JP3746670B2 - Tuning fork vibration type load sensor - Google Patents

Tuning fork vibration type load sensor Download PDF

Info

Publication number
JP3746670B2
JP3746670B2 JP2000324418A JP2000324418A JP3746670B2 JP 3746670 B2 JP3746670 B2 JP 3746670B2 JP 2000324418 A JP2000324418 A JP 2000324418A JP 2000324418 A JP2000324418 A JP 2000324418A JP 3746670 B2 JP3746670 B2 JP 3746670B2
Authority
JP
Japan
Prior art keywords
load
lever
point
tuning fork
tension piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000324418A
Other languages
Japanese (ja)
Other versions
JP2002131148A (en
Inventor
直也 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Denshi Co Ltd
Original Assignee
Shinko Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Denshi Co Ltd filed Critical Shinko Denshi Co Ltd
Priority to JP2000324418A priority Critical patent/JP3746670B2/en
Publication of JP2002131148A publication Critical patent/JP2002131148A/en
Application granted granted Critical
Publication of JP3746670B2 publication Critical patent/JP3746670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、荷重受部に受けた荷重を音叉振動子を介して検出する音叉振動式荷重センサに関するものである。
【0002】
【従来の技術】
従来のこの種の音叉振動式荷重センサには、例えば本出願人による特公平3−49059号公報に開示されているような同一金属部材から成る荷重変換機構が使用されている。図3に示すように、この荷重変換機構の基部1の一部にはてこ部2の支点2aが支持されており、てこ部2の力点2bと基部1の固定部との間には音叉振動子3が配置され、てこ部2の荷重点2cには荷重Fを受ける荷重受部4が引張片5を介して接続されている。引張片5の形状は、てこ部2の荷重点2cと荷重受部4の荷重作用点4aを結ぶ直線に対して左右対称とされているように、その直線に沿って一様とされている。
【0003】
【発明が解決しようとする課題】
しかしながら上述の荷重変換機構は、荷重Fとは別の妨害的な外力の影響を除去して良好な測定精度を得ることができるという利点を有している反面で、引張片5の形状がてこ部2の荷重点2cと荷重受部4の荷重作用点4aを結ぶ直線に対して左右対称、かつこの鉛直線に沿って一様となっているので、荷重受部4が荷重Fを受けた際に、図4に示すようにてこ部2が傾斜すると、引張片5のてこ比を決めるてこ部2との接続部分5aが変形し、荷重作用点4aが荷重点2cを通る鉛直線からずれた位置に至るために引張片5に応力が発生する。この応力は、荷重変換機構による測定値の直線性や再現性に悪影響を及ぼす上に、耐久性にも問題を及ぼすことがある。
【0004】
本発明の目的は、上述の問題点を解消し、直線性や再現性に優れた測定値を得ることができると共に耐久性を向上させ得る音叉振動式荷重センサを提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するための本発明に係る音叉振動式荷重センサは、基部の一部に接続したてこ部と、該てこ部の力点と前記基部の固定部との間に接続した音叉振動子と、前記てこ部の荷重点に薄板状の引張片を介して接続した荷重受部とを板状の同一金属部材から形成して成る音叉振動式荷重センサにおいて、前記てこ部の荷重点に前記てこ部と平行に前記引張片の一部である第2の部分を連結し、前記てこ部の荷重点と前記荷重受部の荷重作用点とを結ぶ鉛直線に対して前記引張片に左右非対称部分を形成し、前記荷重受部に荷重が加わると、前記てこ部と第2の部分の相対的位置関係を維持すると共に、前記引張片の左右非対称部分はその一部を変形して、前記荷重受部の荷重作用点が前記てこ部の荷重点を通る鉛直線上の位置に復元するようにしたことを特徴とする。
【0006】
【発明の実施の形態】
本発明を図1、図2に図示の実施の形態に基づいて詳細に説明する。
図1は実施の形態の正面図であり、この実施の形態に係る音叉振動式荷重センサは、圧電素子11a、11b、増幅器12、周波数カウンタ13及びこれらを接続するリード線を除いて同一金属部材から一体に加工されている。基部14には例えば2つの取付孔14a、14bが形成されており、基部14の上部にはてこ部15が支点15aの薄肉部16を介して支持されている。てこ部15の力点15bには音叉振動子17が接続され、てこ部15の荷重点15cには薄板状の引張片18を介して荷重受部19が接続されている。この荷重受部19には測定すべき荷重Fを受けるための図示しない部材が掛けられる孔19aが設けられ、この孔19aの下部は荷重Fが作用する荷重作用点19bとされている。
【0007】
音叉振動子17は軸線に対称かつ平行な2枚の長片状の振動片21a、21bと、これらの振動片21a、21bの上下の両端部同士をそれぞれ結合する略コ字状の結合部22a、22bと、これらの結合部22a、22bを軸線上でそれぞれ支持する薄板状の支持片23a、23bとから構成されている。上方の支持片23aはてこ部15の力点15bに接続され、下方の支持片23bは基部14の突部14cに接続されている。
【0008】
なお、上述の圧電素子11a、11bは持続振動発生用とされ、音叉振動子17の例えば下方の結合部22bの両側面にそれぞれ取り付けられている。圧電素子11a、11bには上述の増幅器12の入力部と出力部がそれぞれ接続され、一方の圧電素子11aは振動用とされ、他方の圧電素子11bはピックアップ用とされている。そして、増幅器12には上述の周波数カウンタ13が接続され、増幅器12の利得や周波数特性を適切に選択すると振動片21a、21bが音叉振動子17に加わった荷重に対応した固有周波数で対称的に振動するので、周波数カウンタ13によって荷重値の表示が可能とされている。
【0009】
ここで、引張片18の形状は、てこ部15の荷重点15cと荷重受部19の荷重作用点19bとを結ぶ直線Aに対して左右非対称とされていると共に、直線Aに沿って変形されている。即ち、引張片18にはてこ部15の荷重点15cから下方に直線状に延在する第1の部分31と、この第1の部分31の下端から直交する両方向に延在する第2の部分32と、この第2の部分32の例えば外側の一端から厚肉で弯曲しながら下方に延在する第3の部分33と、この第3の部分33の下端から直線Aの方向に斜めに延在する第4の部分34と、この第4の部分34の下端から下方に直線状に延在する第5の部分35とが設けられ、この第5の部分35の下端に上述の荷重受部19が接続されている。第1の部分31と第5の部分35は直線A上に配置され、第2の部分32の上面とてこ部15の下面との間には間隔dが与えられている。
【0010】
荷重受部19が測定すべき荷重Fを受けると、その荷重Fが引張片18及びてこ部15を介して音叉振動子17に作用し、音叉振動子17に引張荷重Fが加わる。これにより、音叉振動子17の振動片21a、21bが引張荷重Fに対応する固有振動数で対称的に振動し、それらの振動が増幅器12に入力し、周波数カウンタ13が荷重値を表示する。
【0011】
このとき図2に示すように、てこ部15は荷重Fにより右下がりに傾斜する。また、この荷重Fにより引張片18の第2の部分32に右回りの回転モーメントが加わり、第2の部分32は右下がりに傾く。この第2の部分32の傾斜角は引張片18の形状によって調整することが可能であり、てこ部15の右下がりの傾斜角と概ね一致させることができる。この条件下では、てこ部15の下面と引張片18の第2の部分32の上面は平行になり、この間隔d、てこ部15、引張片18の第1の部分31及び第2の部分32の相対位置を変化させることがない。
【0013】
【発明の効果】
以上説明したように本発明に係る音叉振動式荷重センサは、引張片の形状をてこ部の荷重点と荷重受部の荷重作用点とを結ぶ直線に対して左右非対称としたので、てこ部が傾斜してもてこ部と引張片のてこ部側との相対位置を変形させることがなく、そこに不要な応力を発生させることがない。従って、直線性や再現性に優れた測定値を得ることができる上に、耐久性を向上させることができる。
【図面の簡単な説明】
【図1】実施の形態の正面図である。
【図2】てこ部と引張片の作用説明図である。
【図3】従来例の部分正面図である。
【図4】従来例のてこ部と引張片の作用説明図である。
【符号の説明】
14 基部
15 てこ部
15a 支点
15b 力点
15c 荷重点
17 音叉振動子
18 引張片
19 荷重受部
19a 孔
19b 荷重作用点
31 第1の部分
32 第2の部分
33 第3の部分
34 第4の部分
35 第5の部分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tuning fork vibration type load sensor that detects a load received by a load receiving portion via a tuning fork vibrator.
[0002]
[Prior art]
In this type of conventional tuning fork vibration type load sensor, for example, a load conversion mechanism made of the same metal member as disclosed in Japanese Patent Publication No. 3-49059 by the present applicant is used. As shown in FIG. 3, a fulcrum 2 a of the lever portion 2 is supported on a part of the base portion 1 of this load conversion mechanism, and a tuning fork vibration is generated between the force point 2 b of the lever portion 2 and the fixed portion of the base portion 1. A child 3 is arranged, and a load receiving portion 4 that receives a load F is connected to a load point 2 c of the lever portion 2 via a tension piece 5. The shape of the tensile member 5, as is symmetrical with respect to the lead line connecting the load acting point 4a of the load point 2c and the load receiving part 4 of the lever 2, is uniform along the lead linear ing.
[0003]
[Problems to be solved by the invention]
However, the above-described load conversion mechanism has the advantage that good measurement accuracy can be obtained by removing the influence of disturbing external force different from the load F, but the shape of the tension piece 5 is leveraged. symmetrical with respect to the lead line connecting the load acting point 4a of the load point 2c and the load receiving part 4 parts 2, and since has become a uniform along the lead straight, load receiving portion 4 receives the load F When the lever portion 2 is inclined as shown in FIG. 4, the connecting portion 5a with the lever portion 2 that determines the lever ratio of the tension piece 5 is deformed, and the load application point 4a is changed from the vertical line passing through the load point 2c. In order to reach the shifted position, stress is generated in the tension piece 5 . This stress adversely affects the linearity and reproducibility of the measurement values obtained by the load conversion mechanism, and may also have a problem with durability.
[0004]
An object of the present invention is to provide a tuning fork vibration type load sensor that can solve the above-described problems, obtain a measurement value excellent in linearity and reproducibility, and improve durability.
[0005]
[Means for Solving the Problems]
To achieve the above object, a tuning fork vibration type load sensor according to the present invention includes a lever connected to a part of a base, and a tuning fork vibrator connected between a power point of the lever and a fixed part of the base. A tuning fork vibration type load sensor comprising a load receiving portion connected to a load point of the lever portion via a thin plate-like tension piece made of the same plate-like metal member, wherein the lever is applied to the load point of the lever portion. A second portion which is a part of the tension piece in parallel with the portion, and an asymmetrical portion on the tension piece with respect to a vertical line connecting a load point of the lever portion and a load application point of the load receiving portion. When the load is applied to the load receiving portion, the relative positional relationship between the lever portion and the second portion is maintained, and the left-right asymmetric portion of the tension piece deforms a part thereof, and the load The load application point of the receiving part is restored to the position on the vertical line passing through the load point of the lever part. Characterized in that way the.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail based on the embodiment shown in FIGS.
FIG. 1 is a front view of an embodiment, and a tuning fork vibration type load sensor according to this embodiment is the same metal member except for the piezoelectric elements 11a and 11b, the amplifier 12, the frequency counter 13 and the lead wire connecting them. It is processed integrally from. For example, two mounting holes 14 a and 14 b are formed in the base portion 14, and a lever portion 15 is supported on the upper portion of the base portion 14 via a thin portion 16 of a fulcrum 15 a. A tuning fork vibrator 17 is connected to the force point 15 b of the lever portion 15, and a load receiving portion 19 is connected to a load point 15 c of the lever portion 15 via a thin plate-like tension piece 18. The load receiving portion 19 is provided with a hole 19a on which a member (not shown) for receiving the load F to be measured is applied, and a lower portion of the hole 19a is a load application point 19b on which the load F acts.
[0007]
The tuning fork vibrator 17 has two long pieces of vibrating pieces 21a and 21b that are symmetric and parallel to the axis, and a substantially U-shaped connecting portion 22a that connects the upper and lower ends of the vibrating pieces 21a and 21b. , 22b and thin plate-like support pieces 23a, 23b that respectively support the coupling portions 22a, 22b on the axis. The upper support piece 23 a is connected to the force point 15 b of the lever portion 15, and the lower support piece 23 b is connected to the protrusion 14 c of the base portion 14.
[0008]
The piezoelectric elements 11a and 11b described above are for generating continuous vibration, and are attached to both side surfaces of the coupling portion 22b below the tuning fork vibrator 17, for example. The piezoelectric element 11a, 11b is connected to the input part and the output part of the amplifier 12, respectively. One piezoelectric element 11a is used for vibration and the other piezoelectric element 11b is used for pickup. The frequency counter 13 is connected to the amplifier 12, and when the gain and frequency characteristics of the amplifier 12 are appropriately selected, the resonator elements 21 a and 21 b are symmetrical at a natural frequency corresponding to the load applied to the tuning fork vibrator 17. Since it vibrates, the frequency counter 13 can display the load value.
[0009]
Here, the shape of the tensile member 18, with which is asymmetrical with respect to the lead line A connecting the load action point 19b of the loading point 15c and the load receiving portion 19 of the lever portion 15, along the lead line A It has been transformed. That is, the tension piece 18 has a first portion 31 extending linearly downward from the load point 15 c of the lever portion 15 and a second portion extending in both directions orthogonal to the lower end of the first portion 31. 32, a third portion 33 that extends downward while curving in thick this example the outer end of the second portion 32, diagonally from the lower end of the third portion 33 in the direction of the lead line a A fourth portion 34 that extends and a fifth portion 35 that linearly extends downward from the lower end of the fourth portion 34 are provided, and the above-described load receiving portion is provided at the lower end of the fifth portion 35. The part 19 is connected. A first portion 31 fifth portion 35 of is disposed on the lead straight A, are given distance d between the lower surface of the upper surface and the lever portion 15 of the second portion 32.
[0010]
When the load receiving portion 19 receives the load F to be measured, the load F acts on the tuning fork vibrator 17 via the tension piece 18 and the lever portion 15, and the tensile load F is applied to the tuning fork vibrator 17. As a result, the vibrating bars 21a and 21b of the tuning fork vibrator 17 vibrate symmetrically at the natural frequency corresponding to the tensile load F, the vibrations are input to the amplifier 12, and the frequency counter 13 displays the load value.
[0011]
At this time, as shown in FIG. 2, the lever portion 15 is inclined downward by the load F. Further, the load F applies a clockwise rotational moment to the second portion 32 of the tension piece 18, and the second portion 32 tilts downward. The inclination angle of the second portion 32 can be adjusted by the shape of the tension piece 18, and can be made substantially coincident with the inclination angle of the lever portion 15 that falls to the right. Under this condition, the lower surface of the lever portion 15 and the upper surface of the second portion 32 of the tension piece 18 are parallel to each other, and the distance d, the lever portion 15, the first portion 31 and the second portion 32 of the tension piece 18. The relative position of is not changed .
[0013]
【The invention's effect】
As described above, in the tuning fork vibration type load sensor according to the present invention, the shape of the tension piece is asymmetrical with respect to the straight line connecting the load point of the lever part and the load application point of the load receiving part. Even if it is inclined, the relative position between the lever portion and the lever portion side of the tension piece is not deformed, and unnecessary stress is not generated there. Therefore, it is possible to obtain a measurement value excellent in linearity and reproducibility and improve durability.
[Brief description of the drawings]
FIG. 1 is a front view of an embodiment.
FIG. 2 is an operation explanatory view of a lever part and a tension piece.
FIG. 3 is a partial front view of a conventional example.
FIG. 4 is an operation explanatory view of a lever part and a tension piece in a conventional example.
[Explanation of symbols]
14 base 15 lever 15a fulcrum 15b force 15c load point 17 tuning fork vibrator 18 tension piece 19 load receiving portion 19a hole 19b load application point 31 first part 32 second part 33 third part 34 fourth part 35 5th part

Claims (2)

基部の一部に接続したてこ部と、該てこ部の力点と前記基部の固定部との間に接続した音叉振動子と、前記てこ部の荷重点に薄板状の引張片を介して接続した荷重受部とを板状の同一金属部材から形成して成る音叉振動式荷重センサにおいて、前記てこ部の荷重点に前記てこ部と平行に前記引張片の一部である第2の部分を連結し、前記てこ部の荷重点と前記荷重受部の荷重作用点とを結ぶ鉛直線に対して前記引張片に左右非対称部分を形成し、前記荷重受部に荷重が加わると、前記てこ部と第2の部分の相対的位置関係を維持すると共に、前記引張片の左右非対称部分はその一部を変形して、前記荷重受部の荷重作用点が前記てこ部の荷重点を通る鉛直線上の位置に復元するようにしたことを特徴とする音叉振動式荷重センサ。A lever connected to a part of the base, a tuning fork vibrator connected between the force point of the lever and the fixed part of the base, and a load point of the lever connected to the load point of the lever via a thin plate-like tension piece A tuning fork vibration type load sensor in which a load receiving portion is formed of the same metal member having a plate shape, and a second portion which is a part of the tension piece is connected to a load point of the lever portion parallel to the lever portion. And forming a left-right asymmetric part in the tension piece with respect to a vertical line connecting the load point of the lever part and the load application point of the load receiving part, and when a load is applied to the load receiving part, While maintaining the relative positional relationship of the second part, the left-right asymmetric part of the tension piece deforms a part thereof, and the load acting point of the load receiving part is on the vertical line passing through the load point of the lever part. A tuning fork vibration type load sensor characterized by being restored to a position. 前記引張片の一部に前記第2の部分の外側の一端から厚肉で弯曲しながら下方に延在する第3の部分を設け、該第3の部分は前記第2の部分に加わる回転モーメントにより変形を行うことを特徴とする請求項1に記載の音叉振動式荷重センサ。  A portion of the tension piece is provided with a third portion that extends downward while bending thickly from one end outside the second portion, and the third portion is a rotational moment applied to the second portion. The tuning fork vibration type load sensor according to claim 1, wherein the tuning fork vibration type load sensor according to claim 1 is deformed.
JP2000324418A 2000-10-24 2000-10-24 Tuning fork vibration type load sensor Expired - Lifetime JP3746670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000324418A JP3746670B2 (en) 2000-10-24 2000-10-24 Tuning fork vibration type load sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000324418A JP3746670B2 (en) 2000-10-24 2000-10-24 Tuning fork vibration type load sensor

Publications (2)

Publication Number Publication Date
JP2002131148A JP2002131148A (en) 2002-05-09
JP3746670B2 true JP3746670B2 (en) 2006-02-15

Family

ID=18801954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000324418A Expired - Lifetime JP3746670B2 (en) 2000-10-24 2000-10-24 Tuning fork vibration type load sensor

Country Status (1)

Country Link
JP (1) JP3746670B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138714A (en) * 2004-11-11 2006-06-01 Shinko Denshi Kk Weighing apparatus with built-in calibration device
JP2009121950A (en) * 2007-11-15 2009-06-04 Shinko Denshi Kk Tuning-fork vibration type load sensor
CN202661155U (en) 2009-06-30 2013-01-09 新光电子株式会社 Component force buffer device and platform scale using component force buffer devices
CN202631091U (en) 2009-06-30 2012-12-26 新光电子株式会社 Platform scale and load detection unit
CN109883580B (en) * 2019-03-19 2020-11-17 西安交通大学 Full quartz differential type resonance pressure sensor chip

Also Published As

Publication number Publication date
JP2002131148A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
US6392776B1 (en) Optical scanner
US5166571A (en) Vibration gyro having an H-shaped vibrator
US7802475B2 (en) Acceleration sensor
JPS6010122A (en) Load converting mechanism
JP6027997B2 (en) Vibrating micromechanical angular velocity sensor and manufacturing method of vibrating angular velocity sensor
WO2010095587A1 (en) Light beam scanning device
JP3746670B2 (en) Tuning fork vibration type load sensor
JP5403200B2 (en) Pressure sensor
JP5578176B2 (en) Physical quantity sensor
JP3683988B2 (en) Optical scanner
JP2010181210A (en) Acceleration sensor
JPH02248867A (en) Acceleration sensor
JP5446175B2 (en) Vibration type sensor
JP2007333452A (en) Pressure sensor and pressure-sensitive element for same
JP2007171123A (en) Pressure sensor and pressure-sensitive element
JP2003028648A (en) Vibration gyroscope and electronic device using the same
JP2009121950A (en) Tuning-fork vibration type load sensor
JP2010223666A (en) Force sensor element and force sensor device
JP2592280B2 (en) Vertical crystal oscillator
JP3959097B2 (en) Vibration gyro tuning fork type vibrator mounting structure
EP0764850A1 (en) Acceleration sensor
JP2010230401A (en) Pressure sensor
JPH1137859A (en) Piezoelectric oscillator for pressure sensor
JP4784436B2 (en) Acceleration sensor
JPH09133704A (en) Acceleration sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051124

R150 Certificate of patent or registration of utility model

Ref document number: 3746670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term