JP3745588B2 - High frequency heating device - Google Patents

High frequency heating device Download PDF

Info

Publication number
JP3745588B2
JP3745588B2 JP2000164502A JP2000164502A JP3745588B2 JP 3745588 B2 JP3745588 B2 JP 3745588B2 JP 2000164502 A JP2000164502 A JP 2000164502A JP 2000164502 A JP2000164502 A JP 2000164502A JP 3745588 B2 JP3745588 B2 JP 3745588B2
Authority
JP
Japan
Prior art keywords
heated
heating chamber
heating
frequency
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000164502A
Other languages
Japanese (ja)
Other versions
JP2001345170A (en
Inventor
隆幸 平光
正史 長田
毅 斉藤
裕嗣 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Home Appliance Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Home Appliance Co Ltd
Priority to JP2000164502A priority Critical patent/JP3745588B2/en
Publication of JP2001345170A publication Critical patent/JP2001345170A/en
Application granted granted Critical
Publication of JP3745588B2 publication Critical patent/JP3745588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、加熱室に収納した被加熱物に高周波を照射して誘電加熱を行う高周波加熱装置に関するものである。
【0002】
【従来の技術】
図5は従来の高周波加熱装置における要部の縦断面図である。図において1は前面に開口部を有する略箱形の加熱室であり、前面に開口部を有する高周波加熱装置(図示せず)の本体内に形成されている。1aは加熱室1の右側板であり、上部および下部に給電口2が設けてある。
【0003】
3は加熱室1の一方の側に設けられた300MHzから30GHzまでの周波数帯にある高周波を発振させる高周波発振器である。4は高周波発信器3のアンテナであり、給電口2へ連通する導波管5の内部に配されている。高周波発振器3およびアンテナ4からの高周波を加熱室1へ伝播するため、導波管5は高周波発振器3と加熱室1の右側板1aの間に設けてある。
【0004】
6は被加熱物7が載置される載置台であり、ガラス等の低誘電率材料によって略円板状に形成されている。8は加熱室1の底板1b近傍に回転可能に設けられた載置台6を支持するロータリプレートであり、金属材料によって略円板状に形成されている。またロータリプレート8は、加熱室1の下部に設けたモータ9と軸部9aを介して連結されている。
【0005】
なお高周波加熱装置の本体前面には、開閉自在の図示されていないドアが取り付けてある。このドアにより本体および加熱室1の開口部は適宜閉塞される。また本体前面の右側には表示部、操作ボタンなどが配された図示されていない操作パネルが設けてある。
【0006】
次に動作について説明する。
被加熱物7を加熱調理する場合、まず、ドアを開けて加熱室1内に設置された載置台6上に被加熱物7を載置し、ドアを閉じる。次に、本体に設けられた操作パネルにより調理メニューを選択して調理時間を設定して調理をスタートさせる。このスタートにより高周波発振器3が稼動して高周波を発振する。
この高周波はアンテナ4を介して導波管5を伝播し、二つの給電口2から加熱室1内に放射される。同時にモータ9が稼動し、ロータリプレート8とロータリプレート8に支持された載置台6と被加熱物7を回転させる。
【0007】
加熱室1内に放射された高周波は、加熱室1内で拡散して加熱室1内の壁面によって逐次反射され、被加熱物7に照射される。これにより、被加熱物7は加熱される。
【0008】
従来の高周波加熱装置は以上のように構成されており、給電口や導波管の形状・位置が固定されているため、加熱室内の定在波分布も固定化された状態になっている。このため、ロータリプレート8を使って固定化された定在波分布のなかを被加熱物が電界強度の強い場所と弱い場所を横切るように移動・回転させることにより加熱ムラを低減していた。
【0009】
しかしながら、ロータリプレート8を回転させるだけでは、加熱ムラが完全に解消されることはなく、同心円上に、特に中心部が加熱不足になり易いという課題があった。
【0010】
このような課題を解決するために、例えば特開平7−269881号では給電口の位置を変更する技術が開示されている。図6はそこで開示されている高周波加熱装置における要部の縦断面図である。
【0011】
図において13は円形状の開口部であり、これとほぼ同じ大きさの円板14によって塞がれている。円板14には開口15が設けてあり、図示されていない円板用モータにより回転駆動される。ここで円板用モータはステッピングモータやサーボモータであって、開口15は円板用モータの回転軸を中心とした適当な位置に配される。このようにして配された開口15は給電口として働き、高周波発信器からの高周波を加熱室1内に放射する。
【0012】
【発明が解決しようとする課題】
従来の高周波加熱装置は以上のように構成されており、加熱ムラが大きかった。またこれを改善することを目的とした特開平7−269881号に示す高周波加熱装置では、導波管の開口部13に対し、円板の開口14の面積が小さいため高周波を効率良く加熱室内に伝搬させることができず、加熱効率が低いという問題が有った。さらに導波管の経路が変わらないため、導波管内の定在波分布も変化がなく、したがって加熱室内の定在波分布も大きな変化が望めず、加熱ムラの大幅な改善も困難であった。
【0013】
本発明は、上記のような課題を解決するためになされたもので、加熱ムラが少なく、加熱効率の高い、即ち均一加熱とスピード加熱の両方を満たす高周波加熱装置を提供することを目的としたものである。
【0014】
【課題を解決するための手段】
本発明に係る高周波加熱装置は、被加熱物を収納する加熱室と、高周波発振器と、該高周波発振器から発振された高周波を該加熱室内に伝搬する導波管と、前記加熱室の背面に該導波管と前記加熱室の境界となる給電口を備え、該給電口へ繋がる前記導波管の壁面の一部を可動壁とし、該可動壁を回転もしくは移動させる駆動手段を設けて前記給電口と前記導波管の形状を同時に変化させるようにするとともに、前記被加熱物の加熱状況を検知する検知手段を設け、該検知手段からの信号をもとに該駆動手段により前記被加熱物に対する高周波の照射を制御し、前記給電口は単数とし、前記可動壁は、前記給電口の形状と略一致する柱体で、高さは前記導波管の高さの断面における高さと略一致するように形成したムーバで、該ムーバは前記柱体の平らな側面が前記導波管の可動壁として機能するようにしたものである。
【0015】
前記給電口は単数とし、前記可動壁は、前記給電口の形状と略一致する柱体で、高さは前記導波管の高さの断面における高さと略一致するように形成したムーバで、該ムーバは前記柱体の平らな側面が前記導波管の可動壁として機能するようにしたものである。
【0016】
また、加熱室の底板と略平行に配された複数個の載置台と、各々の載置台に載置された被加熱物の加熱状況を検知する検知手段とを加熱室内に設け、検知手段の信号に基づいて、駆動手段により可動壁を回転もしくは移動させ、各々の被加熱物に対する高周波の照射を制御するように構成したものである。
【0017】
前記被加熱物の種類・形状に関する情報を入力する入力手段を設け、該入力手段からの信号をもとに該駆動手段により前記被加熱物に対する高周波の照射を制御するように構成したものである。
【0018】
【発明の実施の形態】
実施の形態1.
図1は本発明の実施の形態1における要部の斜視図である。従来技術と同一または同一相当部分には同じ符号を付して表し、説明を省略する。
【0019】
図において加熱室1の背面板1eの略中央には円形状の給電口16が設けてあり、アンテナ4からの高周波を給電口16まで導くように背面板1eに沿って給電口16を覆うように導波管5が設けてある。
【0020】
17はムーバであり、給電口16に繋がる導波管の壁面の一部を形成している。より詳細にはムーバ17は、給電口16の形状と略一致する円の一部からなる半円もしくは扇形を断面形状とした柱体であり、高さは導波管の断面における高さと略一致している。したがってこの柱体の平らな側面が導波管の可動壁として機能する。またムーバ17は円形状の給電口16の中心を通り、この面に垂直な軸に固定され、モータによって軸の回りに回動するように構成されている。ここでモータはムーバ17の位置を微妙に制御するためステッピングモータ、サーボモータなどが使われる。
【0021】
なお、加熱室の底面には被加熱物7と載置台6を回転させるロータリプレート、前面側には本体および加熱室1の開口部を閉塞する開閉自在のドア、前面の右側には操作パネルが取り付けられている点は従来例で説明した通りである。
【0022】
以上のような構成において、被加熱物7を加熱室1内の載置台6上にセットしてドアを閉じ、操作パネルより調理時間を設定して高周波発振器3をスタートさせる。高周波はアンテナ4を介し、ムーバ17によって形状を変えられた導波管5を伝搬し、さらにムーバ17によって形状を変えられた給電口16から加熱室1内に放射される。
【0023】
加熱室1内に放射された高周波は、加熱室1内で拡散して被加熱物7を直接照射するとともに、加熱室1の壁面、即ち右側板1a、底板1b、左側板1c、天板1d、背面板1eと、前面のドアを閉じた時に背面板1eと対向する位置関係になる前面板1fによって逐次反射され、被加熱物7を間接照射する。この直接照射と間接照射の両方により被加熱物7は加熱される。
【0024】
ここで、ムーバ17を回動させるようにしたので、高周波が伝搬される導波管5形状と共に給電口形状が変化し、加熱室1内には複数の定在波分布が存在することになる。このため被加熱物7は複数の照射パターンによって加熱され、加熱ムラが改善される。
【0025】
特開平7−269881号のように導波管内を伝搬してきた高周波のエネルギの一部を取り出して利用するのではなく、全てを利用するようにしたので、被加熱物7へ吸収される高周波の量が増え、スピード加熱が可能となる。
【0026】
ここでミルク・酒燗などの液体の被加熱物7には、ムーバ17を上に回転移動させることで、下方に移動した導波管5と給電口から加熱室1の下の方に高周波が放射し、被加熱物7の下部を集中的に加熱し、対流で全体を均一に加熱することで、スピード加熱ができる。また、ピザなどの広い被加熱物7には、ムーバ17を下に回転移動させることで、上方に移動した導波管5と給電口から加熱室1の上の方に高周波が放射し、被加熱物7の上面を全体的に加熱し、略均一に加熱することができる。このように被加熱物の形状や種類とムーバの動作・位置との関係は予めプログラムしておけば、ユーザが操作パネルの簡単な操作で被加熱物7を略均一に加熱することが出来る。
【0027】
さらにまた加熱室1内に被加熱物7の仕上がり(加熱状況)を検知する検知手段を設け、被加熱物7の仕上がり状況をモニターしながら、加熱不足の部位に集中的に高周波を照射するようにムーバ17を制御すればよりきめ細かな均一加熱を実現することができる。
【0028】
なお上記の実施の形態1では給電口が壁面の中央に設置した場合を示したが、給電口が中央にない場合であっても加熱室1内の定在波分布を大幅に変えることができ、加熱ムラを改善することができる。
【0029】
また、上述実施の形態1ではムーバ17が半円の断面形状を有す柱体の場合を示したが、図2に示すように縦横の長さがそれぞれ導波管5の幅、給電口の直径と略一致する矩形状の金属板(図ではくの字に折り曲げ加工している)であっても同様の効果を奏する。図のケースでは18がムーバであり、19、19aがそれぞれムーバ18を回動するためのモータと、ムーバ18が取り付けられたモータ19の軸である。
【0030】
さらにまた高周波を反射させる可動壁として金属柱体あるいは金属板による平らな面を取り上げたが、金属メッシュからなる面であってもよい。この場合、高い反射率を得るためメッシュの目のサイズ、即ち一辺の長さは使われている高周波の波長の1/4以下にすることが望ましい。
【0031】
なお、上記実施の形態1では導波管5と給電口を加熱室1の背面板に設けた場合を示したが、加熱室1の側面板に設けてもよい。この場合も同様の効果を奏する。また上記実施の形態1では可動壁が回動する場合について説明したが、これに限る必要はなく、その他の移動によっても同様の効果を奏する。
【0032】
実施の形態2.
図3は本発明の実施の形態2における要部の斜視図である。従来例もしくは実施の形態1と同一または同一相当部分には同じ符号を付し、説明を省略する。
【0033】
図において加熱室1の底板1cの略中央には円形状の給電口20が設けてあり、アンテナ4からの高周波を給電口20に導くように底板1cに沿って給電口20を覆うように導波管5が設けてある。
【0034】
また給電口20の形状は載置台の形状と略一致し、給電口20と密接してムーバが設置され、ムーバの平らな面が導波管の可動壁としている点は実施の形態1と同じである。
また被加熱物をセットして加熱をスタートさせるまでの動作は実施の形態1と同じであるので、説明を省略する。
【0035】
本構成では給電口を底面板に設け、給電口20の形状が載置台の形状と略一致するように構成したので、ムーバ17を回動させて高周波の放射方向を振るだけで、載置台6上の被加熱物7を均一に加熱することができる。このようにムーバ17を回動させることにより被加熱物7を回転させるというロータリプレートの機能を満たすことが可能となる。したがってロータリプレート、及びこれを回動させるためのモータや駆動機構などは不要となり、部品点数が低減された組立て作業性の向上した安価な高周波加熱装置を提供することが可能となる。
【0036】
さらに、加熱室1内の上部に被加熱物7の加熱状況を検知する検知手段を設け、被加熱物7の仕上がり状況を判断してもよい。このように構成することにより、加熱不足の部位を検出し、この部位に集中的に高周波が照射されるようにムーバ17を動かせば、均一加熱を実現することが出来る。
【0037】
このような検知手段として赤外線センサ、蒸気センサ、温度センサなどが挙げられる。これらセンサのいずれかを走査系と組合せる、アレイ状にする、あるいは異なる種類のセンサを組合せて総合的に判断するなどの手法を用いることによって被加熱物7の各部位に対する仕上がり状況をきめ細かく検出することが可能である。
【0038】
なお、本実施の形態では導波管5と給電口を加熱室1の底板1bに設けた場合を示したが、加熱室1の天井板1dに設けてもよく、底板1bに給電口を設けた場合と同様の効果が期待できる。
【0039】
実施の形態3.
図4は本発明の実施の形態3における要部の縦断面図である。
従来例または実施の形態1、2と同一または同一相当部分には同じ符号を付し、説明を省略する。
図において6a、6bは加熱室の上段と下段に設置された載置台であり、それぞれの載置台には被加熱物7a、7bが置かれている。21a、21bはそれぞれ加熱室1の上段と下段に設置された仕上がりを検知する検知手段であり、これら検知手段によって加熱室内における被加熱物7a、7bの加熱状況がモニターされる。また、22は給電口である。
【0040】
このような構成において、上段と下段の被加熱物7a、7bを同時に加熱させる場合を考える。
加熱室1内に設置された二つの載置台6a、6bの上にそれぞれ被加熱物7a、7bを載置した後、ドアを閉じて操作パネルより調理時間を設定し、調理をスタートさせると、高周波発振器3が稼動し、高周波が発振する。この高周波はアンテナ4からムーバ17によって形状を変えられた導波管5を介し、給電口22から加熱室1内に放射され、被加熱物7a、7bを直接照射するとともに、加熱室1の壁面で反射され、被加熱物7a、7bを間接照射する。
【0041】
ここで仕上がりを検知する検知手段21a、21bによりそれぞれ加熱室1の上段と下段に載置された被加熱物の仕上がり状況は同時モニターされており、上段に載置された被加熱物6aと下段に載置された被加熱物6bの仕上がり状況を比較している。
このため、例えば下段に載置されている被加熱物7bが上段に載置されている被加熱物7aに比べて加熱不足の場合には、ムーバ17を上に回転移動させ、導波管5経路と給電口を加熱室1の下方に導くようにし、上段に載置された被加熱物7aより下段に載置された被加熱物7bに多量の高周波を照射させ、加熱不足を補い、上段と下段に載置された被加熱物7a、7bの仕上がりを同時に終了させることができる。
【0042】
これによりユーザが上段と下段に載置された被加熱物7a、7bのそれぞれの加熱状況を見ながら先に仕上がった方を取り出し、残った方の調理時間を再設定してスタートさせるという手間のかかる作業が無くなり、利便性が向上する。
【0043】
なお、上段に載置されている被加熱物7bが下段に載置されている被加熱物7aに比べて加熱不足の場合は逆の動作となる。
また、仕上がり検知手段を各段に設けているが、加熱室内の適当な位置に一箇所設け、各段の仕上がり状況を見るように構成してもよい。
また、載置台が2段の場合について説明したが、これ以上の段数であっても同様である。
【0044】
【発明の効果】
本発明に係る高周波加熱装置は、以上のように構成されており、以下に示す効果を有する。
【0045】
加熱室の背面板壁に設けた給電口と繋がる導波管の壁の一部を可動壁とし、これを回転・移動させる駆動手段を設け、導波管と給電口の形状を同時に変化させるようにしたので、高周波を効率よく加熱室内に導入できるとともに、加熱室内の定在波分布を大幅に変更することが可能になり、加熱スピードを向上し、加熱ムラを低減することができる。
【0046】
また、給電口を単数とし、可動壁は、給電口の形状と略一致する柱体で、高さは導波管の高さの断面における高さと略一致するように形成したムーバであって、このムーバを柱体の平らな側面が導波管の可動壁として機能するようにしたので、高周波を効率よく加熱室内に導入できるとともに、加熱室内の定在波分布を大幅に変更することが可能になり、加熱スピードを向上し、加熱ムラを低減することができる。
【0047】
また、加熱室の底板と略平行に載置台を複数配し、各々に載置された被加熱物の加熱状況を検知する仕上がり検知手段を加熱室内に設け、仕上がり検知手段の信号に基づいて、駆動手段により適宜可動壁を回転もしくは移動させ、各々の被加熱物に対する高周波の照射を制御するようにしたので、複数の被加熱物の加熱を同時に終了することが可能となり、利便性の高い高周波加熱装置が得られる。
【0048】
さらにまた、被加熱物の種類や形状に関する情報をもとに、高周波が被加熱物に対してムラなく、効率よく照射されるように可動壁を回転・移動させるようにしたので、加熱スピードを向上し、加熱ムラを低減することができる。
【図面の簡単な説明】
【図1】 本発明に係る高周波加熱装置の実施の形態1における要部の斜視図である。
【図2】 本発明に係る高周波加熱装置におけるムーバのもう一つの形態を示す斜視図である。
【図3】 本発明に係る高周波加熱装置の実施の形態2における要部の斜視図である。
【図4】 本発明に係る高周波加熱装置の実施の形態3における要部の縦断面図である。
【図5】 従来の高周波加熱装置における要部の縦断面図である。
【図6】 もう一つの従来の高周波加熱装置における要部の縦断面図である。
【符号の説明】
1 加熱室、1a 右側板、1b 底板、1c 左側板、1d天井板、
1e 背面板、1f、2 給電口、3 高周波発振器、4 アンテナ、
5 導波管,5a 導波管、 5b 導波管、6 載置台、7 被加熱物、
8 ロータリプレート、9 モータ、9a 軸部、10 給電口、
11 給電口、12 切替手段、13 開口部、14 開口、15 円板、
16 給電口、17 ムーバ、18 ムーバ、19 モータ、
19a モータの回転軸、20 給電口、21a 仕上がり検知手段、
21b 仕上がり検知手段、22 給電口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency heating apparatus that performs dielectric heating by irradiating an object to be heated contained in a heating chamber with a high frequency.
[0002]
[Prior art]
FIG. 5 is a longitudinal sectional view of a main part in a conventional high-frequency heating apparatus. In the figure, reference numeral 1 denotes a substantially box-shaped heating chamber having an opening on the front surface, which is formed in the main body of a high-frequency heating device (not shown) having an opening on the front surface. 1a is a right side plate of the heating chamber 1, and a power supply port 2 is provided at the upper part and the lower part.
[0003]
Reference numeral 3 denotes a high-frequency oscillator that is provided on one side of the heating chamber 1 and oscillates a high frequency in a frequency band from 300 MHz to 30 GHz. Reference numeral 4 denotes an antenna of the high-frequency transmitter 3, which is disposed inside the waveguide 5 that communicates with the power supply port 2. In order to propagate the high frequency from the high frequency oscillator 3 and the antenna 4 to the heating chamber 1, the waveguide 5 is provided between the high frequency oscillator 3 and the right side plate 1 a of the heating chamber 1.
[0004]
Reference numeral 6 denotes a mounting table on which the object to be heated 7 is mounted, which is formed in a substantially disc shape by a low dielectric constant material such as glass. Reference numeral 8 denotes a rotary plate that supports a mounting table 6 rotatably provided in the vicinity of the bottom plate 1b of the heating chamber 1, and is formed in a substantially disk shape from a metal material. The rotary plate 8 is connected to a motor 9 provided at the lower portion of the heating chamber 1 via a shaft portion 9a.
[0005]
A door (not shown) that can be opened and closed is attached to the front surface of the main body of the high-frequency heating device. The door and the opening of the heating chamber 1 are appropriately closed by this door. An operation panel (not shown) on which a display unit, operation buttons, and the like are arranged is provided on the right side of the front surface of the main body.
[0006]
Next, the operation will be described.
When cooking the object to be heated 7, first, the door is opened, the object to be heated 7 is placed on the mounting table 6 installed in the heating chamber 1, and the door is closed. Next, the cooking menu is selected by the operation panel provided on the main body, the cooking time is set, and cooking is started. By this start, the high-frequency oscillator 3 operates and oscillates a high frequency.
This high frequency propagates through the waveguide 5 via the antenna 4 and is radiated into the heating chamber 1 from the two power supply ports 2. At the same time, the motor 9 is operated to rotate the rotary plate 8, the mounting table 6 supported by the rotary plate 8, and the heated object 7.
[0007]
The high frequency wave radiated into the heating chamber 1 is diffused in the heating chamber 1, sequentially reflected by the wall surface in the heating chamber 1, and irradiated on the object 7 to be heated. Thereby, the article 7 to be heated is heated.
[0008]
The conventional high-frequency heating apparatus is configured as described above, and since the shape and position of the power supply port and the waveguide are fixed, the standing wave distribution in the heating chamber is also fixed. For this reason, heating unevenness has been reduced by moving and rotating the object to be heated across a place where the electric field strength is strong and a place where the object is strong in the standing wave distribution fixed using the rotary plate 8.
[0009]
However, simply rotating the rotary plate 8 does not completely eliminate the heating unevenness, and there is a problem that the central portion tends to be insufficiently heated especially on the concentric circles.
[0010]
In order to solve such a problem, for example, Japanese Patent Application Laid-Open No. 7-269881 discloses a technique for changing the position of the power supply port. FIG. 6 is a longitudinal sectional view of a main part of the high-frequency heating apparatus disclosed therein.
[0011]
In the figure, reference numeral 13 denotes a circular opening, which is closed by a disk 14 having substantially the same size. The disk 14 has an opening 15 and is driven to rotate by a disk motor (not shown). Here, the disk motor is a stepping motor or a servo motor, and the opening 15 is disposed at an appropriate position around the rotation axis of the disk motor. The opening 15 arranged in this manner serves as a power feeding port, and radiates high frequency from the high frequency transmitter into the heating chamber 1.
[0012]
[Problems to be solved by the invention]
The conventional high-frequency heating apparatus is configured as described above, and the heating unevenness is large. Further, in the high-frequency heating apparatus disclosed in Japanese Patent Application Laid-Open No. 7-269881 aimed at improving this, since the area of the opening 14 of the disk is small with respect to the opening 13 of the waveguide, the high frequency is efficiently introduced into the heating chamber. There was a problem that it was not possible to propagate and heating efficiency was low. Furthermore, since the waveguide path does not change, there is no change in the standing wave distribution in the waveguide. Therefore, a large change in the standing wave distribution in the heating chamber cannot be expected, and it is difficult to significantly improve heating unevenness. .
[0013]
The present invention has been made in order to solve the above-described problems, and has an object to provide a high-frequency heating device with little heating unevenness and high heating efficiency, that is, satisfying both uniform heating and speed heating. Is.
[0014]
[Means for Solving the Problems]
A high-frequency heating device according to the present invention includes a heating chamber that houses an object to be heated, a high-frequency oscillator, a waveguide that propagates high-frequency waves oscillated from the high-frequency oscillator into the heating chamber, and a back surface of the heating chamber. A power supply port serving as a boundary between the waveguide and the heating chamber is provided. A part of the wall surface of the waveguide connected to the power supply port is a movable wall, and driving means for rotating or moving the movable wall is provided. The shape of the mouth and the waveguide is changed at the same time, and detecting means for detecting the heating state of the object to be heated is provided, and the object to be heated is provided by the driving means based on a signal from the detecting means. The number of the power supply ports is singular, the movable wall is a column that substantially matches the shape of the power supply port, and the height is substantially the same as the height of the cross section of the waveguide. A mover formed so that the mover is In which flat sides of the body is to function as a movable wall of the waveguide.
[0015]
The power feeding port is a single, the movable wall is a column that substantially matches the shape of the power feeding port, and the height is a mover formed so as to substantially match the height in the cross section of the height of the waveguide, The mover is such that the flat side surface of the column functions as a movable wall of the waveguide .
[0016]
In addition, a plurality of mounting tables arranged substantially in parallel with the bottom plate of the heating chamber, and a detecting means for detecting the heating status of the object to be heated mounted on each mounting table are provided in the heating chamber, Based on the signal, the movable wall is rotated or moved by the driving means to control the high-frequency irradiation to each object to be heated.
[0017]
Input means for inputting information on the type and shape of the object to be heated is provided, and the driving means controls the high-frequency irradiation on the object to be heated based on a signal from the input means. .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a perspective view of an essential part in Embodiment 1 of the present invention. Portions that are the same as or equivalent to those of the prior art are denoted by the same reference numerals, and description thereof is omitted.
[0019]
In the figure, a circular power supply port 16 is provided at substantially the center of the back plate 1 e of the heating chamber 1 so as to cover the power supply port 16 along the back plate 1 e so as to guide the high frequency from the antenna 4 to the power supply port 16. Is provided with a waveguide 5.
[0020]
Reference numeral 17 denotes a mover, which forms part of the wall surface of the waveguide connected to the power supply port 16. More specifically, the mover 17 is a column having a semicircular or fan-shaped cross section that is substantially the same as the shape of the power supply port 16 and has a cross-sectional shape that is substantially the same as the height in the cross-section of the waveguide. I'm doing it. Therefore, the flat side surface of this column functions as a movable wall of the waveguide. The mover 17 passes through the center of the circular power supply port 16, is fixed to an axis perpendicular to the surface, and is configured to rotate around the axis by a motor. Here, a stepping motor, a servo motor, or the like is used as the motor to finely control the position of the mover 17.
[0021]
A rotary plate that rotates the object 7 and the mounting table 6 is rotated on the bottom of the heating chamber, an openable / closable door that closes the main body and the opening of the heating chamber 1 on the front side, and an operation panel on the right side of the front. The attachment point is as described in the conventional example.
[0022]
In the configuration as described above, the object 7 to be heated is set on the mounting table 6 in the heating chamber 1, the door is closed, the cooking time is set from the operation panel, and the high frequency oscillator 3 is started. A high frequency wave propagates through the antenna 4 through the waveguide 5 whose shape has been changed by the mover 17 and is further radiated into the heating chamber 1 from the power supply port 16 whose shape has been changed by the mover 17.
[0023]
The high frequency wave radiated into the heating chamber 1 is diffused in the heating chamber 1 and directly irradiates the object 7 to be heated, and the wall surface of the heating chamber 1, that is, the right side plate 1a, the bottom plate 1b, the left side plate 1c, and the top plate 1d. The back plate 1e and the front plate 1f that is in a positional relationship facing the back plate 1e when the front door is closed are sequentially reflected to indirectly irradiate the object 7 to be heated. The heated object 7 is heated by both the direct irradiation and the indirect irradiation.
[0024]
Here, since the mover 17 is rotated, the shape of the power feeding port changes with the shape of the waveguide 5 through which the high frequency is propagated, and a plurality of standing wave distributions exist in the heating chamber 1. . For this reason, the to-be-heated material 7 is heated by several irradiation patterns, and a heating nonuniformity is improved.
[0025]
As described in Japanese Patent Application Laid-Open No. 7-269881, a part of the high-frequency energy propagating in the waveguide is not extracted and used, but all of the high-frequency energy is absorbed. The amount increases and speed heating becomes possible.
[0026]
Here, the liquid to-be-heated object 7 such as milk, sake lees, etc. is rotated by moving the mover 17 upward, so that a high frequency is generated in the lower part of the heating chamber 1 from the waveguide 5 and the feeding port moved downward. Radiation, intensive heating of the lower part of the article 7 to be heated, and uniform heating of the entire body by convection allow speed heating. In addition, by rotating the mover 17 downward on a large object 7 to be heated such as pizza, high-frequency waves are emitted upward from the heating chamber 1 through the waveguide 5 and the power supply port that have moved upward. The upper surface of the heated object 7 can be heated as a whole and heated substantially uniformly. In this way, if the relationship between the shape and type of the object to be heated and the movement / position of the mover is programmed in advance, the user can heat the object 7 to be heated almost uniformly by a simple operation of the operation panel.
[0027]
Furthermore, a detection means for detecting the finish (heating state) of the article 7 to be heated is provided in the heating chamber 1 so that the high-frequency radiation is intensively applied to the underheated part while monitoring the finish state of the article 7 to be heated. Further, if the mover 17 is controlled, finer and uniform heating can be realized.
[0028]
In the first embodiment, the case where the power supply port is installed at the center of the wall surface is shown. However, even when the power supply port is not at the center, the standing wave distribution in the heating chamber 1 can be significantly changed. Uneven heating can be improved.
[0029]
In the first embodiment, the mover 17 is a column having a semicircular cross-sectional shape. However, as shown in FIG. 2, the vertical and horizontal lengths are the width of the waveguide 5 and the feed port, respectively. The same effect can be obtained even with a rectangular metal plate (which is bent into a square shape in the figure) that substantially matches the diameter. In the illustrated case, 18 is a mover, 19 and 19a are a motor for rotating the mover 18, and a shaft of the motor 19 to which the mover 18 is attached.
[0030]
Furthermore, although a flat surface made of a metal column or a metal plate is taken up as a movable wall for reflecting high frequencies, a surface made of a metal mesh may be used. In this case, in order to obtain a high reflectance, it is desirable that the mesh eye size, that is, the length of one side, is ¼ or less of the wavelength of the high frequency used.
[0031]
In addition, although the case where the waveguide 5 and the power feeding port are provided on the back plate of the heating chamber 1 has been described in the first embodiment, it may be provided on the side plate of the heating chamber 1. In this case, the same effect is obtained. In the first embodiment, the case where the movable wall rotates has been described. However, the present invention is not limited to this, and the same effect can be obtained by other movements.
[0032]
Embodiment 2. FIG.
FIG. 3 is a perspective view of a main part in the second embodiment of the present invention. Parts that are the same as or equivalent to those in the conventional example or the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0033]
In the figure, a circular power supply port 20 is provided at substantially the center of the bottom plate 1c of the heating chamber 1, and is guided so as to cover the power supply port 20 along the bottom plate 1c so as to guide the high frequency from the antenna 4 to the power supply port 20. A wave tube 5 is provided.
[0034]
The shape of the power supply port 20 is substantially the same as the shape of the mounting table, the mover is installed in close contact with the power supply port 20, and the flat surface of the mover is the movable wall of the waveguide, the same as in the first embodiment. It is.
In addition, since the operation until the object to be heated is set and the heating is started is the same as that of the first embodiment, the description is omitted.
[0035]
In this configuration, since the power feeding port is provided on the bottom plate and the shape of the power feeding port 20 is substantially coincident with the shape of the mounting table, the mounting table 6 can be obtained simply by rotating the mover 17 and shaking the high-frequency radiation direction. The upper object 7 can be heated uniformly. Thus, by rotating the mover 17, it is possible to satisfy the function of the rotary plate that rotates the article 7 to be heated. Therefore, the rotary plate, the motor for driving the rotary plate, the drive mechanism, and the like are not necessary, and it is possible to provide an inexpensive high-frequency heating apparatus with reduced number of parts and improved assembly workability.
[0036]
Furthermore, a detection unit that detects the heating state of the object 7 to be heated may be provided in the upper part of the heating chamber 1 to determine the finished state of the object 7 to be heated. By configuring in this way, uniform heating can be realized by detecting an underheated part and moving the mover 17 so that the high frequency is intensively applied to this part.
[0037]
Examples of such detection means include an infrared sensor, a vapor sensor, and a temperature sensor. Finely detect the finished state of each part of the object 7 to be heated by using a method such as combining one of these sensors with a scanning system, making an array, or combining different types of sensors. Is possible.
[0038]
In the present embodiment, the waveguide 5 and the power feeding port are provided on the bottom plate 1b of the heating chamber 1. However, the waveguide 5 and the power feeding port may be provided on the ceiling plate 1d of the heating chamber 1, and the power feeding port is provided on the bottom plate 1b. The same effect as the case can be expected.
[0039]
Embodiment 3 FIG.
FIG. 4 is a longitudinal sectional view of an essential part in Embodiment 3 of the present invention.
Parts that are the same as or equivalent to those in the conventional example or the first and second embodiments are denoted by the same reference numerals, and description thereof is omitted.
In the figure, reference numerals 6a and 6b denote mounting tables installed in the upper and lower stages of the heating chamber, and the objects to be heated 7a and 7b are placed on the mounting tables. Reference numerals 21a and 21b are detection means for detecting the finishes installed in the upper and lower stages of the heating chamber 1, respectively, and the heating status of the heated objects 7a and 7b in the heating chamber is monitored by these detection means. Reference numeral 22 denotes a power supply port.
[0040]
In such a configuration, consider a case where the upper and lower heated objects 7a and 7b are heated simultaneously.
After placing the objects to be heated 7a and 7b on the two placing tables 6a and 6b installed in the heating chamber 1, respectively, the door is closed, the cooking time is set from the operation panel, and cooking is started. The high frequency oscillator 3 is activated, and high frequency oscillates. This high frequency is radiated from the antenna 4 through the waveguide 5 whose shape has been changed by the mover 17 into the heating chamber 1 from the feeding port 22 to directly irradiate the objects 7a and 7b to be heated, and the wall surface of the heating chamber 1 And indirectly heat the heated objects 7a and 7b.
[0041]
Here, the finishing states of the objects to be heated placed on the upper and lower stages of the heating chamber 1 are simultaneously monitored by the detection means 21a and 21b for detecting the finish, respectively, and the object to be heated 6a placed on the upper stage and the lower stage The finished situation of the object 6b to be heated placed on is compared.
For this reason, for example, when the heated object 7b placed on the lower stage is insufficiently heated as compared with the heated object 7a placed on the upper stage, the mover 17 is rotated upward to move the waveguide 5 The path and the power feeding port are guided below the heating chamber 1, and a large amount of high frequency is irradiated to the heated object 7b placed below the heated object 7a placed on the upper stage to compensate for insufficient heating. And finishing of the heated objects 7a and 7b placed on the lower stage can be completed at the same time.
[0042]
As a result, the user takes out the first finish while looking at the heating conditions of the heated objects 7a and 7b placed on the upper and lower stages, and resets and starts the remaining cooking time. This work is eliminated and convenience is improved.
[0043]
Note that the operation is reversed when the heated object 7b placed on the upper stage is insufficiently heated as compared to the heated object 7a placed on the lower stage.
Further, although the finish detection means is provided in each stage, it may be configured to provide one place at an appropriate position in the heating chamber so as to check the finish status of each stage.
Moreover, although the case where the mounting table has two stages has been described, the same is true even when the number of stages is larger.
[0044]
【The invention's effect】
The high-frequency heating device according to the present invention is configured as described above and has the following effects.
[0045]
The part of the wall of the waveguide leading the sheet collector port formed in a rear plate wall of the heating chamber and movable wall is provided with drive means for rotating and moving this, to vary the waveguide feed port shape simultaneously Therefore, the high frequency can be efficiently introduced into the heating chamber, the standing wave distribution in the heating chamber can be changed significantly, the heating speed can be improved, and the heating unevenness can be reduced.
[0046]
Further, a single feeding port, the movable wall is a column that substantially matches the shape of the feeding port, and the height is a mover formed so as to substantially match the height of the cross section of the height of the waveguide, Since this mover is designed so that the flat side of the column functions as a movable wall of the waveguide, high-frequency waves can be efficiently introduced into the heating chamber, and the standing wave distribution in the heating chamber can be significantly changed. Thus, the heating speed can be improved and uneven heating can be reduced.
[0047]
Further, a plurality of mounting tables are arranged substantially in parallel with the bottom plate of the heating chamber, finish detection means for detecting the heating status of the object to be heated placed in each is provided in the heating chamber, based on the signal of the finish detection means, Since the movable means is appropriately rotated or moved by the driving means to control the irradiation of the high frequency to each heated object, it becomes possible to finish heating of the heated objects at the same time, and the high frequency that is highly convenient. A heating device is obtained.
[0048]
Furthermore, based on the information on the type and shape of the object to be heated, the movable wall is rotated and moved so that the high frequency is evenly irradiated to the object to be heated, so that the heating speed is reduced. It is possible to improve and reduce heating unevenness.
[Brief description of the drawings]
FIG. 1 is a perspective view of a main part in a first embodiment of a high-frequency heating device according to the present invention.
FIG. 2 is a perspective view showing another embodiment of the mover in the high-frequency heating device according to the present invention.
FIG. 3 is a perspective view of a main part in a second embodiment of the high-frequency heating device according to the present invention.
FIG. 4 is a longitudinal sectional view of a main part in a third embodiment of the high-frequency heating device according to the present invention.
FIG. 5 is a longitudinal sectional view of a main part in a conventional high-frequency heating device.
FIG. 6 is a longitudinal sectional view of a main part in another conventional high-frequency heating apparatus.
[Explanation of symbols]
1 heating chamber, 1a right side plate, 1b bottom plate, 1c left side plate, 1d ceiling plate,
1e Back plate, 1f, 2 feeding port, 3 high frequency oscillator, 4 antenna,
5 waveguide, 5a waveguide, 5b waveguide, 6 mounting table, 7 object to be heated,
8 Rotary plate, 9 Motor, 9a Shaft, 10 Power supply port,
11 feeding port, 12 switching means, 13 opening, 14 opening, 15 disc,
16 power supply port, 17 mover, 18 mover, 19 motor,
19a Motor rotating shaft, 20 power supply port, 21a Finishing detection means,
21b Finish detection means, 22 Power supply port

Claims (3)

被加熱物を収納する加熱室と、高周波発振器と、該高周波発振器から発振された高周波を該加熱室内に伝搬する導波管と、前記加熱室の背面に該導波管と前記加熱室の境界となる給電口を備え、該給電口へ繋がる前記導波管の壁面の一部を可動壁とし、該可動壁を回転もしくは移動させる駆動手段を設けて前記給電口と前記導波管の形状を同時に変化させるようにするとともに、前記被加熱物の加熱状況を検知する検知手段を設け、該検知手段からの信号をもとに該駆動手段により前記被加熱物に対する高周波の照射を制御し、前記給電口は単数とし、前記可動壁は、前記給電口の形状と略一致する柱体で、高さは前記導波管の高さの断面における高さと略一致するように形成したムーバで、該ムーバは前記柱体の平らな側面が前記導波管の可動壁として機能するようにしたことを特徴とする高周波加熱装置。A heating chamber that houses an object to be heated, a high-frequency oscillator, a waveguide that propagates high-frequency waves oscillated from the high-frequency oscillator into the heating chamber, and a boundary between the waveguide and the heating chamber on the back of the heating chamber A part of the wall surface of the waveguide connected to the power supply port is a movable wall, and driving means for rotating or moving the movable wall is provided so that the shape of the power supply port and the waveguide is While simultaneously changing, a detection means for detecting the heating state of the object to be heated is provided, and the driving means controls the high-frequency irradiation to the object to be heated based on a signal from the detection means, A single feeding port, the movable wall is a column that substantially matches the shape of the feeding port, and a mover that is formed so that its height substantially matches the height of the cross section of the height of the waveguide. The mover has a flat side of the column that High-frequency heating apparatus is characterized in that so as to function as Dokabe. 前記加熱室の底板と略平行に配された複数個の載置台と、各々の該載置台に載置された被加熱物の加熱状況を検知する検知手段とを前記加熱室内に設け、該検知手段の信号に基づいて、前記駆動手段により前記可動壁を回転もしくは移動させ、各々の被加熱物に対する高周波の照射を制御するように構成した請求項1記載の高周波加熱装置。  A plurality of mounting tables arranged substantially in parallel with the bottom plate of the heating chamber, and detection means for detecting the heating status of the object to be heated mounted on each mounting table are provided in the heating chamber, and the detection The high frequency heating apparatus according to claim 1, wherein the driving means rotates or moves the movable wall based on a signal from the means to control high frequency irradiation to each object to be heated. 前記被加熱物の種類・形状に関する情報を入力する入力手段を設け、該入力手段からの信号をもとに該駆動手段により前記被加熱物に対する高周波の照射を制御するように構成したことを特徴とする請求項1または2記載の高周波加熱装置。  Input means for inputting information on the type and shape of the object to be heated is provided, and the driving means controls the high-frequency irradiation to the object to be heated based on a signal from the input means. The high-frequency heating device according to claim 1 or 2.
JP2000164502A 2000-06-01 2000-06-01 High frequency heating device Expired - Fee Related JP3745588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000164502A JP3745588B2 (en) 2000-06-01 2000-06-01 High frequency heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000164502A JP3745588B2 (en) 2000-06-01 2000-06-01 High frequency heating device

Publications (2)

Publication Number Publication Date
JP2001345170A JP2001345170A (en) 2001-12-14
JP3745588B2 true JP3745588B2 (en) 2006-02-15

Family

ID=18668113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000164502A Expired - Fee Related JP3745588B2 (en) 2000-06-01 2000-06-01 High frequency heating device

Country Status (1)

Country Link
JP (1) JP3745588B2 (en)

Also Published As

Publication number Publication date
JP2001345170A (en) 2001-12-14

Similar Documents

Publication Publication Date Title
KR100383368B1 (en) Cooker
JPH10185207A (en) Microwave range with microwave spreading means
JP4024145B2 (en) microwave
EP1708546A2 (en) Microwave oven
CA1081795A (en) Microwave oven with a rotary table
JP3970115B2 (en) microwave
JP2001035649A (en) Microwave oven
JP3745588B2 (en) High frequency heating device
JPH0864359A (en) High frequency heating device
KR0161083B1 (en) Turn table control method of microwave oven
JP2004219010A (en) High-frequency heating cooker
KR100315392B1 (en) microwave oven
JP3517825B2 (en) High frequency heating equipment
JPH07122357A (en) High frequency heater
JPH11193931A (en) Microwave oven
JP2853610B2 (en) High frequency heating equipment
JP2780936B2 (en) High frequency direction adjustment device for microwave oven
JP3684500B2 (en) High frequency heating device
WO2021157559A1 (en) Heating cooking device
KR100381164B1 (en) A heating device and method of micro wave oven
JPH07318075A (en) Heating cooker
JPH08180971A (en) Microwave oven
KR100265408B1 (en) Microwave oven and control method thereof
JP2004156861A (en) Microwave oven
JP2996155B2 (en) High frequency heating equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees