and the number of layers and parts increase, resulting in a complicated structure. ... See FIG. 14-Since the seal portion 15 is not a fixed position with respect to the thickness of the vacuum heat insulating material 10, it must be forced into the stack gap of the slab material 16. For this reason, the pulled film 13 is broken 13 ', and this portion causes a vacuum break. ... See FIG. 15 [0006]
(2) In the case of using a vacuum heat insulating material in the panel using the injected urethane shown in the structure B above, a gap 17 is provided between the adjacent vacuum heat insulating materials 10 for the seal portion 15, and the gap 17 is injected. Fill with urethane foam. In this case, since the gap 17 is small, it is difficult to fill the entire area with the injected urethane, and a portion 17 ′ where the density of the injected urethane becomes high can be formed. For example, when the density is usually 40 kg, the portion 17 ′ has a density of 50 kg. ... See Fig. 16-Since the injection nozzle is inserted in a narrow area, there is a risk of contact with and damage to the film.
{Circle around (3)} In the panel for spraying urethane shown in the above structure C, when a vacuum heat insulating material is used, it is difficult for urethane to enter the lower portion of the seal portion 15 during spraying, and a portion 18 not filled with urethane is formed. ... See FIG. 17
[Problems to be solved by the invention]
In view of the above problems, in the vacuum heat insulating material constituting the heat insulating panel, the applicant of the present invention has a configuration in which a concave groove is formed in the core material and the sealing portion of the synthetic resin film is accommodated in the concave groove. -225922.
The processing of the core material and the groove will be described with reference to FIGS.
The core material 30 of the vacuum heat insulating material has a housing recess groove 31 formed on the side wall surface. In forming the groove 31, the groove was processed by a special cutting tool called the router 20. The router 20 is formed by rotatably attaching a cutting blade 23 to a member 21, contacting the cutting surface of the core material 30 via a guide 25, and cutting a groove 31 having a desired depth.
In the above forming method, the time required for grooving the core material of about 1 m square plate was about 5 minutes. In addition, the cutting powder generated during the cutting process is scattered around the work space, causing contamination. Therefore, in order to discharge the cutting powder to the outdoors, it is essential to install a large exhaust device and to wear a dust mask so that the operator does not inhale the dust.
As described above, special equipment is required for forming the groove, and the manufacturing apparatus for the core material is large.
Therefore, in order to solve the above-mentioned problems, the present invention enables the vacuum heat insulating material constituting the heat insulating panel to be maintained in a vacuum state for a long period of time, and does not require cutting in the production of the core material of the vacuum heat insulating material. The purpose is to form a seal accommodation space, achieve miniaturization of the apparatus, and save labor in the manufacturing process.
[0008]
[Means for Solving the Problems]
The vacuum heat insulating material of the present invention has a configuration in which a concave portion is formed in a portion corresponding to the sealing portion of the synthetic resin film of the core material made of the heat insulating material, and the sealing portion of the film edge of the synthetic resin film is accommodated in the concave portion. To do. The core material is formed by laminating a plurality of plate-like heat insulating materials, but when the size of the plate-like heat insulating material located in the center part of the lamination direction is smaller than the size of the other plate-like heat insulating materials and laminated, A recess having a difference in size of the plate-like heat insulating material is formed at the edge of the central portion of the core material in the stacking direction.
The heat insulating panel in which the heat insulating material of the present invention is sandwiched between the surface materials uses the vacuum heat insulating material in which the seal portion is accommodated in the concave portion as a part of the heat insulating material, and the adjacent vacuum heat insulating materials are arranged side by side without any gap. It has a configuration.
[0009]
The manufacturing method of the vacuum heat insulating material of the present invention includes a core material forming step of laminating a plurality of plate-shaped heat insulating materials to form a core material, a sealing step of sealing a synthetic resin film edge, and a synthetic resin on the core material The plate-like heat insulating material that has a coating step for covering the film and a pressure reducing step for reducing the pressure in the film in a reduced pressure environment, and is laminated in the core material forming step is a small plate shape compared to other plate-like heat insulating materials Including a heat insulating material, the small plate-shaped heat insulating material is positioned at the central portion in the stacking direction, and a recess is formed at the edge of the core portion in the stacking direction. The structure accommodated in is comprised.
The manufacturing method of the heat insulation panel which pinched | interposed the heat insulating material of this invention with the surface material is a heat insulating material arrangement | positioning process which arrange | positions a heat insulating material on a surface material, arrange | positions a surface material on the arrange | positioned heat insulating material, and heat insulating material. A part of the heat insulating material arranged in the heat insulating material arranging step uses a vacuum heat insulating material in which the seal portion is accommodated in the recess, and there is no gap between the adjacent vacuum heat insulating materials. It has the structure arranged in parallel.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view of a vacuum heat insulating material according to the present invention, and FIG.
The vacuum heat insulating material 50 includes a heat insulating core material 51 made of a plastic communication foam material such as a urethane communication foam material or a styrene communication foam material, a plastic film 53 covering the heat insulation core material 51, and a reduced pressure. The gas adsorbent 55 is configured to adsorb and fix the gas entering the vacuum heat insulating material 50.
[0011]
The heat insulating core material 51 according to the present invention is configured by laminating a first core material 51A, a second core material 51B, and a third core material 51C, which are rectangular plates, for example, as shown in FIG. Has been.
The first core material 51A and the second core material 51B are rectangular plates having the same size. The third core material 51 </ b> C is a rectangular plate having dimensions that are shorter than the first and second core materials 51 </ b> A and 51 </ b> B by the size of each side.
The heat insulating core material 51 is configured by sandwiching the third core material 51C between the first core material 51A and the second core material 51B.
In the laminated heat insulating core material 51, a concave portion 520 having a dimensional difference between the first and second core materials 51A and 51B and the third core material 51C and a depth dimension m is formed perpendicular to the lamination direction.
The laminated core material 51 is covered with a plastic film.
[0012]
The plastic film to be coated is a bag 53 in which a seal portion 530 is formed by sealing three sides in advance. And the core material 51 laminated | stacked from the opening part 535 of the plastic bag 53 is inserted, it is made a vacuum state in a vacuum chamber, the opening part 535 is sealed, and the vacuum heat insulating material 50 is formed. ... See FIG. 3 At this time, if the core materials are simply overlapped, the third core material 51C moves between the first core material 51A and the second core material 51B, and FIG. As shown in a), the peripheral gap between the first and second core materials 51A, 51B and the third core material 51C is such that the gap s> the gap t, or as shown in (b). As a result, the first core material 51A is displaced, and the first core material 51A protrudes from the second core material 51B by the dimension u.
[0013]
Therefore, the core material 51 according to the present invention is positioned (temporarily fixed) by the following method, and the first, second, and third core materials 51A, B, and C are laminated.
(1) The center position O of the 2nd core material 51B and the 3rd core material 51C is made to correspond, and the pin 510 is stopped. Then, the first core material 51A is stopped on the third core material 51C with a pin 510 and polymerized. (Refer to FIG. 4C) (2) Temporary bonding is performed by interposing a double-sided adhesive tape 511 in place of the pin. (Refer to FIG. 4D.) (3) The adhesive 512 is applied instead of the pins, and point adhesion is performed. ... See FIG. 4 (e).
As described above, the core material 51 laminated in a state where movement between the core materials is temporarily stopped and the movement is restricted is covered with the plastic film.
The core material 51 is accommodated in a plastic film bag 53, the whole is accommodated in a vacuum chamber or the like, degassed, and the remaining one side is sealed in a state where the inside is decompressed. At this time, the plastic film bag body 53 is configured to be approximately equal to or slightly larger than the surface of the core material 51, so that the seal portion 530 is covered in a state of being drawn into the recess 520 of the core material 51. .
[0015]
A heat insulating panel is configured by the vacuum heat insulating material 50 configured as described above.
(1) ... See FIG. 5 A slab material 5 described in the conventional example is attached to a thin plate (surface material) 60 made of an aluminum alloy with an adhesive 4, and a vacuum heat insulating material 50 arranged in parallel is sandwiched between the heat insulating panels. 500.
In this heat insulating panel 500, since the seal part 530 of the vacuum heat insulating material 50 is accommodated in the recess 520 of the core material 51, when the vacuum heat insulating material 50 is arranged side by side, the vacuum heat insulating material 50 can be disposed without a gap. When a gap is formed between adjacent vacuum heat insulating materials 50, the heat insulating panel 500 can be formed by interposing a slab material 5 having a size matching the gap in the gap.
[0016]
Thus, when comprising the heat insulation panel 500, since the sealing part 530 of the vacuum heat insulating material 50 is accommodated in the recessed part, it is not necessary to pay attention to the presence of the adjacent slab material 5 and the vacuum heat insulating material 50. And it can be formed by simply stacking the slab material 5 on the vacuum heat insulating material 50, and since the conventional seal portion is interposed, it is possible to reduce the bonding process for bonding the divided slab material, more easily and reliably. A heat insulating panel having a heat insulating effect can be formed.
As described above, the heat insulating panel 500 has no complicated structure, and can reduce the number of bonding steps in the same manner as the brick slab method.
[0017]
(2)... Refer to FIG. 6 The vacuum heat insulating material 50 is disposed on the surface material 60 with a gap 90 therebetween. Then, urethane is injected into the gap 90.
Also in this case, since the sealing portion of the vacuum heat insulating material 50 is accommodated in the recess, the injected urethane is not shielded, and the urethane is uniformly injected into the gap 90, so that the heat insulating panel 510 with high heat insulating efficiency can be formed. . In addition, it will be injected only into a wide area around the edge of the panel, and injection into narrow gaps can be abolished, making it possible to abut against vacuum insulation materials or insert and bond slab materials, etc. Reduces the risk of creating dense parts and breaking the vacuum insulation film.
[0018]
(3) ... The vacuum heat insulating material 50 is arrange | positioned on the surface material 60 with reference to FIG. And the surface material 60 is arrange | positioned through the girder material 65 for making thickness constant, and urethane is filled in the gap | interval 95 by spraying. At this time, the vacuum heat insulating material 50 may be disposed so that there is no gap even if a gap is provided between the vacuum heat insulating material 50 and the beam member 65. In either case, since the seal part which the conventional vacuum heat insulating material protruded to the edge is accommodated in the recess in the gap 95, there is no part not filled with urethane by spraying, and the heat insulation panel 515 with high heat insulation efficiency is obtained. . In addition, there is no place where urethane does not enter even if a gap is made between the wooden girder and the wooden girder is in close contact.
[0019]
In the said embodiment, although the core material showed the example formed with three plate-shaped heat insulating materials, the plate-shaped heat insulating material which comprises a core material may be three or more sheets. At this time, by setting the plate-like heat insulating material positioned at the central portion in the stacking direction to a size (small size) smaller than other plate-like heat insulating materials, the concave portion can be formed on the periphery of the core material in the stacking step.
[0020]
(Example)
Next, the panel using the vacuum heat insulating material according to the present invention is compared with the heat insulating panel using the conventional vacuum heat insulating material according to an example.
FIG. 8 shows an embodiment using a vacuum heat insulating material according to the present invention, and FIG. 9 shows an embodiment of a heat insulating panel using a conventional vacuum heat insulating material.
(1) The heat insulation panel by the vacuum heat insulating material 50 of this invention.
a. The aluminum plate is cut to form the surface material 70A. Further, a slab part 801 is formed by cutting the slab material 80 and disposing it in the gap.
b. A slab component 801 is disposed on the periphery of the aluminum plate 70A. Then, adjacent vacuum heat insulating materials 50 are placed in contact with each other in a range surrounded by the slab component 801.
c. An aluminum plate 70A is placed on the vacuum heat insulating material 50, and the whole is bonded and fixed.
Through this process, the heat insulating panel 700A is completed.
This heat insulating panel requires a small number of bonding steps, and the proportion of the vacuum heat insulating material in the area of the heat insulating panel can be increased.
[0021]
(2) An example of a heat insulating panel using the conventional vacuum heat insulating material 10.
a. The aluminum plate is cut to form a surface material 70B having the same area as the surface material 70A. Further, slab parts 802 and 803 are formed by cutting the slab material 80 and disposing it in the gap.
b. A slab component 802 is disposed on the periphery of the aluminum plate 70B.
Further, the slab part 803 is arranged in the central portion surrounded by the slab part 802. The slab component 803 is a component on which the seal portion 15 of the vacuum heat insulating material 10 is placed.
c. The vacuum heat insulating material 10 is disposed in a portion surrounded by the slab component 802 and the slab component 803. At this time, the seal portion 15 is placed on the slab component 803.
d. The slab part 802.803 is bonded and fixed to the second aluminum plate 70B in the same manner as the first sheet.
e. The aluminum plate 70B on which the slab component 802.803 is attached is placed on the slab component 802.803 and the aluminum plate 70B on which the vacuum heat insulating material 10 is placed, and the whole is bonded and fixed. At this time, the seal portion 15 of the vacuum heat insulating material 10 is held between the slab parts 803.
Through this process, the heat insulating panel 700B is completed.
[0022]
Here, compared with the manufacturing process by the vacuum heat insulating material which concerns on this invention shown to (1), the manufacturing process by the conventional vacuum heat insulating material shown to (2) is c. Many processes of d are required, and also in the process of e, handling of the seal part 15 of the vacuum heat insulating material 10 becomes difficult.
Moreover, the ratio which occupies for the whole area of the vacuum heat insulating material arrange | positioned in a panel is a panel which uses the conventional vacuum heat insulating material 10 of (2) which requires the slab part which interposes a seal part, The panel using the vacuum heat insulating material 50 of the present invention can have a higher ratio (about 10% improvement) by the area of the slab part interposing the seal portion.
Moreover, the manufacturing method by the vacuum heat insulating material which concerns on this invention of (1) description with few slab component arrangement | positioning processes and an adhesion | attachment process can shorten manufacturing time (about half).
[0023]
【The invention's effect】
As described above, according to the present invention, the vacuum heat insulating material can be easily handled, and the usage area ratio of the vacuum heat insulating material can be increased.
In addition, reliable long-term maintenance of the insulation effect is achieved. Moreover, the structural handling as a heat insulation panel can be performed in the same way as a slab material, and the handling and packing at the time of transportation can be saved.
Moreover, since the core material of the vacuum heat insulating material is formed by laminating plate-shaped core materials, dust is not generated by cutting, and a small manufacturing apparatus that does not require equipment such as an exhaust device can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a vacuum heat insulating material according to the present invention.
FIG. 2 is a diagram illustrating the configuration of a core material.
FIG. 3 is a diagram illustrating the configuration of a vacuum heat insulating material.
FIG. 4 is an explanatory diagram of a laminated state of core materials.
FIG. 5 is a cross-sectional view of a heat insulating panel according to the present invention.
FIG. 6 is a cross-sectional view showing another example of a heat insulating panel.
FIG. 7 is a perspective view showing another embodiment of the heat insulation panel.
FIG. 8 is an explanatory view showing an embodiment of a heat insulating panel according to the present invention.
FIG. 9 is an explanatory view showing a conventional heat insulation panel.
FIG. 10 is a cross-sectional view showing an example of a conventional heat insulation panel.
FIG. 11 is an explanatory view showing another embodiment of a conventional heat insulation panel.
FIG. 12 is an explanatory view showing another embodiment of a conventional heat insulation panel.
FIG. 13 is a cross-sectional view of a conventional vacuum heat insulating material.
FIG. 14 is a cross-sectional view showing another embodiment of a conventional heat insulation panel.
FIG. 15 is an explanatory view showing a defect state of a conventional heat insulation panel.
FIG. 16 is an explanatory view showing a defect state of a conventional heat insulation panel.
FIG. 17 is an explanatory view showing a defect state of a conventional heat insulation panel.
FIG. 18 is a perspective view showing a core material of a conventional vacuum heat insulating material.
FIG. 19 is an explanatory view showing a groove forming state of a core material of a conventional vacuum heat insulating material.
[Explanation of symbols]
5 Slab Material 50 Vacuum Heat Insulating Material 51 Core Material 51A First Core Material 51B Second Core Material 51C Third Core Material 53 Synthetic Resin Film Bag 55 Gas Adsorbent 60 Surface Material 70 Girder Material 500 Thermal Insulation Panel 520 Recess 530 seal part

Claims (6)

断熱材よりなるコア材を合成樹脂フィルムで被覆し、該フィルム内を減圧してなる真空断熱材において、
コア材は、複数枚の板状断熱材を積層して構成されると共に、積層方向中央部に位置する板状断熱材は他の板状断熱材より小型とし、積層方向中央部分端縁に凹部を形成してなる真空断熱材。
In the vacuum heat insulating material formed by covering the core material made of a heat insulating material with a synthetic resin film and decompressing the inside of the film,
The core material is configured by laminating a plurality of plate-like heat insulating materials, and the plate-like heat insulating material located at the central portion in the stacking direction is made smaller than other plate-shaped heat insulating materials, and a recess is formed at the central edge of the stacking direction. Vacuum heat insulating material formed by forming
断熱材よりなるコア材を合成樹脂フィルムで被覆してフィルム端縁をシールすると共に、該フィルム内を減圧してなる真空断熱材において、
コア材は、複数枚の板状断熱材を積層して構成され、積層方向中央部に位置する板状断熱材は他の板状断熱材より小型として、積層方向中央部分に凹部を形成し、合成樹脂フィルムのシール部はコア材の凹部に収容されてなる真空断熱材。
In the vacuum heat insulating material formed by covering the core material made of a heat insulating material with a synthetic resin film and sealing the film edge, and reducing the pressure in the film,
The core material is configured by laminating a plurality of plate-shaped heat insulating materials, and the plate-shaped heat insulating material located in the central portion in the stacking direction is smaller than the other plate-shaped heat insulating materials, forming a recess in the central portion in the stacking direction, A vacuum insulating material in which the sealing portion of the synthetic resin film is accommodated in the recess of the core material.
断熱材を表面材で挟持した断熱パネルであって、
上記断熱材の一部は、請求項1、または2記載の真空断熱材である断熱パネル。
A heat insulation panel with a heat insulating material sandwiched between surface materials,
A part of said heat insulating material is the heat insulation panel which is a vacuum heat insulating material of Claim 1 or 2.
隣接する真空断熱材同士は間隙なく並設されてなる請求項3記載の断熱パネル。  The heat insulation panel according to claim 3, wherein the adjacent vacuum heat insulating materials are arranged side by side without a gap. コア材を合成樹脂フィルムで被覆し、減圧環境中でフィルム内を減圧する真空断熱材の製造方法において、
複数枚の板状断熱材の中心位置を合致させて積層してコア材を形成するコア材形成工程と、
合成樹脂フィルム端縁をシールするシール工程と、
コア材に合成樹脂フィルムを被覆する被覆工程と、
減圧環境内でフィルム内を減圧させる減圧工程とを有し、
コア材形成工程において積層する板状断熱材は、積層方向の中央部分に積層する板状断熱材を他の板状断熱材に比較して小型とし、積層方向の中央部分端縁に凹部を形成すると共に、該減圧工程においてコア材を被覆する合成樹脂フィルムのシール部はコア材の凹部に収容されることを特徴とする真空断熱材の製造方法。
In the method for manufacturing a vacuum heat insulating material, in which the core material is covered with a synthetic resin film and the inside of the film is depressurized in a reduced pressure environment.
A core material forming step for forming a core material by matching the center positions of a plurality of plate-like heat insulating materials;
A sealing step for sealing the edge of the synthetic resin film;
A coating step of coating the core material with a synthetic resin film;
A decompression step of decompressing the inside of the film in a decompression environment,
The plate-like heat insulating material to be laminated in the core material forming step is smaller than the other plate-like heat insulating materials in the central part in the stacking direction, and a recess is formed at the edge of the central part in the stacking direction. And the sealing part of the synthetic resin film which coat | covers a core material in this pressure reduction process is accommodated in the recessed part of a core material, The manufacturing method of the vacuum heat insulating material characterized by the above-mentioned.
断熱材を表面材で挟持した断熱パネルの製造方法であって、
表面材上に断熱材を配置する断熱材配置工程と、
配置された断熱材の上に表面材を配置して断熱材を表面材で挟持する挟持工程とを有し、
断熱材配置工程で配置される断熱材の一部は請求項1、または2記載の真空断熱材を配置すると共に、隣接する真空断熱材同士は間隙なく並設される断熱パネル製造方法。
A method for producing a heat insulating panel in which a heat insulating material is sandwiched between surface materials,
A heat insulating material arranging step of arranging a heat insulating material on the surface material;
A sandwiching step of placing the surface material on the placed heat insulating material and sandwiching the heat insulating material with the surface material;
A part of the heat insulating material disposed in the heat insulating material disposing step disposes the vacuum heat insulating material according to claim 1 or 2, and the adjacent vacuum heat insulating materials are arranged side by side without a gap.
JP2000097096A 2000-03-31 2000-03-31 Vacuum insulation and insulation panel Expired - Fee Related JP3750481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000097096A JP3750481B2 (en) 2000-03-31 2000-03-31 Vacuum insulation and insulation panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000097096A JP3750481B2 (en) 2000-03-31 2000-03-31 Vacuum insulation and insulation panel

Publications (2)

Publication Number Publication Date
JP2001280583A JP2001280583A (en) 2001-10-10
JP3750481B2 true JP3750481B2 (en) 2006-03-01

Family

ID=18611766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000097096A Expired - Fee Related JP3750481B2 (en) 2000-03-31 2000-03-31 Vacuum insulation and insulation panel

Country Status (1)

Country Link
JP (1) JP3750481B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3875248B2 (en) 2004-10-28 2007-01-31 松下電器産業株式会社 building
KR100967656B1 (en) * 2008-04-08 2010-07-07 (주) 디유티코리아 Polyurethane foam panel frame and Manufacturing method thereof
KR101013754B1 (en) * 2010-06-18 2011-02-14 엔알티 주식회사 Method for manufacturing vacuum insulation panel
CN103343580A (en) * 2013-07-11 2013-10-09 陈秀凯 Method for manufacturing vacuum heat-insulating plates by utilization of coal ash and rice hull ash
CN103422584B (en) * 2013-08-21 2016-01-20 陈秀凯 Ventilative sliver heat sealing is utilized to make the method for vacuum thermal insulation plate
KR101718089B1 (en) * 2017-01-10 2017-03-20 유병수 Lozenge-shaped insulation panel having multi-layer

Also Published As

Publication number Publication date
JP2001280583A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
WO2010029730A1 (en) Vacuum heat insulation material and manufacturing method therefor
JP6070269B2 (en) Insulation
AU2014316348B2 (en) Vacuum thermal insulator, thermal insulation box, and method of manufacturing vacuum thermal insulator
JP2002337256A (en) Vacuum heat insulation panel and its manufacturing method
JP3750481B2 (en) Vacuum insulation and insulation panel
JPS603277B2 (en) speaker device
KR20020077187A (en) Multilayered ceramic substrate production method
JP2006226298A (en) Vacuum heat insulating material and method for manufacturing the same
JP7056504B2 (en) Equipment for manufacturing membrane electrode assembly plates
JP3709747B2 (en) Vacuum insulation and insulation panel
JPH11201376A (en) Vacuum heat insulation panel
US20080174202A1 (en) Method of Producing Core, and Stator Core
KR101550498B1 (en) Vacuum pannel equipped with honeycomb structure and manufacturing method thereof
JP2002257292A (en) Heat-insulating unit member and heat-insulating panel
JP4199098B2 (en) Manufacturing method of vacuum insulation panel
EP0105720B1 (en) Magnetic transducer structure with improved mechanical coupling and method of manufacturing
JP4807334B2 (en) Vacuum insulation
JP2018200106A (en) Heat insulation body
KR20190112521A (en) Packing method for vacuum insulation panel
CN213211901U (en) Single frame of amorphous iron core and amorphous iron core
JP6489158B2 (en) Insulation
KR101477343B1 (en) Method for manufacturing vacuum insulation panel and vacuum insulation panel
JPH07332585A (en) Vacuum heat insulating material
JP2010139006A (en) Vacuum heat insulating material
JPH0831659A (en) Oil-immersed amorphous iron core transformer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees