JP3747554B2 - Detergent composition for light metals - Google Patents

Detergent composition for light metals Download PDF

Info

Publication number
JP3747554B2
JP3747554B2 JP07464697A JP7464697A JP3747554B2 JP 3747554 B2 JP3747554 B2 JP 3747554B2 JP 07464697 A JP07464697 A JP 07464697A JP 7464697 A JP7464697 A JP 7464697A JP 3747554 B2 JP3747554 B2 JP 3747554B2
Authority
JP
Japan
Prior art keywords
cleaning
sample
light metal
chelating agent
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07464697A
Other languages
Japanese (ja)
Other versions
JPH10251697A (en
Inventor
浩 斉藤
規夫 新井
千恵 高橋
恒司 柳原
信 齋藤
徹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP07464697A priority Critical patent/JP3747554B2/en
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to AT97123003T priority patent/ATE210176T1/en
Priority to DE69708836T priority patent/DE69708836D1/en
Priority to EP97123003A priority patent/EP0864638B1/en
Priority to EP00122176A priority patent/EP1067172B1/en
Priority to AT00122176T priority patent/ATE262575T1/en
Priority to DE69728303T priority patent/DE69728303T2/en
Priority to US09/002,005 priority patent/US6028048A/en
Publication of JPH10251697A publication Critical patent/JPH10251697A/en
Application granted granted Critical
Publication of JP3747554B2 publication Critical patent/JP3747554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はアルミニウム材料等の軽金属表面に対する腐食の影響が小さく、かつ硬度の高い洗浄水を用いても優れた洗浄効果および発泡性を呈して泡洗浄に適用され、さらに微生物分解性にも優れ、特に、軽金属材料からなる各種設備や装置等の硬表面洗浄に適した軽金属用洗浄剤組成物に関する。
【0002】
【従来の技術】
近年、精密性が要求される飲料充填装置や食品加工設備、あるいは軽量が要求される車輛、航空機、コンテナ等に、アルミニウム材料を始めとする各種軽金属材料が使用されている。
【0003】
これら軽金属材料を使用した装置、設備、車輛、航空機、コンテナ等は外表面、すなわち硬表面を洗浄効果の高い洗浄剤で洗浄する必要が生じる。
【0004】
このような洗浄効果の高い洗浄剤として従来、例えば、エチレンジアミン四酢酸ナトリウム(EDTA)等のキレート剤を含み、かつpH値の高い洗浄剤が用いられていた。
【0005】
しかし、このような洗浄効果の高い洗浄剤は軽金属材料表面を繰り返し洗浄して該表面に長時間接触すると、軽金属材料表面を腐食し、あるいは白化現象や、黒色化現象を起こして表面光沢を消失せしめ、さらには該表面を溶解して孔を開ける等の問題を起こすことがある。
【0006】
また、最近では、広い硬表面を効率よく洗浄するために、泡洗浄技術が採用されている。この場合、洗浄剤には、発泡を増大させる目的で陰イオン界面活性剤を含有する。
【0007】
しかし、この陰イオン界面活性剤は稀釈に使用する水の硬度に大きく影響され、硬度の高い水で稀釈すると、陰イオン界面活性剤が不溶化して起泡しなくなり、同時に洗浄性能も低下する。
【0008】
このような問題点を解決するために、上記陰イオン界面活性剤を含有する洗浄剤に上記と同様、エチレンジアミン四酢酸ナトリウム(EDTA)等のキレート剤を含有せしめている。しかし、EDTAのようなキレート剤を含有した洗浄剤では、軽金属材料に対して上述のような問題を生じる。
【0009】
このようにして、アルミニウムのような軽金属材料の洗浄に際しては、キレート剤を添加して洗浄剤の洗浄効果を高めようとすると、軽金属材料表面への問題を起こす。
【0010】
したがって、軽金属材料表面の洗浄剤としては、稀釈水の硬度への影響が小さい界面活性剤を選定し、かつ、pH値を中性に近い値に調整した洗浄剤、あるいはさらに、この洗浄剤に軽金属の腐食防止に有効な珪酸塩を添加し、かつ、EDTA等のキレート剤を含有する必要のない洗浄剤が求められている。
【0011】
【発明が解決しようとする課題】
しかし、この種の洗浄剤では、洗浄性能が低く、このため、洗浄に際して軽金属材料表面を長時間洗浄剤溶液と接触させるか、あるいは該表面をこする等の物理的な手段が必要となる。
【0012】
さらに、EDTA等のキレート剤を使用しない洗浄剤は稀釈水の水の硬度に影響されて発泡し難くなる。したがって、泡洗浄の場合には、洗浄剤中に多量の界面活性剤が必要となる。
【0013】
また、珪酸塩を含有した洗浄剤の場合には珪酸塩が金属表面に付着され易く、これが時として汚れの核となり、洗浄後の表面を汚れ易くする。
【0014】
そこで、本発明の目的は上述EDTAのようなキレート剤や珪酸塩を使用せずに、軽金属表面に対する腐食の影響が小さく、かつ、硬度の高い水を稀釈水あるいは洗浄水として使用しても優れた洗浄効果および発泡性を呈し、さらに微生物分解性にも優れ、特に、軽金属材料からなる各種設備や装置等の硬表面洗浄に適し、上述の公知技術に存する欠点を改良した軽金属用洗浄剤組成物を提供することにある。
【0015】
【課題を解決するための手段】
前述の目的を達成するため、本発明によれば、キレート剤と、陰イオン界面活性剤および/または非イオン界面活性剤からなる界面活性剤とを含む洗浄剤組成物において、前記キレート剤グルタミン酸イミノ二酢酸アルカリ塩であり、かつその水溶液のPHが9乃至11の範囲内であることを特徴とする。
【0016】
【発明の実施の形態】
以下、本発明を具体的に詳述する。
【0017】
本発明は上述のとおり、キレート剤としてグルタミン酸イミノ二酢酸アルカリ塩を特定して用いたところに特徴を有する。
【0018】
上述グルタミン酸イミノ二酢酸アルカリ塩は一般式
【化1】

Figure 0003747554
で表される化合物であって、好ましくはL−グルタミン酸イミノ二酢酸アルカリ塩である。式中、Meはナトリウム、カリウム、アルカノールアミン等のアミン類またはアンモニウム類であるが、特に、ナトリウムが好ましい。なお、これらのMeはそれぞれ、同一種類のものであってもよく、互いに異なるものであってもよい。
【0019】
上述のグルタミン酸イミノ二酢酸アルカリ塩はアミノ酸であるグルタミン酸、好ましくはL−グルタミン酸の誘導体であって、エチレンジアミン四酢酸アルカリ塩(EDTA)に匹敵するほどの優れたカルシウムイオン捕捉能を有する。この捕捉能は特にpH9以上のアルカリ領域で著しく向上する。
【0020】
しかも、グルタミン酸イミノ二酢酸アルカリ塩はキレート性能としてのカルシウムイオン捕捉能に優れているにもかかわらず、アルミニウム等の軽金属材料に対する腐食性はEDTAに比べて大幅に小さい。
【0021】
さらに、このグルタミン酸イミノ二酢酸アルカリ塩はEDTAよりも脱脂性に優れ、硬表面上に付着した油脂汚れを容易に洗浄する。しかも、これを陰イオン界面活性剤ないしは非イオン界面活性剤と併用すると、脱脂効果は大幅に向上して発泡性も向上し、両者の相乗効果が生じる。
【0022】
本発明に使用される界面活性剤は陰イオン界面活性剤ないしは非イオン界面活性剤であって、軽金属材料の硬表面に付着した油脂、たん白質、炭水化物等の有機質汚れ、ほこり等の無機質汚れを洗浄する作用を呈するのみならず、発泡剤としての作用をも兼ね備える。
【0023】
陰イオン界面活性剤としては、直鎖アルキルベンゼンスルホネート、α−オレフィンスルホネート、パラフィンスルホネート等のスルホン酸塩、高級アルコールサルフェート、高級アルキルエーテルサルフェート等の硫酸エステル塩、さらにはポリオキシエチレンアルキルエーテルの酢酸アルカリ塩、あるいはリン酸エステル等が挙げられる。
【0024】
また、非イオン界面活性剤としては、高級アルコールエチレンオキサイド付加物やアルキルフェノールエチレンオキサイド付加物、プルロニック型非イオン界面活性剤等のポリエチレングリコール型非イオン界面活性剤、脂肪酸アルカノールアミド、砂糖の脂肪酸エステル、ソルビットやソルビタンの脂肪酸エステル等の多価アルコール型非イオン界面活性剤、さらには、アルキルアミンオキサイドやアルキルポリグリコシド等が挙げられる。
【0025】
上述の陰イオン界面活性剤および非イオン界面活性剤は本発明では使用目的に応じてそれぞれ単独で、一種または複数種を用いてもよく、あるいはこれらを組み合わせて複数種で用いることもできる。例えば、本発明を泡洗浄に用いる場合には、界面活性剤として陰イオン界面活性剤を選定することが好ましく、特に、アルキルポリグリコシドと高級アルコール硫酸エステル塩との混合物は発泡性に著しく優れているので好ましい。
【0026】
さらに、本発明におけるグルタミン酸イミノ二酢酸アルカリ塩と界面活性剤との配合比率は重量比でグルタミン酸イミノ二酢酸アルカリ塩:界面活性剤=1:2〜4:1の範囲内、好ましくは1:1.5〜2:1の範囲であり、この範囲内で本発明効果が著しく発揮される。
【0027】
また、本発明にかかる洗浄剤組成物は水溶液の状態でpH値が9〜11、好ましくは9〜10の範囲の弱アルカリ性であり、この範囲内で本発明効果が著しく発揮される。
【0028】
なお、本発明組成物は上述成分のほかに、pH値を上述範囲に維持するためのpH緩衝剤、例えば、炭酸ナトリウム、エタノールアミン等のアルカリ剤を含有することができ、さらに、所望に応じて可溶化剤、水溶性溶剤等を含有することもできる。
【0029】
上述の本発明組成物は粒状体あるいは液体の形態で調製され、使用に際して、洗浄すべき軽金属表面の汚れの程度に応じ、あるいは、泡洗浄等の使用目的に応じ、適宜濃度に水で稀釈して使用される。
【0030】
【発明の実施例】
以下、本発明を実施例により詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。
【0031】
なお、実施例で用いられる各化合物は以下のように略記する。
【0032】
直鎖アルキルベンゼンスルホン酸ナトリウム : LAS
ヤシ脂肪酸ジメチルアミンオキサイド : AO
L−グルタミン酸イミノ二酢酸ナトリウム : GLDA
エチレンジアミン四酢酸ナトリウム : EDTA
トリエタノールアミン : TEA
【0033】
実施例 1
ポリオキシエチレンアルキルエーテル系非イオン界面活性剤(アデカトールSO・135旭電化工業(株)製)の0.15%水溶液中に、キレート剤としてL−グルタミン酸イミノ二酢酸ナトリウム(GLDA)およびエチレンジアミン四酢酸ナトリウム(EDTA)(いずれも公知の製造方法によって合成されたもの)をそれぞれ添加混合してキレート剤がそれぞれ0.1W/V%含有された、表1に示す各pH値の試料水溶液を調製し、これら各水溶液のカルシウムイオン捕捉能(CV値)を測定した。
【0034】
CV値測定は自動滴定装置を用い、光度滴定法により行なった。すなわち、上述の試料水溶液100mlをそれぞれ200mlビーカーに採取し、これら各試料水溶液に指示薬として1%ラウリン酸ナトリウム水溶液5mlと、イソプロピルアルコール10mlを添加し、光度滴定電極の設置された自動滴定装置により、滴定溶液として0.01M酢酸ナトリウム水溶液をそれぞれ用いて滴定を行った。カルシウムイオン捕捉能はキレート剤1gに対する炭酸カルシウムのmg数で示した。測定結果を表1に示す。
【0035】
【表1】
Figure 0003747554
【0036】
表1から明らかなように、GLDAを含む本発明試料のカルシウムイオン捕捉能はpH9−11の弱アルカリ性の条件で著しく高くなり、従来使用されているキレート剤EDTAにほぼ匹敵する。
【0037】
実施例 2
実施例1と同様にしてアデカトールSO・135の0.15%水溶液にキレート剤としてGLDAおよびEDTAを添加混合して、キレート剤が0.2W/V%含有した水溶液を調製し、これら水溶液について、それぞれアルミニウムに対する腐食試験を行なった。
【0038】
腐食試験は次のようにして行なった。まず、0.2W/V%のキレート剤の含有した上記各水溶液に、それぞれ0.2M炭酸ナトリウムおよび0.2M炭酸水素ナトリウムを添加混合して表2に示す各pH値の試料水溶液を調製した。
【0039】
次いで、得られた各pH値の水溶液に、予め表面を清浄して重量を測定したアルミニウム板を水温25℃の条件下で8時間浸漬した。その後、アルミニウム板を水溶液から取り出して水ですすぎ、乾燥の後、重量測定し、浸漬前と浸漬後の重量差を腐食率(%)として求め、結果を表2に示した。
【0040】
【表2】
Figure 0003747554
【0041】
表2の結果から、GLDAを含む本発明試料のアルミニウム材質に対する腐食性はいずれのpH値についてもEDTAを含む試料に比べて著しく小さいことがわかる。
【0042】
実施例 3
表3に示す各pH値の試料水溶液について、それぞれ、油脂汚れの除去試験を行なった。
【0043】
油脂汚れの除去試験は次のようにして行った。まず、0.2W/V%のキレート剤(GLDAまたはEDTA)と、0.05W/V%のポリオキシエチレンアルキルエーテル系非イオン界面活性剤とをそれぞれ含む水溶液に0.2M炭酸ナトリウムおよび0.2M炭酸水素ナトリウムを添加混合して表3に示される各pH値の試料水溶液を調製した。
【0044】
なお、これとは別に牛脂汚れの付着したステンレス板(テストピース)を次のようにしてつくった。まず、牛脂を同量のクロロホルムに溶解した。次いで、この溶液に、あらかじめ表面を清浄して光沢度を測定したステンレス板を浸漬し、引き上げの後、クロロホルムを乾燥させることによりテストピースをつくった。
【0045】
次いで上述各pH値の試料水溶液に、上述の牛脂汚れの付着したステンレス板(テストピース)を水温25℃の条件下で15分間浸漬した。
【0046】
その後、ステンレス板を水溶液から引き上げてオーバーフロー状態の静水中で軽くすすぎ、室温で一夜乾燥の後、ステンレス板表面の洗浄状態を判定した。
【0047】
洗浄状態の判定は洗浄前と洗浄後のテストピースの光沢度を測定し、下式より洗浄効率(%)を算出することにより行った。
【0048】
【数1】
Figure 0003747554
【0049】
なお、本実施例で使用した上述ポリオキシエチレンアルキルエーテル系非イオン界面活性剤はアデカトールSO135(旭電化工業(株))である。測定結果を表3に示す。
【0050】
【表3】
Figure 0003747554
【0051】
表3から明らかなように、GLDAを含む本発明試料の牛脂汚れに対する洗浄性はpHが9−11の範囲では、EDTAを含む試料の洗浄性に比べて著しく優れている。
【0052】
実施例 4
表4に示す各試料No.1〜5を調製し、これら各試料の水溶液について、油脂汚れの除去性試験を行った。なお、各試料水溶液のpHはいずれもpH10である。
【0053】
各試料の水溶液は次のようにしてつくった。まず、表4の各組成の0.5%水溶液をつくった。次いで、これら各水溶液に0.2M炭酸ナトリウムと0.2M炭酸水素ナトリウムをそれぞれ添加混合し、pH10.0に調整して各試料の水溶液を調製した。
【0054】
これら各試料水溶液に、実施例3と同じようにしてつくった牛脂汚れテストピースを浸漬し、実施例3と同様にして洗浄状態を判定し、油脂汚れの除去性を試験した。結果を表4に示す。
【0055】
【表4】
Figure 0003747554
【0056】
表4から明らかなように、牛脂汚れに対する洗浄性はLASとGLDAの併用により著しく向上した。(試料No.4および5)。
【0057】
実施例 5
表5に示される各成分(%)を含有する試料No.1〜5を調製し、これら各試料を、炭酸カルシウムがそれぞれ50ppm および70ppm 含有した水に稀釈して2%洗浄剤水溶液を調製した。これら水溶液について透明性を目視で観察することにより、各硬度の水に稀釈したときの水溶液の安定性について判定した。結果を表5に示す。
【0058】
【表5】
Figure 0003747554
【0059】
表5の結果から明らかなように、GLDAが含有されない試料No.1では、炭酸カルシウムを70ppm 含有すると濁り(白濁)が生じた。これに対して、試料No.2〜5(本発明)では、いずれも透明性が維持され、高硬度の水に稀釈しても安定であった。
【0060】
また、これら試料No.1〜5の2%水溶液について、発泡スプレーを用いて垂直硬表面にスプレーしたところ、透明稀釈水溶液(試料No. 2〜5)に比べ、濁りを生じた試料No.1は発泡性が著しく劣った。
【0061】
実施例 6
LAS5%、GLDA20%、硫酸ナトリウム75%からなる洗浄剤組成物の0.5%水溶液を表7に示す各pHに調整して試料No.1〜5を得た。これら各試料について油脂汚れ除去性およびアルミニウムに対する腐食試験を行った。
【0062】
試料のpHは各試料に0.2M炭酸ナトリウム、0.2M炭酸水素ナトリウムおよび0.2M水酸化ナトリウムをそれぞれ添加混合して調整した。
【0063】
油脂汚れ除去性については、実施例3と同様に作製した牛脂汚れテストピースを、水温25℃の各試料に15分間浸漬の後、引き上げ、実施例3と同様にして洗浄効率(%)を算出することにより行った。
【0064】
アルミニウムに対する腐食試験は各試料に、予め表面を清浄して重量を測定したアルミニウム板を実施例2と同様にして浸漬し、腐食率(%)を求めることにより行った。同時にアルミニウムの表面状態も観察した。結果を表6に示す。表6中、○印は表面変化なく、光沢を有することを示し、×印は表面腐食がみられ、白色化したことを示す。
【0065】
【表6】
Figure 0003747554
【0066】
表6の結果から、油脂汚れ除去性については試料No.1(pH8)ではやや劣るが、試料No.2〜5、すなわち、pHが9以上になると洗浄性が高くなることがわかる。
【0067】
アルミニウムに対する腐食については、試料No.5(pH12) ではアルミニウム板表面に腐食がみられ、白化していた。一方、試料No.1〜4、すなわち、pHが11以下では、アルミニウム板表面に変化がなく、光沢を有していた。
【0068】
以上の結果より、試料No.2〜4、すなわち、洗浄剤水溶液のpHが9〜11の範囲では、油脂汚れ除去性に優れ、かつ、アルミニウム板表面に対する変化がみられず、光沢性を有しており、したがって、洗浄性に優れるとともに、アルミニウム材質への影響も小さく、本発明の好ましい範囲であるということができる。
【0069】
実施例 7
表7の各成分(%)を含有する洗浄剤組成物を炭酸カルシウムが100ppm 含有する水に稀釈して2%洗浄剤水溶液を調製し、試料No.1〜3とした。これら各試料を5時間アルミニウム板表面上にスプレーしてアルミニウム板表面の状態を目視観察した。
【0070】
【表7】
Figure 0003747554
【0071】
表7の結果より、キレート剤(EDTA、GLDA)が含まれてない試料No.1では、発泡状態が悪く、また、キレート剤としてEDTAを使用した試料No.2では、発泡状態は改善されたものの、アルミニウム板表面への腐食が起こる。一方、キレート剤としてGLDAを使用した試料No.3では、発泡状態およびアルミニウムの表面状態のいずれも良好であった。
【0072】
実施例 8
本発明洗浄剤組成物(表4の試料No.4)をCODで500ppm になるように水で稀釈した、さらに、化学工業排水を処理している活性汚泥設備から活性汚泥を採取し、この活性汚泥を小型の3槽直列曝気型活性汚泥設備に上述の稀釈液とともに供給し、曝気をして生物分解のテストを行った。
【0073】
7〜8日経過した後の処理排水中のCODは50〜75ppm 程度に低減されており、分解率が85〜90%であった。
【0074】
【発明の効果】
以上のとおり、本発明にかかる洗浄剤組成物は油脂除去性に優れ、アルミニウムを始めとする軽金属材料への影響が少なく、微生物分解性にも優れ、しかも発泡性が優れる等の特徴を有しており、泡洗浄および軽金属用洗浄に適しているということができる。[0001]
BACKGROUND OF THE INVENTION
The present invention is less affected by corrosion on light metal surfaces such as aluminum materials, and is applied to foam cleaning with excellent cleaning effect and foamability even when using high hardness cleaning water, and also excellent in microbial degradability, In particular, the present invention relates to a light metal cleaning composition suitable for hard surface cleaning of various facilities and apparatuses made of light metal materials.
[0002]
[Prior art]
In recent years, various light metal materials such as aluminum materials have been used in beverage filling apparatuses and food processing facilities that require precision, or vehicles, aircraft, containers, and the like that require light weight.
[0003]
Devices, facilities, vehicles, aircraft, containers, etc. using these light metal materials need to clean the outer surface, that is, the hard surface with a cleaning agent having a high cleaning effect.
[0004]
As such a cleaning agent having a high cleaning effect, conventionally, a cleaning agent containing a chelating agent such as sodium ethylenediaminetetraacetate (EDTA) and having a high pH value has been used.
[0005]
However, such a cleaning agent with a high cleaning effect repeatedly wipes the surface of the light metal material and contacts the surface for a long time, corroding the surface of the light metal material or causing whitening or blackening to lose the surface gloss. It may cause problems such as clogging and further melting the surface to open holes.
[0006]
Recently, a foam cleaning technique has been adopted to efficiently clean a wide hard surface. In this case, the detergent contains an anionic surfactant for the purpose of increasing foaming.
[0007]
However, this anionic surfactant is greatly affected by the hardness of the water used for dilution, and when diluted with high-hardness water, the anionic surfactant is insolubilized and does not foam, and at the same time, the cleaning performance decreases.
[0008]
In order to solve such a problem, a chelating agent such as sodium ethylenediaminetetraacetate (EDTA) is contained in the detergent containing the anionic surfactant as described above. However, a cleaning agent containing a chelating agent such as EDTA causes the above-described problems with light metal materials.
[0009]
In this way, when a light metal material such as aluminum is cleaned, if a chelating agent is added to improve the cleaning effect of the cleaning agent, a problem occurs on the surface of the light metal material.
[0010]
Therefore, as a cleaning agent for the surface of the light metal material, a surfactant having a small influence on the hardness of the diluted water is selected, and a cleaning agent whose pH value is adjusted to a value close to neutrality, or further, There has been a demand for a cleaning agent that does not need to contain a chelating agent such as EDTA while adding a silicate effective for preventing corrosion of light metals.
[0011]
[Problems to be solved by the invention]
However, this type of cleaning agent has low cleaning performance, and therefore, physical means such as contacting the surface of the light metal material with the cleaning agent solution for a long time or rubbing the surface is required for cleaning.
[0012]
Further, a cleaning agent that does not use a chelating agent such as EDTA is difficult to foam due to the influence of the hardness of the diluted water. Therefore, in the case of foam cleaning, a large amount of surfactant is required in the cleaning agent.
[0013]
In the case of a cleaning agent containing silicate, the silicate is likely to adhere to the metal surface, which sometimes becomes the core of the soil, and makes the surface after cleaning easily soiled.
[0014]
Therefore, the object of the present invention is to use a high hardness water as dilution water or washing water without using a chelating agent or silicate such as EDTA described above, having little influence of corrosion on the surface of the light metal and having high hardness. Detergent composition for light metals that exhibits excellent cleaning effects and foaming properties, is also excellent in microbial degradability, and is particularly suitable for hard surface cleaning of various equipment and devices made of light metal materials, and has improved the above-mentioned drawbacks of the known techniques To provide things.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in a detergent composition comprising a chelating agent and a surfactant comprising an anionic surfactant and / or a nonionic surfactant, the chelating agent is glutamic acid. It is an iminodiacetic acid alkali salt , and the pH of the aqueous solution is in the range of 9 to 11 .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0017]
As described above, the present invention is characterized by the specific use of glutamic acid iminodiacetic acid alkali salt as a chelating agent.
[0018]
The alkali salt of glutamic acid iminodiacetic acid has the general formula:
Figure 0003747554
Preferably, it is L-glutamic acid iminodiacetic acid alkali salt. In the formula, Me is an amine such as sodium, potassium, alkanolamine or ammonium, and sodium is particularly preferable. Note that these Mes may be of the same type or different from each other.
[0019]
The aforementioned glutamic acid iminodiacetic acid alkali salt is a derivative of glutamic acid, preferably L-glutamic acid, which is an amino acid, and has an excellent calcium ion scavenging ability comparable to ethylenediaminetetraacetic acid alkali salt (EDTA). This scavenging ability is remarkably improved especially in the alkaline region of pH 9 or higher.
[0020]
Moreover, although the alkali salt of glutamic acid iminodiacetic acid is excellent in calcium ion scavenging ability as a chelating property, the corrosiveness to light metal materials such as aluminum is significantly smaller than that of EDTA.
[0021]
Furthermore, this glutamic acid iminodiacetic acid alkali salt is more excellent in degreasing properties than EDTA, and easily cleans oil stains adhering to the hard surface. Moreover, when this is used in combination with an anionic surfactant or a nonionic surfactant, the degreasing effect is greatly improved and the foaming property is also improved, resulting in a synergistic effect of both.
[0022]
The surfactant used in the present invention is an anionic surfactant or a nonionic surfactant, which removes organic dirt such as oils and fats, proteins and carbohydrates attached to the hard surface of light metal materials, and inorganic dirt such as dust. In addition to exhibiting a cleaning action, it also functions as a foaming agent.
[0023]
Anionic surfactants include sulfonates such as linear alkylbenzene sulfonates, α-olefin sulfonates and paraffin sulfonates, sulfate esters such as higher alcohol sulfates and higher alkyl ether sulfates, and alkali acetates of polyoxyethylene alkyl ethers. Examples thereof include salts and phosphate esters.
[0024]
Nonionic surfactants include higher alcohol ethylene oxide adducts and alkylphenol ethylene oxide adducts, polyethylene glycol type nonionic surfactants such as pluronic type nonionic surfactants, fatty acid alkanolamides, sugar fatty acid esters, Examples include polyhydric alcohol type nonionic surfactants such as sorbitol and fatty acid esters of sorbitan, and alkylamine oxides and alkylpolyglycosides.
[0025]
In the present invention, the above-mentioned anionic surfactant and nonionic surfactant may be used alone or in combination of one or more according to the purpose of use, or may be used in combination of two or more. For example, when the present invention is used for foam cleaning, it is preferable to select an anionic surfactant as the surfactant. In particular, a mixture of an alkyl polyglycoside and a higher alcohol sulfate ester salt is extremely excellent in foamability. This is preferable.
[0026]
Furthermore, the blending ratio of glutamic acid iminodiacetic acid alkali salt and surfactant in the present invention is within the range of glutamic acid iminodiacetic acid alkali salt: surfactant = 1: 2 to 4: 1, preferably 1: 1. The range is from 0.5 to 2: 1, and the effects of the present invention are remarkably exhibited within this range.
[0027]
Further, the cleaning composition according to the present invention is weakly alkaline with a pH value of 9 to 11, preferably 9 to 10 in the state of an aqueous solution, and the effects of the present invention are remarkably exhibited within this range.
[0028]
In addition to the above-mentioned components, the composition of the present invention can contain a pH buffer for maintaining the pH value in the above-mentioned range, for example, an alkali agent such as sodium carbonate and ethanolamine. Solubilizers, water-soluble solvents and the like.
[0029]
The above-described composition of the present invention is prepared in the form of granules or liquid, and is diluted with water to an appropriate concentration according to the degree of soiling of the light metal surface to be cleaned or the purpose of use such as foam cleaning. Used.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples at all.
[0031]
In addition, each compound used in an Example is abbreviated as follows.
[0032]
Sodium alkylbenzene sulfonate: LAS
Palm fatty acid dimethylamine oxide: AO
L-glutamic acid iminodiacetic acid sodium salt: GLDA
Sodium ethylenediaminetetraacetate: EDTA
Triethanolamine: TEA
[0033]
Example 1
L-glutamic acid iminodiacetic acid sodium salt (GLDA) and ethylenediaminetetraacetic acid as a chelating agent in a 0.15% aqueous solution of a polyoxyethylene alkyl ether nonionic surfactant (Adecatol SO · 135 manufactured by Asahi Denka Kogyo Co., Ltd.) Sodium (EDTA) (both synthesized by known production methods) was added and mixed to prepare sample aqueous solutions of each pH value shown in Table 1, each containing 0.1 W / V chelating agent. The calcium ion scavenging ability (CV value) of each of these aqueous solutions was measured.
[0034]
The CV value was measured by a photometric titration method using an automatic titrator. That is, each 100 ml of the above sample aqueous solution was collected in a 200 ml beaker, and 5 ml of 1% sodium laurate aqueous solution and 10 ml of isopropyl alcohol were added to each of the sample aqueous solutions as an indicator, and an automatic titrator equipped with a photometric titration electrode was used. Titration was performed using 0.01M aqueous sodium acetate solution as a titration solution. The calcium ion scavenging ability was shown by the number of mg of calcium carbonate with respect to 1 g of chelating agent. The measurement results are shown in Table 1.
[0035]
[Table 1]
Figure 0003747554
[0036]
As is apparent from Table 1, the calcium ion scavenging ability of the sample of the present invention containing GLDA is remarkably increased under the weakly alkaline conditions of pH 9-11 and is almost comparable to the conventionally used chelating agent EDTA.
[0037]
Example 2
In the same manner as in Example 1, GLDA and EDTA were added and mixed as a chelating agent to a 0.15% aqueous solution of Adekatol SO · 135 to prepare an aqueous solution containing 0.2 W / V% of the chelating agent. Each was subjected to a corrosion test on aluminum.
[0038]
The corrosion test was conducted as follows. First, 0.2 M sodium carbonate and 0.2 M sodium hydrogen carbonate were added to and mixed with each of the above aqueous solutions containing a 0.2 W / V% chelating agent to prepare sample aqueous solutions having respective pH values shown in Table 2. .
[0039]
Next, an aluminum plate whose surface was previously cleaned and weighed was immersed in the obtained aqueous solution of each pH value for 8 hours under the condition of a water temperature of 25 ° C. Thereafter, the aluminum plate was taken out from the aqueous solution, rinsed with water, dried, weighed, the weight difference before and after immersion was determined as the corrosion rate (%), and the results are shown in Table 2.
[0040]
[Table 2]
Figure 0003747554
[0041]
From the results in Table 2, it can be seen that the corrosivity of the inventive sample containing GLDA to the aluminum material is remarkably smaller than the sample containing EDTA at any pH value.
[0042]
Example 3
About the sample aqueous solution of each pH value shown in Table 3, the removal test of fat and oil stains was done, respectively.
[0043]
The removal test for fat and oil stains was performed as follows. First, an aqueous solution containing 0.2 W / V% of a chelating agent (GLDA or EDTA) and 0.05 W / V% of a polyoxyethylene alkyl ether-based nonionic surfactant, respectively, was added with 0.2M sodium carbonate and 0.1%. 2M sodium hydrogen carbonate was added and mixed to prepare sample aqueous solutions having respective pH values shown in Table 3.
[0044]
Apart from this, a stainless steel plate (test piece) with beef tallow dirt was prepared as follows. First, beef tallow was dissolved in the same amount of chloroform. Next, a stainless steel plate whose surface was previously cleaned and gloss was measured was immersed in this solution, and after pulling up, chloroform was dried to prepare a test piece.
[0045]
Subsequently, the stainless steel plate (test piece) to which the above-mentioned beef tallow dirt adhered was immersed in the sample aqueous solution having each pH value for 15 minutes under the condition of a water temperature of 25 ° C.
[0046]
Thereafter, the stainless steel plate was pulled up from the aqueous solution and rinsed lightly in overflowing still water. After drying overnight at room temperature, the cleaning state of the stainless steel plate surface was determined.
[0047]
The determination of the cleaning state was performed by measuring the glossiness of the test piece before and after cleaning, and calculating the cleaning efficiency (%) from the following equation.
[0048]
[Expression 1]
Figure 0003747554
[0049]
The polyoxyethylene alkyl ether nonionic surfactant used in this example is Adecatol SO135 (Asahi Denka Kogyo Co., Ltd.). Table 3 shows the measurement results.
[0050]
[Table 3]
Figure 0003747554
[0051]
As is clear from Table 3, the cleanability of the sample of the present invention containing GLDA against beef tallow soil is significantly superior to the cleanability of the sample containing EDTA in the pH range of 9-11.
[0052]
Example 4
Samples Nos. 1 to 5 shown in Table 4 were prepared, and the oily soil removal property test was performed on the aqueous solutions of these samples. The pH of each sample aqueous solution is pH 10.
[0053]
An aqueous solution of each sample was prepared as follows. First, a 0.5% aqueous solution having each composition shown in Table 4 was prepared. Next, 0.2M sodium carbonate and 0.2M sodium hydrogen carbonate were added and mixed with each of these aqueous solutions, and adjusted to pH 10.0 to prepare an aqueous solution of each sample.
[0054]
The beef tallow test pieces prepared in the same manner as in Example 3 were immersed in each of these sample aqueous solutions, and the washing state was determined in the same manner as in Example 3 to test the removability of fat and oil stains. The results are shown in Table 4.
[0055]
[Table 4]
Figure 0003747554
[0056]
As is clear from Table 4, the detergency against beef tallow soil was remarkably improved by the combined use of LAS and GLDA. (Sample No. 4 and 5).
[0057]
Example 5
Sample Nos. 1 to 5 containing each component (%) shown in Table 5 were prepared, and each of these samples was diluted with water containing 50 ppm and 70 ppm of calcium carbonate, respectively, to prepare a 2% detergent aqueous solution. . By visually observing the transparency of these aqueous solutions, the stability of the aqueous solutions when diluted in water of each hardness was determined. The results are shown in Table 5.
[0058]
[Table 5]
Figure 0003747554
[0059]
As is clear from the results in Table 5, sample No. 1 containing no GLDA was turbid (white turbid) when 70 ppm of calcium carbonate was contained. On the other hand, samples Nos. 2 to 5 (invention) all maintained transparency and were stable even when diluted with high-hardness water.
[0060]
In addition, when 2% aqueous solutions of these sample Nos. 1 to 5 were sprayed onto a vertical hard surface using a foaming spray, the sample No. 1 in which turbidity was generated compared to the transparent diluted aqueous solution (sample Nos. 2 to 5). Was significantly inferior in foamability.
[0061]
Example 6
Samples Nos. 1 to 5 were obtained by adjusting a 0.5% aqueous solution of a detergent composition comprising LAS 5%, GLDA 20%, and sodium sulfate 75% to each pH shown in Table 7. Each of these samples was subjected to a grease stain removal property and a corrosion test on aluminum.
[0062]
The pH of the sample was adjusted by adding and mixing 0.2 M sodium carbonate, 0.2 M sodium hydrogen carbonate and 0.2 M sodium hydroxide to each sample.
[0063]
For the oil stain removal property, the beef fat stain test piece produced in the same manner as in Example 3 was immersed in each sample at a water temperature of 25 ° C. for 15 minutes, then pulled up, and the cleaning efficiency (%) was calculated in the same manner as in Example 3. It was done by doing.
[0064]
The corrosion test for aluminum was performed by immersing an aluminum plate whose surface was previously cleaned and measured for weight in the same manner as in Example 2 and obtaining the corrosion rate (%). At the same time, the surface condition of aluminum was also observed. The results are shown in Table 6. In Table 6, ◯ indicates that the surface is glossy without change, and X indicates that the surface is corroded and whitened.
[0065]
[Table 6]
Figure 0003747554
[0066]
From the results shown in Table 6, it can be seen that the oil / fouling stain removability is slightly inferior in sample No. 1 (pH 8), but the detergency increases when sample Nos. 2 to 5, that is, the pH is 9 or more.
[0067]
Regarding corrosion to aluminum, in sample No. 5 (pH 12), the aluminum plate surface was corroded and whitened. On the other hand, in sample Nos. 1 to 4, that is, when the pH was 11 or less, the aluminum plate surface did not change and had gloss.
[0068]
From the above results, in samples Nos. 2 to 4, that is, in the range of pH of the cleaning agent aqueous solution of 9 to 11, it is excellent in oil and fat stain removability, and no change with respect to the surface of the aluminum plate is observed, and it has gloss. Therefore, it is excellent in cleaning properties and has little influence on the aluminum material, which can be said to be a preferable range of the present invention.
[0069]
Example 7
The detergent composition containing each component (%) in Table 7 was diluted in water containing 100 ppm of calcium carbonate to prepare a 2% detergent aqueous solution, which was designated as Sample Nos. 1 to 3. Each of these samples was sprayed on the aluminum plate surface for 5 hours, and the state of the aluminum plate surface was visually observed.
[0070]
[Table 7]
Figure 0003747554
[0071]
From the results of Table 7, the sample No. 1 containing no chelating agent (EDTA, GLDA) has a poor foaming state, and the sample No. 2 using EDTA as the chelating agent has an improved foaming state. However, corrosion on the aluminum plate surface occurs. On the other hand, in sample No. 3 using GLDA as the chelating agent, both the foamed state and the aluminum surface state were good.
[0072]
Example 8
The cleaning composition of the present invention (Sample No. 4 in Table 4) was diluted with water to a COD of 500 ppm, and activated sludge was collected from activated sludge equipment treating chemical industrial wastewater. The sludge was supplied to a small 3-tank serial aeration type activated sludge facility together with the above-described dilution solution, aerated, and tested for biodegradation.
[0073]
The COD in the treated waste water after 7 to 8 days had been reduced to about 50 to 75 ppm, and the decomposition rate was 85 to 90%.
[0074]
【The invention's effect】
As described above, the cleaning composition according to the present invention has characteristics such as excellent oil and fat removal properties, little influence on light metal materials such as aluminum, excellent microbial degradability, and excellent foamability. It can be said that it is suitable for foam cleaning and light metal cleaning.

Claims (4)

キレート剤と、陰イオン界面活性剤および/または非イオン界面活性剤からなる界面活性剤とを含む洗浄剤組成物において、前記キレート剤グルタミン酸イミノ二酢酸アルカリ塩であり、かつその水溶液のPHが9乃至11の範囲内であることを特徴とする軽金属用洗浄剤組成物。In a detergent composition comprising a chelating agent and a surfactant comprising an anionic surfactant and / or a nonionic surfactant, the chelating agent is glutamic acid iminodiacetic acid alkali salt , and the pH of the aqueous solution is A cleaning composition for light metals , which is within a range of 9 to 11 . 前記グルタミン酸イミノ二酢酸アルカリ塩がグルタミン酸イミノ二酢酸ナトリウム塩、カリウム塩、またはアルカノールアミン塩である請求項1に記載の軽金属用洗浄剤組成物。  2. The light metal detergent composition according to claim 1, wherein the glutamic acid iminodiacetic acid alkali salt is a glutamic acid iminodiacetic acid sodium salt, potassium salt, or alkanolamine salt. 前記グルタミン酸イミノ二酢酸アルカリ塩と界面活性剤との配合比率が重量比で1:2乃至4:1の範囲内である請求項1に記載の軽金属用洗浄剤組成物。The detergent composition for light metals according to claim 1, wherein a blending ratio of the alkali salt of glutamic acid iminodiacetic acid and the surfactant is within a range of 1: 2 to 4: 1 by weight. 請求項1の軽金属用洗浄剤組成物を泡洗浄に適用することを特徴とする軽金属の洗浄方法。  A cleaning method for light metal, wherein the cleaning composition for light metal according to claim 1 is applied to foam cleaning.
JP07464697A 1997-03-12 1997-03-12 Detergent composition for light metals Expired - Fee Related JP3747554B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP07464697A JP3747554B2 (en) 1997-03-12 1997-03-12 Detergent composition for light metals
DE69708836T DE69708836D1 (en) 1997-03-12 1997-12-30 Detergents and cleaning agents
EP97123003A EP0864638B1 (en) 1997-03-12 1997-12-30 Detergent composition
EP00122176A EP1067172B1 (en) 1997-03-12 1997-12-30 Detergent composition
AT97123003T ATE210176T1 (en) 1997-03-12 1997-12-30 DETERGENTS AND CLEANING PRODUCTS
AT00122176T ATE262575T1 (en) 1997-03-12 1997-12-30 CLEANING SUPPLIES
DE69728303T DE69728303T2 (en) 1997-03-12 1997-12-30 cleaning supplies
US09/002,005 US6028048A (en) 1997-03-12 1997-12-31 Detergent composition containing an aminodicarboxylic acid-N, N-dialkanoic acid or its salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07464697A JP3747554B2 (en) 1997-03-12 1997-03-12 Detergent composition for light metals

Publications (2)

Publication Number Publication Date
JPH10251697A JPH10251697A (en) 1998-09-22
JP3747554B2 true JP3747554B2 (en) 2006-02-22

Family

ID=13553206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07464697A Expired - Fee Related JP3747554B2 (en) 1997-03-12 1997-03-12 Detergent composition for light metals

Country Status (1)

Country Link
JP (1) JP3747554B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352353B2 (en) * 1997-04-07 2002-12-03 花王株式会社 Detergent composition
JPH11158498A (en) * 1997-12-01 1999-06-15 Showa Denko Kk Detergent composition for vehicle
JP4069443B2 (en) * 2002-11-26 2008-04-02 栗田工業株式会社 Scale cleaning agent for metal surface containing aluminum or aluminum alloy and method for cleaning scale of metal surface containing aluminum or aluminum alloy using the same
JP2004002861A (en) * 2003-05-16 2004-01-08 Kao Corp Detergent for heat-exchanger fin
CN104099630A (en) * 2014-06-30 2014-10-15 张家港沙龙精密管业有限公司 Cleaning agent for surface of metal pipe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2195594B1 (en) * 1972-08-09 1974-10-25 Santerre Orsan
JPS5941677B2 (en) * 1981-02-21 1984-10-08 工業技術院長 Alkaline detergent composition
US5061395A (en) * 1990-01-04 1991-10-29 Ques Industries, Inc. Hard surface cleaning composition
JPH06108092A (en) * 1992-09-28 1994-04-19 Lion Corp Strongly alkaline liquid detergent composition
JP3478870B2 (en) * 1994-07-01 2003-12-15 朝日化学工業株式会社 Cleaning composition for removing phosphate film from high strength steel

Also Published As

Publication number Publication date
JPH10251697A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
CN101473022B (en) Acidic cleaning agent for metallic surface
JP4794920B2 (en) Aqueous liquid detergent composition
EP1067172B1 (en) Detergent composition
DK160152B (en) LIQUID ALSO CLEANING CLEANER
US7384902B2 (en) Metal brightener and surface cleaner
JP2007262258A (en) Deodorizing agent composition for cip and cleaning and deodorizing method using the same
JP3747554B2 (en) Detergent composition for light metals
US5607911A (en) Aqueous compositions with detergent for rust and stain removal
JPH09508930A (en) Lime scale removal composition
JP2003193099A (en) Alkaline detergent composition
JPS6313480B2 (en)
JPH0680995A (en) Low-residue detergent
JP3962113B2 (en) Cleaning composition
JPH11158492A (en) Detergent composition for steel sheet surface
CA3129654C (en) High foaming liquid alkaline cleaner concentrate composition
CA2268130C (en) Alkaline hard surface cleaner and process therewith
JPH11158498A (en) Detergent composition for vehicle
JPH07238299A (en) Composition for cleaning hard surface
RU2194748C1 (en) Detergent agent for metallic surface cleansing
JP4166319B2 (en) Hard surface cleaning composition
JP2004051761A (en) Detergent composition having anticorrosive effect
JPH0680993A (en) Neutral detergent
JPH0680996A (en) Lowly foaming detergent
JP2004359825A (en) Neutral detergent composition for hard surface
JPH0841498A (en) Cleaning agent composition for electrolytic washing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees