JP3747732B2 - Method for producing oxygen-absorbing laminated film - Google Patents

Method for producing oxygen-absorbing laminated film Download PDF

Info

Publication number
JP3747732B2
JP3747732B2 JP2000075330A JP2000075330A JP3747732B2 JP 3747732 B2 JP3747732 B2 JP 3747732B2 JP 2000075330 A JP2000075330 A JP 2000075330A JP 2000075330 A JP2000075330 A JP 2000075330A JP 3747732 B2 JP3747732 B2 JP 3747732B2
Authority
JP
Japan
Prior art keywords
oxygen
layer
absorbing
laminated film
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000075330A
Other languages
Japanese (ja)
Other versions
JP2001260285A (en
Inventor
結樹 宮沢
義浩 小林
徹 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2000075330A priority Critical patent/JP3747732B2/en
Publication of JP2001260285A publication Critical patent/JP2001260285A/en
Application granted granted Critical
Publication of JP3747732B2 publication Critical patent/JP3747732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は酸素吸収性能を有する積層フィルムの製造方法およびこれを用いた包装材料に関する。さらに詳しくは、鉄粉をポリオレフィン樹脂に分散させた酸素吸収樹脂組成物からなる酸素吸収層を具備する酸素吸収性積層フィルムの生産性に優れた製造方法およびこれを用いた耐久性に優れた包装材料に関する。
【0002】
【従来の技術】
脱酸素剤をポリオレフィン樹脂に分散させた酸素吸収樹脂組成物を用いて、包装材料自体に酸素吸収機能を付与する技術は、多くの提案がなされている。脱酸素剤には、様々な無機系及び有機系のものが知られているが、酸素吸収性能、加工時の高温に耐える熱安定性、経済性及び衛生性の観点から、鉄粉と酸化促進剤からなるものが好適に用いられる。この鉄系脱酸素剤は、一般に粒状または粉末状である。
【0003】
鉄系脱酸素剤を含有する酸素吸収性積層フィルムの製造方法として、酸素吸収層を構成する酸素吸収樹脂組成物と他の層を構成する樹脂層を同時に加熱・溶融して積層する共押出ラミネーション法や、酸素吸収樹脂組成物のみ加熱・溶融して他の層を構成する樹脂フィルムとを積層する押出ラミネーション法、さらには予め単層の酸素吸収層フィルムを形成して他の層を形成するフィルムとを接着剤を用いて貼り合わせるドライラミネーション法など公知の方法が適用されている。
【0004】
いずれの方法を適用しても、酸素吸収層と酸素バリア層が隣接する場合、酸素吸収層中に含まれる鉄系脱酸素剤が酸素バリア層に突き刺さることにより凹凸が生じ外観を損ねるだけではなく、酸素バリア性が低下するおそれがあった。この対策として、酸素吸収層の厚みに比べて十分に微粒化した鉄粉を用いることも考えられるが、微粒子の鉄粉は高価であるばかりでなく、取扱中に発火の危険性さえあるため商業生産は困難である。
【0005】
この問題の解決策として、酸素吸収層と酸素バリア層の間にポリオレフィン樹脂層を介在させるという酸素吸収性積層フィルムが特開平9−234832に開示されている。該樹脂層は単層のポリオレフィン樹脂フィルムであり、かつその表面に直接、加熱・溶融した酸素吸収組成物を押出積層することが特徴となっている。酸素吸収層中の鉄系脱酸素剤は、該樹脂層に食い込むことにより凹凸が吸収され、さらに該樹脂層の酸素バリア層側は平滑に保たれるために、外観上の問題および酸素バリア層の保護に有効である。
【0006】
しかしながら、剛性や取り扱い性の面から概ね厚さが200μm前後に制限されるフィルム状包装材料において、上述ような樹脂層を設けることにより酸素吸収層はできるだけ薄いことが望まれ、さらに従来の厚みと同等の酸素吸収性能を維持するために薄くなった酸素吸収層には多量の鉄系脱酸素剤が配合される。酸素吸収層に含まれる鉄系脱酸素剤は、押出加工時に一種の異物となり、薄膜化された酸素吸収層に膜割れが起こりやすくなり生産性が悪くなるという問題が生じた。さらにパウチを作製し、内容物を入れ長期間保存すると、酸素吸収層と該樹脂層の接着力が不十分であるため、実用的な耐久性に欠けるものであった。
【0007】
【発明が解決しようとする課題】
前項記載の従来技術の背景下に、本発明の課題は、汎用の鉄系脱酸素剤を用いた生産性が高い酸素吸収性積層フィルムの製造方法とこれを用いた耐久性に優れた包装材料を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を行った結果、酸素バリア層と酸素吸収層の間に設けた中間層上に接着強化層と鉄系脱酸素剤を含有する酸素吸収層とを共押出積層することにより、酸素吸収性積層フィルムの生産性が高くなり、かつ得られた包装材料が優れた耐久性を有することを見いだし、本発明を完成するに至った。すなわち本発明は、少なくとも外側から、酸素バリア層A/中間層B/接着強化層C/鉄系脱酸素剤含有酸素吸収層D/シーラント層Eからなる酸素吸収性積層フィルムを製造するにあたって、中間層B表面上に接着強化層C、鉄系脱酸素剤含有酸素吸収層Dまたは接着強化層C、鉄系脱酸素剤含有酸素吸収層D、シーラント層Eを共押出積層することを特徴とする酸素吸収性積層フィルムの製造方法である
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0010】
本発明の酸素吸収性積層フィルムの製造方法では、中間層B上に接着強化層Cと鉄系脱酸素剤含有酸素吸収層D(以下、酸素吸収層Dと言うことがある)は共押出積層され、さらに接着強化層Cは中間層Bと酸素吸収層Dの間に配される。さらに詳しく説明する。
【0011】
酸素吸収層Dは、後述するように鉄粉を主剤とする粒子状脱酸素剤(以下、脱酸素剤と言うことがある)をポリオレフィン樹脂に分散させた酸素吸収樹脂組成物から形成される。酸素吸収層Dを形成する際に脱酸素剤は一種の異物となり、これを基点として膜割れが生じ、製膜性を悪化させる原因となる。とくに積層体の厚みが概ね200μm以下に制限されるフィルム状包装材料では、剛性および取り扱い性の面から酸素吸収層を薄くすることが求められるためさらに製膜が難しくなる。酸素吸収層Dの厚みは、要求される酸素吸収性能を勘案して10〜80μmの範囲で適宜選択される。
【0012】
本発明では、接着強化層Cと酸素吸収層Dは共押出されることにより、製膜性が改善されることを見いだした。この際、接着強化層Cに用いられるポリオレフィン樹脂のメルトフローレート(以下、MFRと略すことがある)が、酸素吸収層Dに用いるポリオレフィン樹脂のMFRよりも小さいことが好ましい。
【0013】
MFRは、JISK7210に準拠して測定されるものであり、所定温度、所定圧力のもとで10分間に流れ出る樹脂のグラム量(g/10分間)で表す。MFRが小さい樹脂ほど、重合度が高く、加熱溶融時の粘度が高いことを意味する。本発明では、接着強化層Cに用いられるポリオレフィン樹脂のMFRが、酸素吸収層Dに用いるポリオレフィン樹脂のMFRよりも小さいものを選択し両層を共押出することにより、酸素吸収層D中の脱酸素剤が原因となる膜割れを防止する効果を奏する。接着強化層Cに用いるポリオレフィン樹脂のMFRが酸素吸収層Dに用いるポリオレフィン樹脂のMFRと同じまたは酸素吸収層DのMFRよりも大きい場合は、このような効果は認められない。
【0014】
次に、接着強化層Cは中間層Bと酸素吸収層Dの間に配されることを説明する。上述のように膜割れを防止するためには酸素吸収層Dのいずれに接着強化層Cを配しても同様な効果が得られる。しかしながら、接着強化層Cを酸素吸収層Dとシーラント層Eの間に配した場合には、酸素吸収速度が低下するという問題が生じる。つまり、本発明の酸素吸収性積層フィルムは、内容物に接するヒートシール層E側から鉄粉の酸化反応に必要な酸素および水分を酸素吸収層Dに取り込むものであるから、接着強化層Cが両層の間に配されることにより酸素および水分が酸素吸収層Dに到達するまでに余計な時間を要し、結果として酸素吸収速度が緩慢なものとなってしまうため好ましくない。
【0015】
さらに、接着強化層Cは中間層Bと酸素吸収層Dの間に配されることによって、中間層Bと酸素吸収層Dの接着力を強化する効果も奏する。つまり、中間層Bに直接、酸素吸収層Dが隣接する場合、中間層Bに食い込んだ脱酸素剤中の鉄粉の酸化による体積膨張および酸化促進剤による水分の取り込みにより両層の接着力が低下するために層間剥離が生じることがあり包装材料の耐久性に問題が生じる。これに対して、接着強化層Cを設けることにより、中間層Bと酸素吸収層Dの間には両層が接着するために必要なポリオレフィン樹脂が十分に供給され、実用上問題のない包装材料の耐久性が得られる。以上のことから接着強化層Cは中間層Bと酸素吸収層Dに配されることが好ましい。さらに接着強化層Cの厚みは3〜15μmが好ましく、これよりも接着強下層Cが薄い場合には接着力の向上効果が低く、また15μmよりも厚くしても一層の接着力向上はないばかりか、フィルム全体の厚みが増加するため取り扱い性が悪くなるため好ましくない。
【0016】
さらに本発明の中間層Bは必ずしも単層である必要はなく、中間層Bの接着強化層Cを積層する面がポリオレフィン樹脂であれば他の樹脂層を積層したものでも構わない。例えば、ナイロンとポリオレフィン樹脂を積層したものが例示される。中間層Bの厚みは、後述するように使用する脱酸素剤の最大粒径、接着強化層Cの厚みおよび酸素吸収層Dの厚みを勘案して適宜選択されるが、通常10〜50μmの範囲が好ましい。また、中間層Bは予めフィルム状であることが好ましい。中間層Bと酸素吸収層Dとを共押出した場合には、脱酸素剤が中間層Bを通過して酸素バリア層Aに達する恐れがあり好ましくない。
【0017】
本発明における、中間層Bの接着強化層Cを積層する面、接着強化層C、酸素吸収層Dおよびシーラント層Eが隣接する層と互いに熱接着可能なポリオレフィン樹脂であることが好ましい。例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、各種エチレン−αオレフィン共重合体、ポリブテン、ポリメチルペンテン、酸変性ポリオレフィン等が好ましく、混合物であっても一向に差し支えない。
【0018】
本発明の酸素吸収性積層フィルムの積層手順は、中間層B上にポリオレフィン樹脂からなる接着強化層Cと酸素吸収層Dを共押出すること以外は特に制限がなく、中間層Bの他面に予め酸素バリア層Aを積層しておいても構わない。シーラント層Eは、フィルム状態あるいは溶融状態で酸素吸収層Dと熱接着されることが好ましく、酸化チタン等のフィラーを添加しても構わない。一方、中間層B、接着強化層Cおよび酸素吸収層Dを形成後、シーラント層Dを接着剤を用いたドライラミネーション法で積層することも可能であるが、工程数が増える上に、酸素および水分を良好に透過する接着剤がないことから好ましくない。
【0019】
本発明に用いられる酸素バリア層Aには特に制限がなく、アルミニウムなどの金属箔または金属蒸着膜、シリカあるいはアルミナ蒸着ポリエチレンテレフタレートフィルム、エチレン−ビニルアルコール共重合体、ポリ(メタ)アクリル酸焼き付けポリエチレンテレフタレートフィルムが例示される。また、酸素バリア層の外側には、ポリエチレンテレフタレートなどの基材を積層しても差し支えな
い。
【0020】
本発明では鉄粉を主剤とする脱酸素剤が用いられる。鉄粉の純度、種類については特に制限はなく、還元鉄粉、噴霧鉄粉等の鉄粉の他、鋳鉄、鋼鉄屑、研削鉄屑の破砕物が用いられる。鉄粉は、酸化促進剤等の添加物とともに粉砕、混合され脱酸素剤となる。酸化促進剤の具体例としては、塩化ナトリウムなどのアルカリ金属塩化物、塩化カルシウムや塩化マグネシウムなどのアルカリ土類金属酸化物などが用いられ、これらは単独または混合して用いても差し支えない。酸化促進剤の添加量は、鉄粉に対して1〜30重量%が好ましい。さらに、シリカ、ケイ藻土等のケイ酸塩や、アルミナや、カーボンブラックや、カオリン、タルク、マイカ、ベントナイト等の粘土鉱物や、硫酸カルシウム、硫酸バリウム等の硫酸塩や、炭酸カルシウム、炭酸マグネシウム等の炭酸塩や、ピロリン酸のナトリウム塩あるいはカリウム塩などのリン酸塩等などの無機粉体を適宜添加しても良い。粒子状脱酸素剤の最大粒径は、酸素吸収層Dの厚みを超えてもよく、(中間層B+接着強化層C+酸素吸収層D)の和未満であればよい。そのため高価であり取扱中に発火する危険性のある微細な鉄粉を特に使用する必要がなく、平均粒径5〜50μmの鉄粉が好ましく用いられる。
【0021】
脱酸素剤は、二軸押出機等を用いて、予め加熱溶融状態のポリエチレン、ポリプロピレン、各種エチレン−αオレフィン共重合体などのポリオレフィン樹脂に分散され、酸素吸収樹脂組成物として酸素吸収層Dの形成に用いることが好ましい。脱酸素剤の添加量は、要求される酸素吸収性能を勘案し、ポリオレフィン樹脂に対して2〜100重量%の範囲で適宜選択される。該樹脂組成物は、次の包装材料化工程での取り扱いの面から、ペレット化することが好ましい。
【0022】
本発明の酸素吸収性積層フィルムの製造方法を用いた包装材料は、三方あるいは四方シール平袋、スタンディングパウチ、スチック状、ガゼット袋等の様々な袋状形態を取り得る。
【0023】
【実施例】
以下、実施例によって本発明を説明・例示するが、本発明の内容は実施例に制限されるものではない。
【0024】
【実施例1】
鉄粉(平均粒径10μm、最大粒径80μm)100Kgに対して、10Kgの無水塩化カルシウム(平均粒径50μm、最大粒径100μm)と1Kgの硫酸バリウム(平均粒径0.3μm、最大粒径3μm)を添加し、内部を窒素ガスで置換した振動ボールミルを用いてこれらの粉砕と鉄粉表面へのコーティングを行った後、ふるい分けにより60μm以下の粒子状脱酸素剤を得た。
【0025】
次に得られた粒子状脱酸素剤を、サイドフィード方式によりベント付き二軸押出機を用いて、鉄粉含有量が20重量%になるようにポリプロピレン(MFR 40)に混合し、次いで得られたストランドをペレタイザーでペレット化することにより、酸素吸収樹脂組成物(1)を得た。
【0026】
通常のドライラミネート法によりウレタン系接着剤にてラミネートした第一繰り出し部から供給されるポリエチレンテレフタレート[PET](12μm)/酸素バリア層A アルミニウム箔[Al](7μm)/中間層B 無延伸ポリプロピレン[CPP](30μm)と、第二繰り出し部から供給される酸化チタン含有白色無延伸ポリプロピレン[CPPw](30μm)の間に、T型ダイを用いてポリプロピレン(10μm、MFR35)からなる接着強化層Cと酸素吸収樹脂組成物(1)からなる酸素吸収層Dを共押出して、酸素吸収性積層フィルムを得た。構成は、PET(12μm)/酸素バリア層A Al箔(7μm)/中間層B CPP(30μm)/接着強化層C(10μm)/酸素吸収層D(30μm)/シーラント層E CPPw(30μm)になる。
【0027】
(製膜性の評価)
得られた酸素吸収性積層フィルムの幅780mm×長さ1000mあたりに存在する酸素吸収層Dの膜割れの数を欠点検出器(検出限界 直径1mm)により測定した。結果を表1に示す。
【0028】
得られた酸素吸収性積層フィルム2枚を側面とし、 PET(12μm)/Al箔(7μm)/CPP(60μm)を底面とする内容量250mlのスタンディングパウチを製袋機にて調製した。ヒートシール部を除いた酸素吸収性積層フィルムの内面積は350cm2であった。このパウチを用いて以下の評価を行った。
【0029】
(酸素吸収性能の評価)
得られたパウチに水道水1mlと空気60ml(酸素として12.5ml)を封入し、121℃ 8分間レトルト処理を行った後のパウチ内の酸素濃度をガスクロマトグラフィーにより測定することにより酸素吸収量を算出した。結果を表1に示す。
【0030】
(包材の耐久性の評価)
得られたパウチに水道水200mlを封入し、121℃ 8分間レトルト処理を行った後、さらに66℃で10日間保存した。保存期間終了後のパウチ側面をカッターで切断し、顕微鏡にて切断面を観察した。
【0031】
(取り扱い性の評価)
パウチ側面に吸引盤を当て減圧しながら相対する側面をそれぞれ反対方向に引っ張ることでパウチを開口させる充填機に、得られたパウチをセットし開口性を調べた。結果を表1に示す。
【0032】
【実施例2】
中間層Bが、ナイロン(15μm)と無水マレイン酸変性ポリプロピレン(5μm)の積層フィルムである以外は、実施例1と同様な操作を行い、製膜性、酸素吸収性性能、包材の耐久性、取り扱い性を評価した結果を表1に示す。
【0033】
【比較例1】
接着強化層Cに用いたポリプロピレンのMFRを表1に示すように変更した以外は実施例1と同様な操作を行い、製膜性、酸素吸収性性能、包材の耐久性、取り扱い性を評価した結果を表1に示す。
【0034】
【比較例2】
接着強化層Cと酸素吸収層Dの位置が異なる以外は実施例1と同様な操作を行い、製膜性、酸素吸収性性能、包材の耐久性、取り扱い性を評価した結果を表1に示す。なお、得られた酸素吸収性積層フィルムの構成は次の通りである。PET(12μm)/酸素バリア層A Al箔(7μm)/中間層B CPP(30μm)/酸素吸収層D(30μm)/接着強化層C(10μm)/シーラント層E CPPw(30μm)
【0035】
【比較例3】
接着強化層Cの厚みを表1に示すように変更した以外は実施例1と同様な操作を行い、製膜性、酸素吸収性性能、包材の耐久性、取り扱い性を評価した結果を表1に示す。
【0036】
【比較例4】
接着強化層Cが存在しないこと以外は実施例1と同様な操作を行い、製膜性、酸素吸収性性能、包材の耐久性、取り扱い性を評価した結果を表1に示す。
【0037】
【比較例5】
通常のドライラミネート法によりウレタン系接着剤にてラミネートした第一繰り出し部から供給されるポリエチレンテレフタレート[PET](12μm)/アルミニウム箔[Al](7μm)と、第二繰り出し部から供給される酸化チタン含有白色無延伸ポリプロピレン[CPPw](30μm)の間に、T型ダイを用いてポリプロピレン(40μm、MFR35)と酸素吸収樹脂組成物(1)からなる酸素吸収層Dを共押出して、酸素吸収性積層フィルムを得た。構成は、PET(12μm)/酸素バリア層A Al箔(7μm)/PP(40μm)/酸素吸収層D(30μm)/シーラント層E CPPw(30μm)になる。実施例1と同様に製膜性、酸素吸収性性能、包材の耐久性、取り扱い性を評価した結果を表1に示す。
【0038】
【表1】

Figure 0003747732
【0039】
以上の結果は、中間層B上に接着強化層Cと酸素吸収層Dを共押出しすること、共押出する樹脂のMFRを特定なものにすることにより、膜割れが発生することなく容易に酸素吸収性積層フィルムを製造でき、かつこの製造方法から得られた包装材料は優れた耐久性、取り扱い性を有することを示している。
【0040】
【発明の効果】
以上説明したように、鉄粉を主剤とする粒子状脱酸素剤をポリオレフィン樹脂に分散させた酸素吸収樹脂組成物からなる酸素吸収層Dを具備し、少なくとも外側から、酸素バリア層A/中間層B/接着強化層C/酸素吸収層D/シーラント層Eからなる酸素吸収性積層フィルムを製造するにあたって、中間層B表面上に接着強化層C、鉄系脱酸素剤含有酸素吸収層Dまたは接着強化層C、鉄系脱酸素剤含有酸素吸収層D、シーラント層Eを共押出積層すること、さらに特定のメルトフローレートのポリオレフィン樹脂を適用することにより生産性の高い酸素吸収性積層フィルムの製造が可能となる。得られた酸素吸収性積層フィルムは、層間隔離が生じることはなく耐久性にも優れる。
【図面の簡単な説明】
【図1】本発明の基本的な積層フィルムの構成図である。
【符号の説明】
11)酸素バリア層A
12)中間層B
13)接着強化層C
14)酸素吸収層D
15)シーラント層E[0001]
[Industrial application fields]
The present invention relates to a method for producing a laminated film having oxygen absorption performance and a packaging material using the same. More specifically, a method for producing an oxygen-absorbing laminated film comprising an oxygen-absorbing layer comprising an oxygen-absorbing resin composition in which iron powder is dispersed in a polyolefin resin, and a packaging having excellent durability using the same. Regarding materials.
[0002]
[Prior art]
Many proposals have been made for a technique for imparting an oxygen absorbing function to a packaging material itself using an oxygen absorbing resin composition in which an oxygen scavenger is dispersed in a polyolefin resin. Various inorganic and organic oxygen absorbers are known. From the viewpoint of oxygen absorption performance, heat stability to withstand high temperatures during processing, economy and hygiene, iron powder and oxidation promotion What consists of an agent is used suitably. This iron-based oxygen scavenger is generally granular or powdery.
[0003]
As a method for producing an oxygen-absorbing laminated film containing an iron-based oxygen absorber, coextrusion lamination in which an oxygen-absorbing resin composition constituting an oxygen-absorbing layer and a resin layer constituting another layer are simultaneously heated and melted and laminated And other layers are formed by forming a single-layer oxygen-absorbing layer film in advance, or an extrusion lamination method in which only the oxygen-absorbing resin composition is heated and melted to laminate a resin film constituting another layer. A known method such as a dry lamination method in which a film is bonded using an adhesive is applied.
[0004]
Regardless of which method is applied, when the oxygen absorbing layer and the oxygen barrier layer are adjacent to each other, the iron-based oxygen scavenger contained in the oxygen absorbing layer pierces the oxygen barrier layer, resulting in unevenness and not only deteriorating the appearance. There was a possibility that the oxygen barrier property was lowered. As a countermeasure, it is conceivable to use iron powder that has been sufficiently atomized compared to the thickness of the oxygen absorbing layer. However, fine iron powder is not only expensive, but also has a risk of ignition during handling. Production is difficult.
[0005]
As a solution to this problem, JP-A-9-234832 discloses an oxygen-absorbing laminated film in which a polyolefin resin layer is interposed between an oxygen-absorbing layer and an oxygen-barrier layer. The resin layer is a single-layer polyolefin resin film, and is characterized in that an oxygen-absorbing composition heated and melted is directly extruded and laminated on the surface thereof. The iron-based oxygen scavenger in the oxygen absorbing layer absorbs unevenness by biting into the resin layer, and further, the oxygen barrier layer side of the resin layer is kept smooth. It is effective in protecting
[0006]
However, in a film-like packaging material whose thickness is generally limited to about 200 μm from the viewpoint of rigidity and handleability, it is desired that the oxygen absorbing layer be as thin as possible by providing the resin layer as described above. A large amount of an iron-based oxygen scavenger is blended in the thin oxygen absorption layer in order to maintain the same oxygen absorption performance. The iron-based oxygen scavenger contained in the oxygen absorbing layer becomes a kind of foreign matter during extrusion processing, and there is a problem that film cracking is likely to occur in the thinned oxygen absorbing layer, resulting in poor productivity. Further, when a pouch was prepared and the contents were put therein and stored for a long time, the adhesive strength between the oxygen absorbing layer and the resin layer was insufficient, so that practical durability was lacking.
[0007]
[Problems to be solved by the invention]
Under the background of the prior art described in the preceding paragraph, the object of the present invention is to produce a highly productive oxygen-absorbing laminated film using a general-purpose iron-based oxygen scavenger and a packaging material excellent in durability using the same. Is to provide.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that an oxygen reinforcing layer containing an adhesion reinforcing layer and an iron-based oxygen scavenger on an intermediate layer provided between the oxygen barrier layer and the oxygen absorbing layer. As a result of the coextrusion lamination, the productivity of the oxygen-absorbing laminated film was increased, and the obtained packaging material was found to have excellent durability, and the present invention was completed. That is, the present invention provides an intermediate layer for producing an oxygen-absorbing laminated film composed of oxygen barrier layer A / intermediate layer B / adhesion reinforcing layer C / iron-based oxygen absorber-containing oxygen absorbing layer D / sealant layer E from at least the outside. An adhesion reinforcing layer C, an iron-based oxygen absorber-containing oxygen absorbing layer D or an adhesion-enhancing layer C, an iron-based oxygen absorber-containing oxygen absorbing layer D, and a sealant layer E are coextruded on the surface of the layer B. It is a manufacturing method of an oxygen absorptive laminated film.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0010]
In the method for producing an oxygen-absorbing laminated film of the present invention, an adhesion reinforcing layer C and an iron-based oxygen absorber-containing oxygen absorbing layer D (hereinafter sometimes referred to as oxygen absorbing layer D) are coextruded on the intermediate layer B. Further, the adhesion reinforcing layer C is disposed between the intermediate layer B and the oxygen absorbing layer D. This will be described in more detail.
[0011]
As will be described later, the oxygen absorbing layer D is formed from an oxygen absorbing resin composition in which a particulate oxygen absorber containing iron powder as a main component (hereinafter sometimes referred to as an oxygen absorber) is dispersed in a polyolefin resin. When the oxygen absorbing layer D is formed, the oxygen scavenger becomes a kind of foreign matter, which causes film cracking and causes film forming properties to deteriorate. In particular, in the case of a film-like packaging material in which the thickness of the laminate is limited to approximately 200 μm or less, it is required to make the oxygen absorbing layer thin from the viewpoint of rigidity and handleability, and thus film formation becomes more difficult. The thickness of the oxygen absorption layer D is appropriately selected in the range of 10 to 80 μm in consideration of the required oxygen absorption performance.
[0012]
In the present invention, it has been found that the film-forming property is improved by co-extrusion of the adhesion reinforcing layer C and the oxygen absorbing layer D. At this time, the melt flow rate (hereinafter sometimes abbreviated as MFR) of the polyolefin resin used for the adhesion reinforcing layer C is preferably smaller than the MFR of the polyolefin resin used for the oxygen absorbing layer D.
[0013]
MFR is measured according to JISK7210 and is expressed in grams of resin (g / 10 minutes) flowing out for 10 minutes under a predetermined temperature and pressure. It means that the smaller the MFR, the higher the degree of polymerization and the higher the viscosity when heated and melted. In the present invention, the polyolefin resin used in the adhesion reinforcing layer C is selected so that the MFR of the polyolefin resin used in the oxygen absorbing layer D is smaller than that of the polyolefin resin used in the oxygen absorbing layer D, and both layers are coextruded to remove the oxygen in the oxygen absorbing layer D. There is an effect of preventing film cracking caused by the oxygen agent. When the MFR of the polyolefin resin used for the adhesion reinforcing layer C is the same as the MFR of the polyolefin resin used for the oxygen absorption layer D or larger than the MFR of the oxygen absorption layer D, such an effect is not recognized.
[0014]
Next, it will be described that the adhesion reinforcing layer C is disposed between the intermediate layer B and the oxygen absorbing layer D. In order to prevent film cracking as described above, the same effect can be obtained regardless of whether the oxygen reinforcing layer D is provided with the adhesion reinforcing layer C. However, when the adhesion reinforcing layer C is disposed between the oxygen absorption layer D and the sealant layer E, there arises a problem that the oxygen absorption rate is reduced. That is, the oxygen-absorbing laminated film of the present invention takes in oxygen and moisture necessary for the oxidation reaction of iron powder from the heat seal layer E side in contact with the contents into the oxygen-absorbing layer D. Distributing between the two layers is not preferable because it takes extra time for oxygen and moisture to reach the oxygen absorption layer D, resulting in a slow oxygen absorption rate.
[0015]
Furthermore, since the adhesion reinforcing layer C is disposed between the intermediate layer B and the oxygen absorbing layer D, there is also an effect of enhancing the adhesive force between the intermediate layer B and the oxygen absorbing layer D. That is, when the oxygen absorption layer D is directly adjacent to the intermediate layer B, the adhesive force between the two layers is increased due to the volume expansion due to the oxidation of iron powder in the oxygen scavenger encroached on the intermediate layer B and the incorporation of moisture by the oxidation accelerator. Due to the decrease, delamination may occur, causing a problem in durability of the packaging material. On the other hand, by providing the adhesion strengthening layer C, the polyolefin resin necessary for bonding both layers is sufficiently supplied between the intermediate layer B and the oxygen absorbing layer D, and there is no problem in practical use. Durability. From the above, the adhesion reinforcing layer C is preferably disposed on the intermediate layer B and the oxygen absorbing layer D. Furthermore, the thickness of the adhesion reinforcing layer C is preferably 3 to 15 μm. If the adhesion strong lower layer C is thinner than this, the effect of improving the adhesive strength is low, and even if it is thicker than 15 μm, there is no further improvement in the adhesive strength. Or, since the thickness of the entire film increases, the handleability deteriorates, which is not preferable.
[0016]
Furthermore, the intermediate layer B of the present invention does not necessarily need to be a single layer, and other layers may be laminated as long as the surface on which the adhesion reinforcing layer C of the intermediate layer B is laminated is a polyolefin resin. For example, a laminate of nylon and polyolefin resin is exemplified. The thickness of the intermediate layer B is appropriately selected in consideration of the maximum particle size of the oxygen scavenger used, the thickness of the adhesion reinforcing layer C, and the thickness of the oxygen absorbing layer D as described later, but is usually in the range of 10 to 50 μm. Is preferred. The intermediate layer B is preferably in the form of a film in advance. When the intermediate layer B and the oxygen absorbing layer D are coextruded, the oxygen scavenger may pass through the intermediate layer B and reach the oxygen barrier layer A, which is not preferable.
[0017]
In the present invention, the surface of the intermediate layer B on which the adhesion reinforcing layer C is laminated, the adhesion reinforcing layer C, the oxygen absorbing layer D, and the sealant layer E are preferably polyolefin resins that can be thermally bonded to adjacent layers. For example, polyethylene, polypropylene, ethylene-propylene copolymer, various ethylene-α olefin copolymers, polybutene, polymethylpentene, acid-modified polyolefin and the like are preferable, and even a mixture may be used.
[0018]
The lamination procedure of the oxygen-absorbing laminated film of the present invention is not particularly limited except for coextruding the adhesion-strengthening layer C and the oxygen-absorbing layer D made of polyolefin resin on the intermediate layer B, and on the other surface of the intermediate layer B. The oxygen barrier layer A may be laminated in advance. The sealant layer E is preferably thermally bonded to the oxygen absorbing layer D in a film state or a molten state, and a filler such as titanium oxide may be added. On the other hand, after forming the intermediate layer B, the adhesion strengthening layer C, and the oxygen absorbing layer D, it is possible to laminate the sealant layer D by a dry lamination method using an adhesive. This is not preferable because there is no adhesive that can permeate moisture well.
[0019]
There is no restriction | limiting in particular in the oxygen barrier layer A used for this invention, Metal foil, such as aluminum, or a metal vapor deposition film, a silica or alumina vapor deposition polyethylene terephthalate film, an ethylene-vinyl alcohol copolymer, a poly (meth) acrylic acid baking polyethylene A terephthalate film is illustrated. Further, a base material such as polyethylene terephthalate may be laminated outside the oxygen barrier layer.
[0020]
In the present invention, an oxygen scavenger mainly composed of iron powder is used. There is no restriction | limiting in particular about the purity and kind of iron powder, In addition to iron powder, such as reduced iron powder and sprayed iron powder, cast iron, steel scraps, and ground iron scraps are used. The iron powder is pulverized and mixed with additives such as an oxidation accelerator to become an oxygen scavenger. Specific examples of the oxidation accelerator include alkali metal chlorides such as sodium chloride, alkaline earth metal oxides such as calcium chloride and magnesium chloride, and these may be used alone or in combination. As for the addition amount of an oxidation accelerator, 1 to 30 weight% is preferable with respect to iron powder. Furthermore, silicates such as silica and diatomaceous earth, alumina, carbon black, clay minerals such as kaolin, talc, mica and bentonite, sulfates such as calcium sulfate and barium sulfate, calcium carbonate and magnesium carbonate Inorganic powders such as carbonates such as phosphates and phosphates such as sodium or potassium pyrophosphates may be added as appropriate. The maximum particle size of the particulate oxygen absorber may exceed the thickness of the oxygen absorbing layer D, and may be less than the sum of (intermediate layer B + adhesion reinforcing layer C + oxygen absorbing layer D). Therefore, it is not necessary to use fine iron powder which is expensive and has a risk of igniting during handling, and iron powder having an average particle diameter of 5 to 50 μm is preferably used.
[0021]
The oxygen scavenger is dispersed in a polyolefin resin such as polyethylene, polypropylene, and various ethylene-α olefin copolymers in a heated and melted state in advance using a twin screw extruder or the like. It is preferable to use it for formation. The addition amount of the oxygen scavenger is appropriately selected in the range of 2 to 100% by weight with respect to the polyolefin resin in consideration of the required oxygen absorption performance. The resin composition is preferably pelletized from the viewpoint of handling in the subsequent packaging material forming step.
[0022]
The packaging material using the method for producing an oxygen-absorbing laminated film of the present invention can take various bag-like forms such as a three- or four-side sealed flat bag, a standing pouch, a stick shape, and a gusset bag.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates and illustrates this invention, the content of this invention is not restrict | limited to an Example.
[0024]
[Example 1]
10 kg anhydrous calcium chloride (average particle size 50 μm, maximum particle size 100 μm) and 1 kg barium sulfate (average particle size 0.3 μm, maximum particle size) for 100 kg iron powder (average particle size 10 μm, maximum particle size 80 μm) 3 μm) was added, and after pulverization and coating on the iron powder surface using a vibrating ball mill in which the inside was replaced with nitrogen gas, a particulate oxygen scavenger of 60 μm or less was obtained by sieving.
[0025]
Next, the obtained particulate oxygen absorber is mixed with polypropylene (MFR 40) so that the iron powder content is 20% by weight using a twin screw extruder with a vent by a side feed method, and then obtained. The obtained strand was pelletized with a pelletizer to obtain an oxygen-absorbing resin composition (1).
[0026]
Polyethylene terephthalate [PET] (12 μm) / oxygen barrier layer A aluminum foil [Al] (7 μm) / intermediate layer B unstretched polypropylene supplied from the first feeding section laminated with urethane adhesive by the usual dry laminating method Between [CPP] (30 μm) and titanium oxide-containing white unstretched polypropylene [CPPw] (30 μm) supplied from the second feeding portion, an adhesion reinforcing layer made of polypropylene (10 μm, MFR35) using a T-type die An oxygen absorbing layer D composed of C and the oxygen absorbing resin composition (1) was coextruded to obtain an oxygen absorbing laminated film. The composition is PET (12 μm) / oxygen barrier layer A Al foil (7 μm) / intermediate layer B CPP (30 μm) / adhesion reinforcing layer C (10 μm) / oxygen absorbing layer D (30 μm) / sealant layer E CPPw (30 μm) Become.
[0027]
(Evaluation of film formability)
The number of film cracks of the oxygen absorbing layer D present per width 780 mm × length 1000 m of the obtained oxygen-absorbing laminated film was measured with a defect detector (detection limit diameter 1 mm). The results are shown in Table 1.
[0028]
A standing pouch having an internal volume of 250 ml with two oxygen-absorbing laminated films obtained as the side and PET (12 μm) / Al foil (7 μm) / CPP (60 μm) as the bottom was prepared with a bag making machine. The inner area of the oxygen-absorbing laminated film excluding the heat seal part was 350 cm2. The following evaluation was performed using this pouch.
[0029]
(Evaluation of oxygen absorption performance)
The obtained pouch was sealed with 1 ml of tap water and 60 ml of air (12.5 ml as oxygen), and the oxygen concentration in the pouch after retorting at 121 ° C for 8 minutes was measured by gas chromatography. Was calculated. The results are shown in Table 1.
[0030]
(Evaluation of durability of packaging materials)
The obtained pouch was sealed with 200 ml of tap water, retorted at 121 ° C. for 8 minutes, and then stored at 66 ° C. for 10 days. The side of the pouch after the storage period was cut with a cutter, and the cut surface was observed with a microscope.
[0031]
(Evaluation of handleability)
The resulting pouch was set in a filling machine that opened the pouch by pulling the opposite side surfaces in opposite directions while applying pressure to the side of the pouch and reducing the pressure, and the openability was examined. The results are shown in Table 1.
[0032]
[Example 2]
Except for the intermediate layer B being a laminated film of nylon (15 μm) and maleic anhydride-modified polypropylene (5 μm), the same operations as in Example 1 were carried out to form a film, oxygen-absorbing performance, and durability of the packaging material. The results of evaluating the handleability are shown in Table 1.
[0033]
[Comparative Example 1]
Except for changing the MFR of polypropylene used for the adhesion reinforcing layer C as shown in Table 1, the same operations as in Example 1 were performed to evaluate the film-forming property, oxygen-absorbing performance, durability of the packaging material, and handleability. The results are shown in Table 1.
[0034]
[Comparative Example 2]
Table 1 shows the results of evaluating the film-forming properties, oxygen-absorbing performance, durability of the packaging material, and handleability by performing the same operations as in Example 1 except that the positions of the adhesion reinforcing layer C and the oxygen-absorbing layer D are different. Show. In addition, the structure of the obtained oxygen absorptive laminated film is as follows. PET (12 μm) / oxygen barrier layer A Al foil (7 μm) / intermediate layer B CPP (30 μm) / oxygen absorbing layer D (30 μm) / adhesion reinforcing layer C (10 μm) / sealant layer E CPPw (30 μm)
[0035]
[Comparative Example 3]
Except that the thickness of the adhesion reinforcing layer C was changed as shown in Table 1, the same operation as in Example 1 was performed, and the results of evaluating the film forming property, the oxygen absorbing performance, the durability of the packaging material, and the handleability are shown. It is shown in 1.
[0036]
[Comparative Example 4]
Table 1 shows the results of performing the same operations as in Example 1 except that the adhesion reinforcing layer C is not present, and evaluating the film-forming property, oxygen-absorbing performance, durability of the packaging material, and handleability.
[0037]
[Comparative Example 5]
Polyethylene terephthalate [PET] (12 [mu] m) / aluminum foil [Al] (7 [mu] m) supplied from the first feeding part laminated with a urethane adhesive by a normal dry laminating method, and oxidation supplied from the second feeding part Between titanium-containing white unstretched polypropylene [CPPw] (30 μm), oxygen absorption layer D made of polypropylene (40 μm, MFR35) and oxygen-absorbing resin composition (1) is coextruded using a T-die to absorb oxygen The laminated film was obtained. The configuration is PET (12 μm) / oxygen barrier layer A Al foil (7 μm) / PP (40 μm) / oxygen absorption layer D (30 μm) / sealant layer E CPPw (30 μm). Table 1 shows the results of evaluating film-forming properties, oxygen-absorbing performance, durability of the packaging material, and handleability in the same manner as in Example 1.
[0038]
[Table 1]
Figure 0003747732
[0039]
The above results show that by co-extrusion of the adhesion reinforcing layer C and the oxygen absorbing layer D on the intermediate layer B, and by making the MFR of the resin to be co-extruded specific, it is easy to generate oxygen without causing film cracking. It has been shown that an absorbent laminated film can be produced and the packaging material obtained from this production method has excellent durability and handleability.
[0040]
【The invention's effect】
As described above, the oxygen-absorbing layer D made of an oxygen-absorbing resin composition in which a particulate oxygen scavenger mainly composed of iron powder is dispersed in a polyolefin resin is provided, and at least from the outside, the oxygen barrier layer A / intermediate layer When manufacturing an oxygen-absorbing laminated film consisting of B / adhesion reinforcing layer C / oxygen absorbing layer D / sealant layer E, adhesion reinforcing layer C, iron-based oxygen absorber-containing oxygen absorbing layer D or adhesive is formed on the surface of intermediate layer B. Production of oxygen-absorbing laminated film with high productivity by coextrusion lamination of reinforcing layer C, oxygen-absorbing layer D containing iron-based oxygen absorber, and sealant layer E, and by applying polyolefin resin with a specific melt flow rate Is possible. The obtained oxygen-absorbing laminated film does not cause interlayer separation and is excellent in durability.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a basic laminated film of the present invention.
[Explanation of symbols]
11) Oxygen barrier layer A
12) Middle layer B
13) Adhesion strengthening layer C
14) Oxygen absorption layer D
15) Sealant layer E

Claims (4)

少なくとも外側から、酸素バリア層A/中間層B/接着強化層C/鉄系脱酸素剤含有酸素吸収層D/シーラント層Eからなる酸素吸収性積層フィルムを製造するにあたって、中間層B表面上に接着強化層C、鉄系脱酸素剤含有酸素吸収層Dまたは接着強化層C、鉄系脱酸素剤含有酸素吸収層D、シーラント層Eを共押出積層することを特徴とする酸素吸収性積層フィルムの製造方法。When producing an oxygen-absorbing laminated film consisting of oxygen barrier layer A / intermediate layer B / adhesion reinforcing layer C / iron-based oxygen absorber-containing oxygen absorbing layer D / sealant layer E at least from the outside, on the surface of intermediate layer B An oxygen-absorbing laminated film characterized by co-extrusion laminating an adhesion reinforcing layer C, an iron-based oxygen absorber-containing oxygen absorbing layer D or an adhesion-enhancing layer C, an iron-based oxygen absorber-containing oxygen absorbing layer D, and a sealant layer E Manufacturing method. 鉄系脱酸素剤含有酸素吸収層Dが、鉄粉を主剤とする脱酸素剤をポリオレフィン樹脂に分散させた酸素吸収樹脂組成物からなることを特徴とする請求項1記載の酸素吸収性積層フィルムの製造方法。2. The oxygen-absorbing laminated film according to claim 1, wherein the iron-based oxygen absorber-containing oxygen absorbing layer D comprises an oxygen-absorbing resin composition in which an oxygen-absorbing agent mainly composed of iron powder is dispersed in a polyolefin resin. Manufacturing method. 接着強化層Cに用いるポリオレフィン樹脂のメルトフローレートが、酸素吸収層Dに用いるポリオレフィン樹脂のメルトフローレートよりも小さいことを特徴とする請求項1乃至2記載の酸素吸収性積層フィルムの製造方法。The method for producing an oxygen-absorbing laminated film according to claim 1 or 2, wherein the melt flow rate of the polyolefin resin used for the adhesion reinforcing layer C is smaller than the melt flow rate of the polyolefin resin used for the oxygen absorbing layer D. 単層または積層された中間層Bの接着強化層Cを積層する面、接着強化層C、酸素吸収層D及びシーラント層Eが隣接する層と互いに熱接着可能なポリオレフィン樹脂であることを特徴とする請求項1乃至3記載の酸素吸収性積層フィルムの製造方法。The surface on which the adhesion reinforcing layer C of the single layer or the laminated intermediate layer B is laminated, the adhesion reinforcing layer C, the oxygen absorbing layer D, and the sealant layer E are polyolefin resins that can be thermally bonded to adjacent layers. The method for producing an oxygen-absorbing laminated film according to claim 1.
JP2000075330A 2000-03-17 2000-03-17 Method for producing oxygen-absorbing laminated film Expired - Lifetime JP3747732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000075330A JP3747732B2 (en) 2000-03-17 2000-03-17 Method for producing oxygen-absorbing laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000075330A JP3747732B2 (en) 2000-03-17 2000-03-17 Method for producing oxygen-absorbing laminated film

Publications (2)

Publication Number Publication Date
JP2001260285A JP2001260285A (en) 2001-09-25
JP3747732B2 true JP3747732B2 (en) 2006-02-22

Family

ID=18593239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000075330A Expired - Lifetime JP3747732B2 (en) 2000-03-17 2000-03-17 Method for producing oxygen-absorbing laminated film

Country Status (1)

Country Link
JP (1) JP3747732B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005088549A (en) * 2003-09-19 2005-04-07 Toyo Seikan Kaisha Ltd Method for producing oxygen-absorptive multi-layer film
JP2006056530A (en) * 2004-08-17 2006-03-02 Dainippon Printing Co Ltd Packaging product
JP2006168002A (en) * 2004-12-14 2006-06-29 Dainippon Printing Co Ltd Heat-sealable multilayered laminated film, laminate using it, packaging bag and packaged product
JP2006168003A (en) * 2004-12-14 2006-06-29 Dainippon Printing Co Ltd Heat-sealable multilayered laminated film, laminate using it, packaging bag and packaged product
JP2006334928A (en) * 2005-06-02 2006-12-14 Toyo Seikan Kaisha Ltd Packaging material for dry pack product
JP5166303B2 (en) * 2009-01-28 2013-03-21 株式会社進洋 Pouch inspection stripper

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590535A (en) * 1978-12-28 1980-07-09 Nippon Synthetic Chem Ind Co Ltd:The Membranous substance
JPH08132573A (en) * 1994-11-07 1996-05-28 Toppan Printing Co Ltd Oxygen absorbing laminate
JP3507593B2 (en) * 1995-07-25 2004-03-15 東洋製罐株式会社 Sealed container with excellent storage properties
JP2967740B2 (en) * 1995-12-28 1999-10-25 三菱瓦斯化学株式会社 Method for producing oxygen-absorbing multilayer film
JPH10338264A (en) * 1997-06-06 1998-12-22 Ajinomoto Co Inc Oxygen-absorbing laminate-packaging material
JP4174633B2 (en) * 1998-06-26 2008-11-05 味の素株式会社 Oxygen-absorbing laminated packaging material
JP2000014374A (en) * 1998-07-03 2000-01-18 Ajinomoto Co Inc Liquid processed food

Also Published As

Publication number Publication date
JP2001260285A (en) 2001-09-25

Similar Documents

Publication Publication Date Title
EP3210907B1 (en) Laminate for blister pack, blister pack using same, blister pack package, and method for manufacturing same
CN102089145B (en) With the inner liner of nylon skin layer
JP6573607B2 (en) Easy-cut absorbable laminate and packaging bag using the same
CN105073421B (en) Package lamina material, the method for manufacturing package lamina material and from packing container made of package lamina material
AU2008207481A1 (en) Packaging laminates and articles made therefrom
JPH09234832A (en) Oxygen absorbing multi-layer film and its manufacture
JP3747732B2 (en) Method for producing oxygen-absorbing laminated film
CN1589201A (en) Packaging material for easily openable container
US20040028857A1 (en) Packaging laminate and packaging container produced therefrom
JP3582254B2 (en) Oxygen-absorbing resin composition, packaging container and manufacturing method
JP7227671B1 (en) Laminated sheet and compact
WO2014045964A1 (en) Drug packaging sheet and drug-packaged product
JP2003267431A (en) Multi-layer squeezing container or bottle
WO2022124229A1 (en) Sealant film
JP2019214419A (en) Lid material for blister pack
MX2010013016A (en) Innerliner with cross-linked eva.
JP2002052655A (en) Oxygen absorbable multilayered material and method for preserving article containing low moisture content using the same
JP2003118778A (en) Retort pouch
JP2002307536A (en) Method for producing oxygen absorptive multi-layer film
JP4464167B2 (en) Hygroscopic resin composition for extrusion molding
JP3376915B2 (en) Deoxygenated multilayer body, packaging container using the same, and method of storing food or medicine
JP2020175935A (en) Content containing blister pack
JP3322304B2 (en) Deoxidized multilayer film and packaging bag
US20030180519A1 (en) Multilayered deoxidizer and production process
JP4552311B2 (en) Packaging container

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3747732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term